Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133020

RESUMO

We report the development of multifunctional core/shell chemical vapor deposition diamond nanoparticles for the local photoinduced hyperthermia, thermometry, and fluorescent imaging. The diamond core heavily doped with boron is heated due to absorbed laser radiation and in turn heats the shell of a thin transparent diamond layer with embedded negatively charged SiV color centers emitting intense and narrowband zero-phonon lines with a temperature-dependent wavelength near 738 nm. The heating of the core/shell diamond nanoparticle is indicated by the temperature-induced spectral shift in the intensive zero-phonon line of the SiV color centers embedded in the diamond shell. The temperature of the core/shell diamond particles can be precisely manipulated by the power of the incident light. At laser power safe for biological systems, the photoinduced temperature of the core/shell diamond nanoparticles is high enough to be used for hyperthermia therapy and local nanothermometry, while the high zero-phonon line intensity of the SiV color centers allows for the fluorescent imaging of treated areas.

2.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500012

RESUMO

Recently, nanodiamonds with negatively charged luminescent color centers based on atoms of the fourth group (SiV-, GeV-) have been proposed for use as biocompatible luminescent markers. Further improvement of the functionality of such systems by expanding the frequencies of the emission can be achieved by the additional formation of luminescent tungsten complexes in the diamond matrix. This paper reports the creation of diamond matrices by a hot filament chemical vapor deposition method, containing combinations of luminescing Si-V and Ge-V color centers and tungsten complexes. The possibility is demonstrated of creating a multicolor light source combining the luminescence of all embedded emitters. The emission properties of tungsten complexes and Si-V and Ge-V color centers in the diamond matrices were investigated, as well as differences in their luminescent properties and electron-phonon interaction at different temperatures.

3.
Materials (Basel) ; 15(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897629

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is regarded as a versatile tool for studying the composition and structure of matter. This work has studied the preparation of a SERS substrate based on a self-assembling plasmonic nanoparticle film (SPF) in a polymer matrix. Several synthesis parameters for the SPF are investigated, including the size of the particles making up the film and the concentration and type of the self-assembling agent. The result of testing systems with different characteristics is discussed using a model substance (pseudoisocyanin iodide). These models can be useful in the study of biology and chemistry. Research results contain the optimal parameters for SPF synthesis, maximizing the SERS signal. The optimal procedure for SPF assembly is determined and used for the synthesis of composite SPFs within different polymer matrices. SPF in a polymer matrix is necessary for the routine use of the SERS substrate for various types of analytes, including solid samples or those sensitive to contamination. Polystyrene, polyvinyl alcohol (PVA), and polyethylene are investigated to obtain a polymer matrix for SPF, and various methods of incorporating SPF into a polymer matrix are being explored. It is found that films with the best signal enhancement and reproducibility were obtained in polystyrene. The minimum detectable concentration for the SERS substrate obtained is equal to 10-10 M. We prepared a SERS substrate with an analytical enhancement factor of 2.7 × 104, allowing an increase in the detection sensitivity of analyte solutions of five orders of magnitude.

4.
Materials (Basel) ; 15(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629616

RESUMO

The investigation of the hot filament chemical vapor deposition nanodiamonds with simultaneously embedded luminescent GeV- and SiV- color centers from solid sources showed that both the absolute and relative intensities of their zero-phonon lines (at 602 and 738 nm) depend on nanodiamond growth conditions (a methane concentration in the CH4/H2 gas mixture, growth temperature, and time). It is shown that a controlled choice of parameters of hot filament chemical vapor deposition synthesis makes it possible to select the optimal synthesis conditions for tailoring bicolor fluorescence nanodiamond labels for imaging biological systems.

