Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(27): 19400-19427, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887636

RESUMO

Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 µg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 µg mL-1 and 3.86 µg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.

2.
Front Microbiol ; 15: 1356426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894971

RESUMO

Climate change is one of the main challenges, and it poses a tough challenge to the agriculture industry globally. Additionally, greenhouse gas (GHG) emissions are the main contributor to climate change; however, croplands are a prominent source of GHG emissions. Yet this complex challenge can be mitigated through climate-smart agricultural practices. Conservation tillage is commonly known to preserve soil and mitigate environmental change by reducing GHG emissions. Nonetheless, there is still a paucity of information on the influences of conservation tillage on wheat yield, soil properties, and GHG flux, particularly in the semi-arid Dingxi belt. Hence, in order to fill this gap, different tillage systems, namely conventional tillage (CT) control, straw incorporation with conventional tillage (CTS), no-tillage (NT), and stubble return with no-tillage (NTS), were laid at Dingxi, Gansu province of China, under a randomized complete block design with three replications to examine their impacts on yield, soil properties, and GHG fluxes. Results depicted that different conservative tillage systems (CTS, NTS, and NT) significantly (p < 0.05) increased the plant height, number of spikes per plant, seed number per meter square, root yield, aboveground biomass yield, thousand-grain weight, grain yield, and dry matter yield compared with CT. Moreover, these conservation tillage systems notably improved the soil properties (soil gravimetric water content, water-filled pore space, water storage, porosity, aggregates, saturated hydraulic conductivity, organic carbon, light fraction organic carbon, carbon storage, microbial biomass carbon, total nitrogen, available nitrogen storage, microbial biomass nitrogen, total phosphorous, available phosphorous, total potassium, available potassium, microbial counts, urease, alkaline phosphatase, invertase, cellulase, and catalase) while decreasing the soil temperature and bulk density over CT. However, CTS, NTS, and NT had non-significant effects on ECe, pH, and stoichiometric properties (C:N ratio, C:P ratio, and N:P ratio). Additionally, conservation-based tillage regimes NTS, NT, and CTS significantly (p < 0.05) reduced the emission and net global warming potential of greenhouse gases (carbon dioxide, methane, and nitrous oxide) by 23.44, 19.57, and 16.54%, respectively, and decreased the greenhouse gas intensity by 23.20, 29.96, and 18.72%, respectively, over CT. We conclude that NTS is the best approach to increasing yield, soil and water conservation, resilience, and mitigation of agroecosystem capacity.

3.
Sci Rep ; 14(1): 3823, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360784

RESUMO

Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.


Assuntos
Diabetes Mellitus , Hiperglicemia , Animais , Feminino , Masculino , Hipoglicemiantes/farmacologia , Limoneno , Peixe-Zebra/metabolismo , Glicemia/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Obesidade/metabolismo , Dieta Hiperlipídica , Hiperglicemia/complicações
4.
3 Biotech ; 14(1): 22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38156037

RESUMO

The present study aims to investigate the physicochemical characteristics of phenylalanine ammonia-lyase (PAL) extracted from agricultural waste and its potential use as an anticancer agent in comparison to microbial PAL. We extracted and partially purified PAL from agricultural waste sources. We assessed the temperature and pH range of PAL and determined enzyme kinetics parameters including Michaelis constants (Km), maximum velocity (Vmax), and specificity constant values (Vmax/Km). Additionally, we examined the effects of different storage temperatures on PAL activity. In our analysis, we compared the efficacy of agricultural waste-derived PAL with PAL from Rhodotorula glutinis. The results demonstrated that PAL extracted from agricultural waste exhibited significantly higher specific activity (Vmax/Km) compared to its microbial counterpart. The agricultural waste-derived PAL displayed a stronger affinity for phenylalanine, as indicated by a lower Km value than the microbial PAL did. Furthermore, PAL from agricultural waste maintained activity across a broader temperature and pH range (15-75 °C, pH 5-11), in contrast to microbial PAL (20-60 °C, pH 5.5-10). Importantly, the PAL derived from agricultural waste exhibited superior stability, retaining over 90% of its activity after 6 months of storage at room temperature (25 °C), whereas microbial PAL lost more than 70% of its activity under similar storage conditions. In anticancer experiments against various cancer cell lines, agricultural waste-derived PAL demonstrated greater anticancer activity compared to microbial PAL. These findings suggest that PAL sourced from agricultural waste has the potential to be a safe and effective natural anticancer agent.

5.
Front Chem ; 11: 1231030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601910

RESUMO

Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA