Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 549, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263406

RESUMO

Temperature is a fundamental driver of species distribution and ecosystem functioning. Yet, our knowledge of the microclimatic conditions experienced by organisms inside tropical forests remains limited. This is because ecological studies often rely on coarse-gridded temperature estimates representing the conditions at 2 m height in an open-air environment (i.e., macroclimate). In this study, we present a high-resolution pantropical estimate of near-ground (15 cm above the surface) temperatures inside forests. We quantify diurnal and seasonal variability, thus revealing both spatial and temporal microclimate patterns. We find that on average, understory near-ground temperatures are 1.6 °C cooler than the open-air temperatures. The diurnal temperature range is on average 1.7 °C lower inside the forests, in comparison to open-air conditions. More importantly, we demonstrate a substantial spatial variability in the microclimate characteristics of tropical forests. This variability is regulated by a combination of large-scale climate conditions, vegetation structure and topography, and hence could not be captured by existing macroclimate grids. Our results thus contribute to quantifying the actual thermal ranges experienced by organisms inside tropical forests and provide new insights into how these limits may be affected by climate change and ecosystem disturbances.


Assuntos
Ecossistema , Florestas , Temperatura , Mudança Climática , Sistemas Computacionais
2.
Sci Total Environ ; 893: 164782, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321502

RESUMO

Protected areas (PAs) are crucial in conserving biodiversity under climate change. In boreal regions, trends of biologically relevant climate variables (i.e., bioclimate) in PAs have remained unquantified. We investigated the changes and variability of 11 key bioclimatic variables across Finland during the period 1961-2020 based on gridded climatology. Our results suggest significant changes in annual mean and growing season temperatures over the entire study area, whereas, e.g., annual precipitation sum and April-September water balance have increased especially in the central and northern parts of Finland. We found substantial variation in bioclimatic changes over the 631 studied PAs; in the northern boreal zone (NB) the number of snow-covered days has decreased on average by 5.9 days between 1961-1990 and 1991-2020, while in the southern boreal zone (SB) the corresponding decrease has been 16.1 days. The number of frost days in spring with absent snow cover has decreased in the NB (on average -0.9 days) while increasing in the SB (0.5 days), reflecting the changing exposure of biota to frost. The observed increases in accumulation of heat in the SB and more frequent rain-on-snow events in the NB can affect drought tolerance and winter survival of species, respectively. Principal component analysis suggested that the main dimensions of bioclimate change in PAs vary across vegetation zones; for example, in the SB the changes are related to annual and growing season temperatures, whereas in the middle boreal zone the changes are linked to altered moisture and snow conditions. Our results highlight the substantial spatial variation in bioclimatic trends and climate vulnerability across the PAs and vegetation zones. These findings provide a basis for the understanding of the multifaceted changes the boreal PA network is facing and help to develop and direct conservation and management.


Assuntos
Biodiversidade , Mudança Climática , Finlândia , Estações do Ano , Neve
3.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128754

RESUMO

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Assuntos
Microclima , Árvores , Temperatura , Florestas , Ecossistema
4.
Sci Data ; 10(1): 40, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658147

RESUMO

The Arctic is the region on Earth that is warming at the fastest rate. In addition to rising means of temperature-related variables, Arctic ecosystems are affected by increasingly frequent extreme weather events causing disturbance to Arctic ecosystems. Here, we introduce a new dataset of bioclimatic indices relevant for investigating the changes of Arctic terrestrial ecosystems. The dataset, called ARCLIM, consists of several climate and event-type indices for the northern high-latitude land areas > 45°N. The indices are calculated from the hourly ERA5-Land reanalysis data for 1950-2021 in a spatial grid of 0.1 degree (~9 km) resolution. The indices are provided in three subsets: (1) the annual values during 1950-2021; (2) the average conditions for the 1991-2020 climatology; and (3) temporal trends over 1951-2021. The 72-year time series of various climate and event-type indices draws a comprehensive picture of the occurrence and recurrence of extreme weather events and climate variability of the changing Arctic bioclimate.

