Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2288, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280925

RESUMO

Bacterial cells can form biofilm on food contact surfaces, becoming a source of food contamination with profound health implications. The current study aimed to determine some Egyptian medicinal plants antibacterial and antibiofilm effects against foodborne bacterial strains in milk plants. Results indicated that four ethanolic plant extracts, Cinnamon (Cinnamomum verum), Chamomile (Matricaria chamomilla), Marigold (Calendula officinalis), and Sage (Salvia officinalis), had antibacterial (12.0-26.5 mm of inhibition zone diameter) and antibiofilm (10-99%) activities against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella Typhimurium. The tested extracts had minimum inhibitory concentration values between 0.14 and 2.50 mg/ml and minimum bactericidal concentration values between 0.14 and 12.50 mg/ml. L. monocytogenes was more sensitive for all tested ethanolic extracts; Sage and Cinnamon showed a bacteriocidal effect, while Chamomile and Marigold were bacteriostatic. The ethanolic extracts mixture from Chamomile, Sage, and Cinnamon was chosen for its antibiofilm activity against L. monocytogenes using L-optimal mixture design. Gas chromatography and mass spectrometry analysis showed that this mixture contained 12 chemical compounds, where 2-Propenal,3-phenyl- had the maximum area % (34.82%). At concentrations up to 500 µg/ml, it had no cytotoxicity in the normal Vero cell line, and the IC50 value was 671.76 ± 9.03 µg/ml. Also, this mixture showed the most significant antibacterial effect against detached L. monocytogenes cells from formed biofilm in stainless steel milk tanks. At the same time, white soft cheese fortified with this mixture was significantly accepted overall for the panelist (92.2 ± 2.7) than other cheese samples, including the control group.


Assuntos
Queijo , Listeria monocytogenes , Animais , Aço Inoxidável/farmacologia , Queijo/microbiologia , Leite , Cromatografia Gasosa-Espectrometria de Massas , Biofilmes , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Cinnamomum zeylanicum/química , Microbiologia de Alimentos
2.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011443

RESUMO

The ability of microorganisms to reduce inorganic metals has launched an exciting eco-friendly approach towards developing green nanotechnology. Thus, the synthesis of metal nanoparticles through a biological approach is an important aspect of current nanotechnology. In this study, Streptomyces aizuneusis ATCC 14921 gave the small particle of silver nanoparticles (AgNPs) a size of 38.45 nm, with 1.342 optical density. AgNPs produced by Streptomyces aizuneusis were characterized by means of UV-VIS spectroscopy and transmission electron microscopy (TEM). The UV-Vis spectrum of the aqueous solution containing silver ion showed a peak between 410 to 430. Moreover, the majority of nanoparticles were found to be a spherical shape with variables between 11 to 42 nm, as seen under TEM. The purity of extracted AgNPs was investigated by energy dispersive X-ray analysis (EDXA), and the identification of the possible biomolecules responsible for the reduction of Ag+ ions by the cell filtrate was carried out by Fourier Transform Infrared spectrum (FTIR). High antimicrobial activities were observed by AgNPs at a low concentration of 0.01 ppm, however, no deleterious effect of AgNPs was observed on the development and occurrence of Drosophila melanogaster phenotype. The highest reduction in the viability of the human lung carcinoma and normal cells was attained at 0.2 AgNPs ppm.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Streptomyces/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Relação Dose-Resposta a Droga , Drosophila melanogaster/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Prata/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...