RESUMO
The success of the colloidal semiconductor quantum dots (QDs) field is rooted in the precise synthetic control of QD size, shape, and composition, enabling electronically well-defined functional nanomaterials that foster fundamental science and motivate diverse fields of applications. While the exploitation of the strong confinement regime has been driving commercial and scientific interest in InP or CdSe QDs, such a regime has still not been thoroughly explored and exploited for lead-halide perovskite QDs, mainly due to a so far insufficient chemical stability and size monodispersity of perovskite QDs smaller than about 7 nm. Here, we demonstrate chemically stable strongly confined 5 nm CsPbBr3 colloidal QDs via a postsynthetic treatment employing didodecyldimethylammonium bromide ligands. The achieved high size monodispersity (7.5% ± 2.0%) and shape-uniformity enables the self-assembly of QD superlattices with exceptional long-range order, uniform thickness, an unusual rhombic packing with an obtuse angle of 104°, and narrow-band cyan emission. The enhanced chemical stability indicates the promise of strongly confined perovskite QDs for solution-processed single-photon sources, with single QDs showcasing a high single-photon purity of 73% and minimal blinking (78% "on" fraction), both at room temperature.
RESUMO
Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.
Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Humanos , Vacinas contra COVID-19 , Células HEK293 , Lipídeos/química , Camundongos Endogâmicos C57BL , DNA/química , Nanopartículas/química , RNA Interferente PequenoRESUMO
Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.
Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Humanos , Vacinas contra COVID-19 , Células HEK293 , Lipídeos/química , Camundongos Endogâmicos C57BL , DNA/química , Nanopartículas/química , RNA Interferente PequenoRESUMO
Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.
RESUMO
The inadequate understanding of the mechanisms that reversibly convert molecular sulfur (S) into lithium sulfide (Li2S) via soluble polysulfides (PSs) formation impedes the development of high-performance lithium-sulfur (Li-S) batteries with non-aqueous electrolyte solutions. Here, we use operando small and wide angle X-ray scattering and operando small angle neutron scattering (SANS) measurements to track the nucleation, growth and dissolution of solid deposits from atomic to sub-micron scales during real-time Li-S cell operation. In particular, stochastic modelling based on the SANS data allows quantifying the nanoscale phase evolution during battery cycling. We show that next to nano-crystalline Li2S the deposit comprises solid short-chain PSs particles. The analysis of the experimental data suggests that initially, Li2S2 precipitates from the solution and then is partially converted via solid-state electroreduction to Li2S. We further demonstrate that mass transport, rather than electron transport through a thin passivating film, limits the discharge capacity and rate performance in Li-S cells.
RESUMO
The design of drug delivery systems (DDS) for the encapsulation of therapeutic agents and the controlled release to the target site of the disease is one of the main goals of nanomedicine. Although already explored in an extensive number of studies over the years, lipid assemblies, and particularly liposomes, are still considered the most promising and interesting candidates as DDS due to their biocompatibility and structural similarity with plasma membranes. Lately, this research area has been extended to include more complex lipid assemblies, such as cubosomes. Cubosomes are an emerging structural platform for the delivery of molecules with pharmaceutical interest, such as drugs, bioactives and contrast agents. Here we report on the application of a thermo-responsive copolymer poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a thermoresponsive stabilizer of lipid-based nanoparticles for drug-delivery. First, we assessed the affinity of PDMA-b-PNIPAM towards supported and free-standing bilayers; then, we explored the colloidal and thermoresponsive properties of cubic self-assembled DDS composed of glycerol-monooleate (GMO), where PDMA-b-PNIPAM replaces the conventional stabilizer Pluronic F127 (PEOx-PPOy-PEOx), normally used for cubosomes. We prepared dispersions of cubic lipid nanoparticles with two PDMA-b-PNIPAM block copolymers of different molar mass. The colloidal properties were then assessed and compared to those exhibited by standard lipid cubic dispersions stabilized by Pluronic F-127, combining a series of experimental techniques (Quartz Crystal Microbalance with Dissipation monitoring, Dynamic Light Scattering, Small-Angle X-rays Scattering, Cryo-Transmission Electron Microscopy). Interestingly, PDMA-b-PNIPAM stabilized cubosomes display additional benefits with respect to those stabilized by Pluronic, thanks to the combination of a "sponge " effect for the controlled release of encapsulated molecules and an increased affinity towards lipid bilayer membranes, which is a promising feature to maximize fusion with the target-cellular site.