5.
Parasit Vectors ; 15(1): 310, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042518

RESUMO

BACKGROUND: Ticks are responsible for transmitting several notable pathogens worldwide. Finland lies in a zone where two human-biting tick species co-occur: Ixodes ricinus and Ixodes persulcatus. Tick densities have increased in boreal regions worldwide during past decades, and tick-borne pathogens have been identified as one of the major threats to public health in the face of climate change. METHODS: We used species distribution modelling techniques to predict the distributions of I. ricinus and I. persulcatus, using aggregated historical data from 2014 to 2020 and new tick occurrence data from 2021. By aiming to fill the gaps in tick occurrence data, we created a new sampling strategy across Finland. We also screened for tick-borne encephalitis virus (TBEV) and Borrelia from the newly collected ticks. Climate, land use and vegetation data, and population densities of the tick hosts were used in various combinations on four data sets to estimate tick species' distributions across mainland Finland with a 1-km resolution. RESULTS: In the 2021 survey, 89 new locations were sampled of which 25 new presences and 63 absences were found for I. ricinus and one new presence and 88 absences for I. persulcatus. A total of 502 ticks were collected and analysed; no ticks were positive for TBEV, while 56 (47%) of the 120 pools, including adult, nymph, and larva pools, were positive for Borrelia (minimum infection rate 11.2%, respectively). Our prediction results demonstrate that two combined predictor data sets based on ensemble mean models yielded the highest predictive accuracy for both I. ricinus (AUC = 0.91, 0.94) and I. persulcatus (AUC = 0.93, 0.96). The suitable habitats for I. ricinus were determined by higher relative humidity, air temperature, precipitation sum, and middle-infrared reflectance levels and higher densities of white-tailed deer, European hare, and red fox. For I. persulcatus, locations with greater precipitation and air temperature and higher white-tailed deer, roe deer, and mountain hare densities were associated with higher occurrence probabilities. Suitable habitats for I. ricinus ranged from southern Finland up to Central Ostrobothnia and North Karelia, excluding areas in Ostrobothnia and Pirkanmaa. For I. persulcatus, suitable areas were located along the western coast from Ostrobothnia to southern Lapland, in North Karelia, North Savo, Kainuu, and areas in Pirkanmaa and Päijät-Häme. CONCLUSIONS: This is the first study conducted in Finland that estimates potential tick species distributions using environmental and host data. Our results can be utilized in vector control strategies, as supporting material in recommendations issued by public health authorities, and as predictor data for modelling the risk for tick-borne diseases.


Assuntos
Borrelia , Cervos , Vírus da Encefalite Transmitidos por Carrapatos , Lebres , Ixodes , Animais , Borrelia/genética , Ecossistema , Finlândia/epidemiologia , Humanos
6.
Glob Chang Biol ; 28(9): 3110-3144, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34967074

RESUMO

Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.


Assuntos
Ecossistema , Solo , Mudança Climática , Microclima , Temperatura
7.
Sci Total Environ ; 810: 151338, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748832

RESUMO

Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.


Assuntos
Mudança Climática , Florestas , Ecossistema , Microclima , Temperatura
8.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605132

RESUMO

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Assuntos
Florestas , Microclima , Mudança Climática , Temperatura , Árvores
9.
Artigo em Inglês | MEDLINE | ID: mdl-34281003