5.
Light Sci Appl ; 11(1): 92, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410998

RESUMO

Carbon dots (CDs) are light-emitting nanoparticles that show great promise for applications in biology and medicine due to the ease of fabrication, biocompatibility, and attractive optical properties. Optical chirality, on the other hand, is an intrinsic feature inherent in many objects in nature, and it can play an important role in the formation of artificial complexes based on CDs that are implemented for enantiomer recognition, site-specific bonding, etc. We employed a one-step hydrothermal synthesis to produce chiral CDs from the commonly used precursors citric acid and ethylenediamine together with a set of different chiral precursors, namely, L-isomers of cysteine, glutathione, phenylglycine, and tryptophan. The resulting CDs consisted of O,N-doped (and also S-doped, in some cases) carbonized cores with surfaces rich in amide and hydroxyl groups; they exhibited high photoluminescence quantum yields reaching 57%, chiral optical signals in the UV and visible spectral regions, and two-photon absorption. Chiral signals of CDs were rather complex and originated from a combination of the chiral precursors attached to the CD surface, hybridization of lower-energy levels of chiral chromophores formed within CDs, and intrinsic chirality of the CD cores. Using DFT analysis, we showed how incorporation of the chiral precursors at the optical centers induced a strong response in their circular dichroism spectra. The optical characteristics of these CDs, which can easily be dispersed in solvents of different polarities, remained stable during pH changes in the environment and after UV exposure for more than 400 min, which opens a wide range of bio-applications.

6.
Nanomaterials (Basel) ; 12(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35159888

RESUMO

Carbon dots (CDs) with an emission in the near infrared spectral region are attractive due to their promising applications in bio-related areas, while their fabrication still remains a challenging task. Herein, we developed a template-assisted method using porous silica microspheres for the formation of CDs with optical transitions in the near infrared. Two organic dyes, Rhodamine 6G and IR1061 with emission in the yellow and near infrared spectral regions, respectively, were used as precursors for CDs. Correlation of morphology and chemical composition with optical properties of obtained CDs revealed the origin of their emission, which is related to the CDs' core optical transitions and dye-derivatives within CDs. By varying annealing temperature, different kinds of optical centers as derivatives of organic dyes are formed in the microsphere's pores. The template-assisted method allows us to synthesize CDs with an emission peaked at 1085 nm and photoluminescence quantum yield of 0.2%, which is the highest value reported so far for CDs emitting at wavelengths longer than 1050 nm.

7.
Nanomaterials (Basel) ; 11(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835578

RESUMO

The negatively charged germanium-vacancy GeV- color centers in diamond nanocrystals are solid-state photon emitters suited for quantum information technologies, bio-sensing, and labeling applications. Due to the small Huang-Rhys factor, the GeV--center zero-phonon line emission is expected to be very intensive and spectrally narrow. However, structural defects and the inhomogeneous distribution of local strains in the nanodiamonds result in the essential broadening of the ZPL. Therefore, clarification and elimination of the reasons for the broadening of the GeV- center ZPL is an important problem. We report on the effect of reactive ion etching in oxygen plasma on the structure and luminescence properties of nanodiamonds grown by hot filament chemical vapor deposition. Emission of GeV- color centers ensembles at about 602 nm in as-grown and etched nanodiamonds is probed using micro-photoluminescence and micro-Raman spectroscopy at room and liquid nitrogen temperature. We show that the etching removes the nanodiamond surface sp2-induced defects resulting in a reduction in the broad luminescence background and a narrowing of the diamond Raman band. The zero-phonon luminescence band of the ensemble of the GeV- centers is a superposition of narrow lines originated most likely from the GeV- center sub-ensembles under different uniaxial local strain conditions.

8.
Nanomaterials (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205727

RESUMO

PL intensity quenching and the PL lifetime reduction of fluorophores located close to graphene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in rGO content that cannot be interpreted solely by these two processes. To explain the PL lifetime dependence on the rGO/QD component ratio, we propose a model based on the Auger recombination of excitations involving excess holes left in the QDs after the charge transfer process. To validate the model, we conducted additional experiments involving the external engineering of free charge carriers, which confirmed the role of excess holes as the main QD PL quenching source. A mathematical simulation of the model demonstrated that the energy transfer between neighboring QDs must also be considered to explain the experimental data carefully. Together, Auger recombination and energy transfer simulation offers us an excellent fit for the average PL lifetime dependence on the component ratio of the rGO/QD system.