Assuntos
Lipossomos , Nanopartículas , Preparações de Ação Retardada , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Polímeros , Poloxâmero/química , ExcipientesRESUMO
The degradation of mesoporous silica nanoparticles (MSNs) in the biological milieu due to silica hydrolysis plays a fundamental role for the delivery of encapsulated drugs and therapeutics. However, little is known on the evolution of the pore arrangement in the MSNs in biologically relevant conditions. Small Angle X-ray scattering (SAXS) studies were performed on unmodified and PEGylated MSNs with a MCM-48 pore structure and average sizes of 140 nm, exposed to simulated body fluid solution (SBF) at pH 7.4 for different time intervals from 30 min to 24 h. Experiments were performed with silica concentrations below, at and over 0.14 mg/mL, the saturation concentration of silica in water at physiological temperature. At silica concentrations of 1 mg/mL (oversaturation), unmodified MSNs show variation in interpore distances over 6 h exposure to SBF, remaining constant thereafter. A decrease in radius of gyration is observed over the same time. Mesoporosity and radius of gyration of unmodified MSNs remain then unchanged up to 24 h. PEGylated MSNs at 1 mg/mL concentration show a broader diffraction peak but no change in the position of the peak is observed following 24 h exposure to SBF. PEGylated MSNs at 0.01 mg/mL show no diffraction peaks already after 30 min exposure to SBF, while at 0.14 mg/mL a small diffraction peak is present after 30 min exposure but disappears after 1 h.
RESUMO
DNA vaccination has been extensively studied as a promising strategy for tumor treatment. Despite the efforts, the therapeutic efficacy of DNA vaccines has been limited by their intrinsic poor cellular internalization. Electroporation, which is based on the application of a controlled electric field to enhance DNA penetration into cells, has been the method of choice to produce acceptable levels of gene transfer in vivo. However, this method may cause cell damage or rupture, non-specific targeting, and even degradation of pDNA. Skin irritation, muscle contractions, pain, alterations in skin structure, and irreversible cell damage have been frequently reported. To overcome these limitations, in this work, we use a microfluidic platform to generate DNA-loaded lipid nanoparticles (LNPs) which are then characterized by a combination of dynamic light scattering (DLS), synchrotron small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Despite the clinical successes obtained by LNPs for mRNA and siRNA delivery, little is known about LNPs encapsulating bulkier DNA molecules, the clinical application of which remains challenging. For in vitro screening, LNPs were administered to human embryonic kidney 293 (HEK-293) and Chinese hamster ovary (CHO) cell lines and ranked for their transfection efficiency (TE) and cytotoxicity. The LNP formulation exhibiting the highest TE and the lowest cytotoxicity was then tested for the delivery of the DNA vaccine pVAX-hECTM targeting the human neoantigen HER2, an oncoprotein overexpressed in several cancer types. Using fluorescence-activated cell sorting (FACS), immunofluorescence assays and fluorescence confocal microscopy (FCS), we proved that pVAX-hECTM-loaded LNPs produce massive expression of the HER2 antigen on the cell membrane of HEK-293 cells. Our results provide new insights into the structure-activity relationship of DNA-loaded LNPs and pave the way for the access of this gene delivery technology to preclinical studies.
RESUMO
In a previous contribution we described the formation of silica nanostructures in dye-stabilized nanoemulsions from tetraethyl orthosilicate droplets in water. Depending on the type of dye, either capsules (crystal violet, CV) or nanoparticles (congo red, CR) are formed. The thorough study of the sol-gel process uses a combination of time- and/or temperature-resolved small-angle X-ray scattering, transmission electron microscopy, and 1H NMR spectroscopy to elucidate the detailed kinetics and mechanism of structure formation. In both cases, small nuclei of 1.5-2 nm are formed, followed by either a fast cluster-cluster (CV) or a much slower monomer-cluster aggregation (CR). The former leads to a cross-linked network and finally to patchy capsules, while the latter leads to individual nanoparticles (SNPs). From an Avrami plot it can be deduced that the SNPs are formed by an interface-controlled one-dimensional growth process. The mechanisms are based on the different local environments at the oil-water interface, which is either slightly acidic (CV) or fairly basic (CR). The kinetics differ by a factor between 3 and 20 and are presumably caused by the different mobility of the catalyzing species H+ or OH-.
RESUMO
In situ small- and wide-angle scattering experiments at synchrotrons often result in massive quantities of data within just seconds. Especially during such beamtimes, processing of the acquired data online, without appreciable delay, is key to obtaining feedback on the failure or success of the experiment. This had led to the development of SAXSDOG, a Python-based environment for real-time azimuthal integration of large-area scattering images. The software is primarily designed for dedicated data pipelines: once a scattering image is transferred from the detector onto the storage unit, it is automatically integrated and pre-evaluated using integral parameters within milliseconds. The control and configuration of the underlying server-based processes is achieved via a graphical user interface, SAXSLEASH, which visualizes the resulting 1D data together with integral classifiers in real time. SAXSDOG further includes a portable 'take-home' version for users that runs on standalone computers, enabling its use in laboratories or at the preferred workspace.