RESUMO

Pogosta disease is a mosquito-borne infection, caused by Sindbis virus (SINV), which causes epidemics of febrile rash and arthritis in Northern Europe and South Africa. Resident grouse and migratory birds play a significant role as amplifying hosts and various mosquito species, including Aedes cinereus, Culex pipiens, Cx. torrentium and Culiseta morsitans are documented vectors. As specific treatments are not available for SINV infections, and joint symptoms may persist, the public health burden is considerable in endemic areas. To predict the environmental suitability for SINV infections in Finland, we applied a suite of geospatial and statistical modeling techniques to disease occurrence data. Using an ensemble approach, we first produced environmental suitability maps for potential SINV vectors in Finland. These suitability maps were then combined with grouse densities and environmental data to identify the influential determinants for SINV infections and to predict the risk of Pogosta disease in Finnish municipalities. Our predictions suggest that both the environmental suitability for vectors and the high risk of Pogosta disease are focused in geographically restricted areas. This provides evidence that the presence of both SINV vector species and grouse densities can predict the occurrence of the disease. The results support material for public-health officials when determining area-specific recommendations and deliver information to health care personnel to raise awareness of the disease among physicians.


Assuntos
Aedes , Infecções por Alphavirus , Infecções por Alphavirus/epidemiologia , Animais , Europa (Continente) , Finlândia/epidemiologia , Mosquitos Vetores , Vírus Sindbis , África do Sul
10.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913236

RESUMO

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Reprodutibilidade dos Testes , Estações do Ano , Solo , Tundra , Incerteza
11.
Glob Chang Biol ; 27(11): 2279-2297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33725415

RESUMO

Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.


Assuntos
Mudança Climática , Microclima , Biodiversidade , Ecossistema , Florestas , Árvores
12.
Nat Ecol Evol ; 5(4): 458-467, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33633373

RESUMO

A fundamental assumption in trait-based ecology is that relationships between traits and environmental conditions are globally consistent. We use field-quantified microclimate and soil data to explore if trait-environment relationships are generalizable across plant communities and spatial scales. We collected data from 6,720 plots and 217 species across four distinct tundra regions from both hemispheres. We combined these data with over 76,000 database trait records to relate local plant community trait composition to broad gradients of key environmental drivers: soil moisture, soil temperature, soil pH and potential solar radiation. Results revealed strong, consistent trait-environment relationships across Arctic and Antarctic regions. This indicates that the detected relationships are transferable between tundra plant communities also when fine-scale environmental heterogeneity is accounted for, and that variation in local conditions heavily influences both structural and leaf economic traits. Our results strengthen the biological and mechanistic basis for climate change impact predictions of vulnerable high-latitude ecosystems.


Assuntos
Ecossistema , Tundra , Regiões Antárticas , Regiões Árticas , Plantas
13.
Microbiome ; 8(1): 92, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534595

RESUMO

BACKGROUND: Understanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China. RESULTS: We find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively. CONCLUSIONS: We conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change. Video Abstract.


Assuntos
Biodiversidade , Clima , Rios/microbiologia , China , Noruega , Espanha
14.
Glob Chang Biol ; 26(11): 6616-6629, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32311220

RESUMO

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.


Assuntos
Ecossistema , Microclima , Mudança Climática , Neve , Temperatura
15.
Sci Rep ; 10(1): 1678, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015382

RESUMO

Climate change velocity is an increasingly used metric to assess the broad-scale climatic exposure and climate change induced risks to terrestrial and marine ecosystems. However, the utility of this metric in conservation planning can be enhanced by determining the velocities of multiple climatic drivers in real protected area (PA) networks on ecologically relevant scales. Here we investigate the velocities of three key bioclimatic variables across a nation-wide reserve network, and the consequences of including fine-grained topoclimatic data in velocity assessments. Using 50-m resolution data describing present-day and future topoclimates, we assessed the velocities of growing degree days, the mean January temperature and climatic water balance in the Natura 2000 PA network in Finland. The high-velocity areas for the three climate variables differed drastically, indicating contrasting exposure risks in different PAs. The 50-m resolution climate data revealed more realistic estimates of climate velocities and more overlap between the present-day and future climate spaces in the PAs than the 1-km resolution data. Even so, the current temperature conditions were projected to disappear from almost all the studied PAs by the end of this century. Thus, in PA networks with only moderate topographic variation, far-reaching climate change induced ecological changes may be inevitable.

16.
Oecologia ; 191(3): 601-608, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31522244

RESUMO

The functional composition of plant communities is a critical modulator of climate change impacts on ecosystems, but it is not a simple function of regional climate. In the Arctic tundra, where climate change is proceeding the most rapidly, communities have not shifted their trait composition as predicted by spatial temperature-trait relationships. Important causal pathways are thus missing from models of trait composition change. Here, we study causes of plant community functional variation in an oroarctic tundra landscape in Kilpisjärvi, Finland. We consider the community-weighted means of plant vegetative height, as well as two traits related to the leaf economic spectrum. Specifically, we model their responses to locally measured summer air temperature, snow conditions, and soil resource levels. For each of the traits, we also quantify the importance of intraspecific trait variation (ITV) for between-community functional differences and trait-environment matching. Our study shows that in a tundra landscape (1) snow is the most influential abiotic variable affecting functional composition, (2) vegetation height is under weak local environmental control, whereas leaf economics is under strong local environmental control, (3) the relative magnitude of ITV differs between traits, and (4) ITV is not very consequential for community-level trait-environment relationships. Our analyses highlight the importance of winter conditions for community functional composition in seasonal areas. We show that winter climate change can either amplify or counter the effects summer warming, depending on the trait.


Assuntos
Ecossistema , Neve , Finlândia , Plantas , Tundra
17.
Sci Data ; 6: 190037, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30860499

RESUMO

Ongoing climate change is causing fundamental changes in the Arctic, some of which can be hazardous to nature and human activity. In the context of Earth surface systems, warming climate may lead to rising ground temperatures and thaw of permafrost. This Data Descriptor presents circumpolar permafrost maps and geohazard indices depicting zones of varying potential for development of hazards related to near-surface permafrost degradation, such as ground subsidence. Statistical models were used to predict ground temperature and the thickness of the seasonally thawed (active) layer using geospatial data on environmental conditions at 30 arc-second resolution. These predictions, together with data on factors (ground ice content, soil grain size and slope gradient) affecting permafrost stability, were used to formulate geohazard indices. Using climate-forcing scenarios (Representative Concentration Pathways 2.6, 4.5 and 8.5), permafrost extent and hazard potential were projected for the 2041-2060 and 2061-2080 time periods. The resulting data (seven permafrost and 24 geohazard maps) are relevant to near-future infrastructure risk assessments and for targeting localized geohazard analyses.

18.
Nat Commun ; 9(1): 5147, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538247

RESUMO

Degradation of near-surface permafrost can pose a serious threat to the utilization of natural resources, and to the sustainable development of Arctic communities. Here we identify at unprecedentedly high spatial resolution infrastructure hazard areas in the Northern Hemisphere's permafrost regions under projected climatic changes and quantify fundamental engineering structures at risk by 2050. We show that nearly four million people and 70% of current infrastructure in the permafrost domain are in areas with high potential for thaw of near-surface permafrost. Our results demonstrate that one-third of pan-Arctic infrastructure and 45% of the hydrocarbon extraction fields in the Russian Arctic are in regions where thaw-related ground instability can cause severe damage to the built environment. Alarmingly, these figures are not reduced substantially even if the climate change targets of the Paris Agreement are reached.

19.
Nat Commun ; 8(1): 515, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894099

RESUMO

The periglacial realm is a major part of the cryosphere, covering a quarter of Earth's land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to contemporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show fundamental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fundamental landscape-level modifications in ground conditions and related atmospheric feedbacks.Cryogenic land surface processes characterise the periglacial realm and control landscape development and ecosystem functioning. Here, via statistical modelling, the authors predict a 72% reduction of the periglacial realm in Northern Europe by 2050, and almost complete disappearance by 2100.

20.
Sci Total Environ ; 579: 1298-1315, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913025

RESUMO

Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha-1h-1) compared to winter (87MJmmha-1h-1). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...