9.
Nanoscale ; 13(5): 3070-3078, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33522554

RESUMO

The optical properties of chemically synthesized carbon dots (CDs) can be widely tuned via doping and surface modification with heteroatoms such as nitrogen, which results in a range of potential applications. Herein, two most commonly used synthesis approaches, namely, solvothermal and microwave-assisted thermal treatments, have been used for the preparation of CDs from phloroglucinol using three different nitrogen containing solvents, namely, ethylenediamine, dimethylformamide, and formamide. Based on the analysis of the morphology and optical properties, we demonstrate the tenability of the CD appearance from amorphous or well-carbonized spherical particles to onion-like ones, which is controlled by solvent polarity, whereas the thermal treatment conditions mostly influence the degree of N-doping and the nature of emissive centers of CDs formed. The findings of this study expand the toolkit of the available CDs with variable morphology and energy structure.

10.
Materials (Basel) ; 13(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008133

RESUMO

Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method for detecting heavy metal ions using colloidal luminescent semiconductor quantum dots (QDs). Over the past decade, QDs have been used in the development of sensitive fluorescence sensors for ions of heavy metal. In this work, we combined the fluorescent properties of AgInS2/ZnS ternary QDs and the magnetism of superparamagnetic Fe3O4 nanoparticles embedded in a matrix of porous calcium carbonate microspheres for the detection of toxic ions of heavy metal: Co2+, Ni2+, and Pb2+. We demonstrate a relationship between the level of quenching of the photoluminescence of sensors under exposure to the heavy metal ions and the concentration of these ions, allowing their detection in aqueous solutions at concentrations of Co2+, Ni2+, and Pb2+ as low as ≈0.01 ppm, ≈0.1 ppm, and ≈0.01 ppm, respectively. It also has importance for application of the ability to concentrate and extract the sensor with analytes from the solution using a magnetic field.

11.
J Phys Chem Lett ; 11(19): 8121-8127, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893642

RESUMO

Relatively weak red photoluminescence of carbon dots (CDots) is a major challenge on the way to their successful implementation in biological and optoelectronic devices. We present a theoretical analysis of the interaction among the surface emission centers of CDots, showing that it may determine efficiency of the red photoluminescence of CDots. Based on the previous experimental studies, it is assumed that the optical response of the CDots is determined by the molecule-like subunits of polycyclic aromatic hydrocarbons (PAHs) attached to the CDots' surface. Three characteristic types of coupling of these PAH subunits are considered: non-interacting monomers, noncovalently bound dimers, and covalently bound dimers with two, three, or four carbon linkers. We demonstrate that the CDots' photoluminescence broadens, redshifts, and weakens by 2 orders of magnitude when the free monomers are substituted by the covalently bridged centers. These and other results of our study show that the realization of CDots with many weakly interacting surface emission centers may constitute an efficient way to achieve their efficient red photoluminescence, which is highly desirable for biological and optoelectronic applications.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Pontos Quânticos/química , Teoria da Densidade Funcional , Dimerização , Modelos Moleculares , Perileno/química , Hidrocarbonetos Policíclicos Aromáticos/química , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Propriedades de Superfície
12.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486299

RESUMO

Luminescent composites based on entirely non-toxic, environmentally friendly compounds are in high demand for a variety of applications in photonics and optoelectronics. Carbon dots are a recently developed kind of luminescent nanomaterial that is eco-friendly, biocompatible, easy-to-obtain, and inexpensive, with a stable and widely tunable emission. Herein, we introduce luminescent composites based on carbon dots of different chemical compositions and with different functional groups at the surface which were embedded in a nanoporous silicate glass. The structure and optical properties of these composites were comprehensively examined using electron microscopy, Fourier transform infrared transmission, UV-Vis absorption, and steady-state and time-resolved photoluminescence. It is shown that the silicate matrix efficiently preserved, and even enhanced the emission of different kinds of carbon dots tested. The photoluminescence quantum yield of the fabricated nanocomposite materials reached 35-40%, which is comparable to or even exceeds the values for carbon dots in solution.

13.
Nanomaterials (Basel) ; 10(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290368

RESUMO

Hybrid nanomaterials based on graphene and PbS quantum dots (QDs) have demonstrated promising applications in optoelectronics. However, the formation of high-quality large-area hybrid films remains technologically challenging. Here, we demonstrate that ligand-assisted self-organization of covalently bonded PbS QDs and reduced graphene oxide (rGO) can be utilized for the formation of highly uniform monolayers. After the post-deposition ligand exchange, these films demonstrated high conductivity and photoresponse. The obtained films demonstrate a remarkable improvement in morphology and charge transport compared to those obtained by the spin-coating method. It is expected that these materials might find a range of applications in photovoltaics and optoelectronics.