RESUMO
The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms. Here we present data on the structural properties of the truncated protein p.R132X resulting from the c.394C > T mutation that, along with c.271dupA and c.331C > T, is among the most common mutations in cblC. Although missing part of the Cbl binding domain, p.R132X is associated to late-onset symptoms and, therefore, it is supposed to retain residual function. However, to our knowledge structural-functional studies on c.394C > T mutant aimed at verifying this hypothesis are still lacking. By using a biophysical approach including Circular Dichroism, fluorescence, Small Angle X-ray Scattering, and Molecular Dynamics, we show that the mutant protein MMACHC-R132X retains secondary structure elements and remains compact in solution, partly preserving its binding affinity for Cbl. Insights on the fragile stability of MMACHC-R132X-Cbl are provided.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Homocistinúria , Erros Inatos do Metabolismo dos Aminoácidos/genética , Proteínas de Transporte , Criança , Homocistinúria/diagnóstico , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Humanos , Mutação , Oxirredutases/metabolismo , Vitamina B 12/metabolismoRESUMO
Unprecedented opportunities for early stage cancer detection have recently emerged from the characterization of the personalized protein corona (PC), i.e., the protein cloud that surrounds nanoparticles (NPs) upon exposure to a patients' bodily fluids. Most of these methods require "direct characterization" of the PC., i.e., they necessitate protein isolation, identification, and quantification. Each of these steps can introduce bias and affect reproducibility and inter-laboratory consistency of experimental data. To fulfill this gap, here we develop a nanoparticle-enabled blood (NEB) test based on the indirect characterization of the personalized PC by magnetic levitation (MagLev). The MagLev NEB test works by analyzing the levitation profiles of PC-coated graphene oxide (GO) NPs that migrate along a magnetic field gradient in a paramagnetic medium. For the test validation, we employed human plasma samples from 15 healthy individuals and 30 oncological patients affected by four cancer types, namely breast cancer, prostate cancer, colorectal cancer, and pancreatic ductal adenocarcinoma (PDAC). Over the last 15 years prostate cancer, colorectal cancer, and PDAC have continuously been the second, third, and fourth leading sites of cancer-related deaths in men, while breast cancer, colorectal cancer, and PDAC are the second, third and fourth leading sites for women. This proof-of-concept investigation shows that the sensitivity and specificity of the MagLev NEB test depend on the cancer type, with the global classification accuracy ranging from 70% for prostate cancer to an impressive 93.3% for PDAC. We also discuss how this tool could benefit from several tunable parameters (e.g., the intensity of magnetic field gradient, NP type, exposure conditions, etc.) that can be modulated to optimize the detection of different cancer types with high sensitivity and specificity.
RESUMO
Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr3 NCs (and FAPbBr3 NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks. CsPbBr3 nanocubes combined with Fe3O4 or NaGdF4 spheres and truncated cuboid PbS NCs form binary SLs of six structure types with high packing density; namely, AB2, quasi-ternary ABO3, and ABO6 types as well as previously known NaCl, AlB2, and CuAu types. In these structures, nanocubes preserve orientational coherence. Combining nanocubes with large and thick NaGdF4 nanodisks results in the orthorhombic SL resembling CaC2 structure with pairs of CsPbBr3 NCs on one lattice site. Also, we implement two substrate-free methods of SL formation. Oil-in-oil templated assembly results in the formation of binary supraparticles. Self-assembly at the liquid-air interface from the drying solution cast over the glyceryl triacetate as subphase yields extended thin films of SLs. Collective electronic states arise at low temperatures from the dense, periodic packing of NCs, observed as sharp red-shifted bands at 6 K in the photoluminescence and absorption spectra and persisting up to 200 K.
RESUMO
Electrochemical dealloying has become a standard technique to produce nanoporous network structures of various noble metals, exploiting the selective dissolution of one component from an alloy. While achieving nanoporosity during dealloying has been intensively studied for the prime example of nanoporous Au from a AgAu alloy, dealloying from other noble-metal alloys has been rarely investigated in the scientific literature. Here, we study the evolution of nanoporosity in the electrochemical dealloying process for both CoPd and AgAu alloys using a combination of in situ grazing-incidence small-angle X-ray scattering (GISAXS), kinetic Monte Carlo (KMC) simulations, and scanning transmission electron microscopy (STEM). When comparing dealloying kinetics, we find a more rapid progression of the dealloying front for CoPd and also a considerably slower coarsening of the nanoporous structure for Pd in relation to Au. We argue that our findings are natural consequences of the effectively higher dealloying potential and the higher interatomic binding energy for the CoPd alloy. Our results corroborate the understanding of electrochemical dealloying on the basis of two rate equations for dissolution and surface diffusion and suggest the general applicability of this dealloying mechanism to binary alloys. The present study contributes to the future tailoring of structural size in nanoporous metals for improved chemical surface activity.