14.
Nanoscale Adv ; 2(5): 1973-1979, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132506

RESUMO

Formation of a non-emissive wide bandgap CsPb2Br5 component often accompanies the synthesis of CsPbBr3 perovskites, introducing undesired energy states and impeding the charge transport. Here, we demonstrate that a small amount of a methanol additive can promote the CsBr release rate, facilitating CsPbBr3 formation and suppressing CsPb2Br5 formation. Some of the methanol ionizes into CH5O+ and CH3O-, which act as surface ligands and change the crystallization environment, inducing shape evolution from spherical nanocrystals to rectangular nanoplatelets (NPLs), leading to monodispersed and phase-pure 8 unit-cell-thick CsPbBr3 NPLs. Meanwhile, nonradiative recombination processes are inhibited as a result of NPL surface passivation. Bright CsPbBr3 NPLs with a photoluminescence quantum yield reaching 90% were employed as emitters for electroluminescent light-emitting devices.

15.
Nanoscale ; 12(2): 602-609, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31828268

RESUMO

Carbon dots (CDs) are luminescent nanomaterials, with potential use in bioimaging and sensorics. Here, the influence of the surrounding solvent media on the optical properties of CDs synthesized from the most commonly employed precursors, namely citric acid and ethylenediamine, is investigated. The position of optical transitions of CDs can be tuned by the change of pH and solvent polarity. The most striking observation is related to the interaction of CDs with chlorine containing solvents, which results in resolving a set of narrow peaks within both the absorption and PL bands, similar to those observed for polycyclic aromatic hydrocarbons or organic dyes. We assume that the chlorine containing molecules penetrate the surface layers of CDs, which results in an increase of the distance between the luminescent centers; this correlates well with an enhanced D-band in their Raman spectra. A model of CDs composed of a matrix of hydrogenated amorphous carbon with the inclusions of sp2-domains formed by polycyclic aromatic hydrocarbons and their derivatives is suggested; the latter are stacked ensembles of the luminophores and are considered as the origin of the emission of CDs.

16.
Materials (Basel) ; 12(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766585

RESUMO

Research on materials with perovskite crystal symmetry for photonics applications represent a rapidly growing area of the photonics development due to their unique optical and electrical properties. Among them are high charge carrier mobility, high photoluminescence quantum yield, and high extinction coefficients, which can be tuned through all visible range by a controllable change in chemical composition. To date, most of such materials contain lead atoms, which is one of the obstacles for their large-scale implementation. This disadvantage can be overcome via the substitution of lead with less toxic chemical elements, such as Sn, Bi, Yb, etc., and their mixtures. Herein, we summarized the scientific works from 2016 related to the lead-free perovskite materials with stress on the lasing and lighting applications. The synthetic approaches, chemical composition, and morphology of materials, together with the optimal device configurations depending on the material parameters are summarized with a focus on future challenges.

17.
Materials (Basel) ; 12(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581439

RESUMO

Iodide atomic surface passivation of lead chalcogenides has spawned a race in efficiency of quantum dot (QD)-based optoelectronic devices. Further development of QD applications requires a deeper understanding of the passivation mechanisms. In the first part of the current study, we compare optics and electrophysical properties of lead sulfide (PbS) QDs with iodine ligands, obtained from different iodine sources. Methylammonium iodide (MAI), lead iodide (PbI2), and tetrabutylammonium iodide (TBAI) were used as iodine precursors. Using ultraviolet photoelectron spectroscopy, we show that different iodide sources change the QD HOMO/LUMO levels, allowing their fine tuning. AFM measurements suggest that colloidally-passivated QDs result in formation of more uniform thin films in one-step deposition. The second part of this paper is devoted to the PbS QDs with colloidally-exchanged shells (i.e., made from MAI and PbI2). We especially focus on QD optical properties and their stability during storage in ambient conditions. Colloidal lead iodide treatment is found to reduce the QD film resistivity and improve photoluminescence quantum yield (PLQY). At the same time stability of such QDs is reduced. MAI-treated QDs are found to be more stable in the ambient conditions but tend to agglomerate, which leads to undesirable changes in their optics.

18.
Anal Chem ; 91(20): 12661-12669, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525880

RESUMO

The efficient and sensitive detection of pathogenic microorganisms in aqueous environments, such as water used in medical applications, drinking water, and cooling water of industrial plants, requires simple and fast methods suitable for multiplexed detection such as flow cytometry (FCM) with optically encoded carrier beads. For this purpose, we combine fluorescent Cd-free Ag-In-S ternary quantum dots (t-QDs) with fluorescence lifetimes (LTs) of several hundred nanoseconds and superparamagnetic Fe3O4 nanoparticles (SPIONs) with mesoporous CaCO3 microbeads to a magneto-fluorescent bead platform that can be surface-functionalized with bioligands, such as antibodies. This inorganic bead platform enables immuno-magnetic separation, target enrichment, and target quantification with optical readout. The beads can be detected with steady-state and time-resolved fluorescence microscopy and flow cytometry (FCM). Moreover, they are suited for readout by time gated emission. In the following, the preparation of these magneto-fluorescent CaCO3 beads, their spectroscopic and analytic characterization, and their conjugation with bacteria-specific antibodies are presented as well as proof-of-concept measurements with Legionella pneumophila including cell cultivation and plating experiments for bacteria quantification. Additionally, the possibility to discriminate between the long-lived emission of the LT-encoded capture and carrier CaCO3 beads and the short-lived emission of the dye-stained bacteria with time-resolved fluorescence techniques and single wavelength excitation is demonstrated.


Assuntos
Legionella pneumophila/isolamento & purificação , Nanopartículas de Magnetita/química , Microscopia de Fluorescência/métodos , Pontos Quânticos/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Carbonato de Cálcio/síntese química , Carbonato de Cálcio/química , Corantes/química , Óxido Ferroso-Férrico/química , Citometria de Fluxo/métodos , Legionella pneumophila/imunologia , Microesferas , Prata/química , Sulfetos/química , Enxofre/química , Compostos de Zinco/química
19.
J Phys Chem Lett ; 10(17): 5111-5116, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31393732

RESUMO

The availability of carbon dots (CDots) with bright red photoluminescence (PL) would significantly broaden the range of their biological and optoelectronic applications. We present a theoretical model that predicts that amino functionalization of CDots not only shifts their PL to longer wavelengths but also preserves large oscillator strengths of the fundamental radiative transitions of CDots. The model considers the optical response of amino-functionalized CDots determined by molecule-like subunits of polycyclic aromatic hydrocarbons with one, two, or three -NH2 groups at the CDots' surface; the excited state of those subunits is characterized by strong charge separation between the amino groups and CDots' carbon core. Such a separation determines the Stokes shift of the CDots' emission, which increases with the growing amount of the amino functional groups at the CDot surface. Our model explains the experimentally observed dependence of the PL spectra of CDots on the excitation wavelength, the phenomenon well documented in the literature for nitrogen-containing CDots.

20.
ACS Nano ; 13(9): 10737-10744, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31411860

RESUMO

Carbon dots (CDots) are a promising biocompatible nanoscale source of light, yet the origin of their emission remains under debate. Here, we show that all the distinctive optical properties of CDots, including the giant Stokes shift of photoluminescence and the strong dependence of emission color on excitation wavelength, can be explained by the linear optical response of the partially sp2-hybridized carbon domains located on the surface of the CDots' sp3-hybridized amorphous cores. Using a simple quantum chemical approach, we show that the domain hybridization factor determines the localization of electrons and the electronic bandgap inside the domains and analyze how the distribution of this factor affects the emission properties of CDots. Our calculation data fully agree with the experimental optical properties of CDots, confirming the overall theoretical picture underlying the model. It is also demonstrated that fabrication of CDots with large hybridization factors of carbon domains shifts their emission to the red side of the visible spectrum, without a need to modify the size or shape of the CDots. Our theoretical model provides a useful tool for experimentalists and may lead to extending the applications of CDots in biophysics, optoelectronics, and photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...