RESUMO
This work describes the design and synthesis of a π-conjugated telluro[3,2-ß][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38â h vs. 3â h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1â h).
RESUMO
In recent years, many efforts have been devoted to investigating the interaction of nanoparticles (NPs) with lipid biomimetic interfaces, both from a fundamental perspective aimed at understanding relevant phenomena occurring at the nanobio interface and from an application standpoint for the design of novel lipid-nanoparticle hybrid materials. In this area, recent reports have revealed that citrate-capped gold nanoparticles (AuNPs) spontaneously associate with synthetic phospholipid liposomes and, in some cases, self-assemble on the lipid bilayer. However, the mechanistic and kinetic aspects of this phenomenon are not yet completely understood. In this study, we address the kinetics of interaction of citrate-capped AuNP with lipid vesicles of different rigidities (gel-phase rigid membranes on one side and liquid-crystalline-phase soft membranes on the other). The formation of AuNP-lipid vesicle hybrids was monitored over different time and length scales, combining experiments and simulation. The very first AuNP-membrane contact was addressed through molecular dynamics simulations, while the structure, morphology, and physicochemical features of the final colloidal objects were studied through UV-visible spectroscopy, small-angle X-ray scattering, dynamic light scattering, and cryogenic electron microscopy. Our results highlight that the physical state of the membrane triggers a series of events at the colloidal length scale, which regulate the final morphology of the AuNP-lipid vesicle adducts. For lipid vesicles with soft membranes, the hybrids appear as single vesicles decorated by AuNPs, while more rigid membranes lead to flocculation with AuNPs acting as bridges between vesicles. Overall, these results contribute to a mechanistic understanding of the adhesion or self-assembly of AuNPs onto biomimetic membranes, which is relevant for phenomena occurring at the nano-bio interfaces and provide design principles to control the morphology of lipid vesicle-inorganic NP hybrid systems.
RESUMO
Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.
Assuntos
Celulose , Água , Celulose/química , Umidade , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Água/químicaRESUMO
A series of non-fullerene acceptors based on perylene monoimides coupled in the peri position through phenylene linkers were synthesized via Suzuki-coupling reactions. Various substitution patterns were investigated using density functional theory (DFT) calculations in combination with experimental data to elucidate the geometry and their optical and electrochemical properties. Further investigations of the bulk properties with grazing incidence wide angle X-ray scattering (GIWAXS) gave insight into the stacking behavior of the acceptor thin films. Electrochemical and morphological properties correlate with the photovoltaic performance of devices with the polymeric donor PBDB-T and a maximum efficiency of 3.17 % was reached. The study gives detailed information about structure-property relationships of perylene-linker-perylene compounds.
RESUMO
Noble metal coordination xerogel films (mesostructured with block-copolymers) exhibit solubility switching with increasing X-ray irradiation. Different from other sol-gel systems, these are attributed to film deconstruction under irradiation. These materials can be used as recyclable negative tone resists for deep X-ray lithography that can be further converted into metallic nanoarchitectured films.
RESUMO
For several decades, surface grafted polyethylene glycol (PEG) has been a go-to strategy for preserving the synthetic identity of liposomes in physiological milieu and preventing clearance by immune cells. However, the limited clinical translation of PEGylated liposomes is mainly due to the protein corona formation and the subsequent modification of liposomes' synthetic identity, which affects their interactions with immune cells and blood residency. Here we exploit the electric charge of DNA to generate unPEGylated liposome/DNA complexes that, upon exposure to human plasma, gets covered with an opsonin-deficient protein corona. The final product of the synthetic process is a biomimetic nanoparticle type covered by a proteonucleotidic corona, or "proteoDNAsome", which maintains its synthetic identity in vivo and is able to slip past the immune system more efficiently than PEGylated liposomes. Accumulation of proteoDNAsomes in the spleen and the liver was lower than that of PEGylated systems. Our work highlights the importance of generating stable biomolecular coronas in the development of stealth unPEGylated particles, thus providing a connection between the biological behavior of particles in vivo and their synthetic identity.