Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.231
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Clin Invest ; 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31917687

RESUMO

Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we have demonstrated a potent IFN immunogenicity of nucleic acid (NA)-containing amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with ß-amyloidosis inside the brain and contributes to neuropathology. An IFN-stimulated gene (ISG) signature was detected in the brains of multiple murine Alzheimer disease (AD) models, a phenomenon also observed in wild-type mouse brain challenged with generic NA-containing amyloid fibrils. In vitro, microglia innately responded to NA-containing amyloid fibrils. In AD models, activated ISG-expressing microglia exclusively surrounded NA-positive amyloid ß plaques, which accumulated in an age-dependent manner. Brain administration of rIFNß resulted in microglial activation and complement C3-dependent synapse elimination in vivo. Conversely, selective IFN receptor blockade effectively diminished the ongoing microgliosis and synapse loss in AD models. Moreover, we detected activated ISG-expressing microglia enveloping NA-containing neuritic plaques in post-mortem brains of AD patients. Gene expression interrogation revealed that IFN pathway was grossly upregulated in clinical AD and significantly correlated with disease severity and complement activation. Therefore, IFN constitutes a pivotal element within the neuroinflammatory network of AD and critically contributes to neuropathogenic processes.

2.
Life Sci ; : 117230, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31923422

RESUMO

AIMS: Accumulating evidence has confirmed the involvement of the homeobox (HOX) gene family in carcinogenesis. HOXC11, belongs to the homeobox-C (HOXC) gene cluster, has been reported to play important roles in the development of several cancers. However, its expression and clinical value in pan-cancer remain elusive. MATERIALS AND METHODS: Bioinformatics analysis, CCK-8 assay, Flow cytometry and Western blot were used to analyze gene expression and patient survival, cell proliferation, cell apoptosis and protein level, respectively. KEY FINDINGS: In this study, we comprehensively analyzed the expression profile and prognostic value of HOXC11 in human pan-cancer using online The Cancer Genome Atlas (TCGA) databases. HOXC11 was widely up-regulated in tumor tissues when compared with the normal tissues in pan-cancer across nine cancer types. In addition, high mRNA level of HOXC11 predicted poor overall survival (OS) of patients with adrenocortical carcinoma (ACC), colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), mesothelioma (MESO) and pancreatic adenocarcinoma (PAAD), respectively. By comparative analysis, we found that HOXC11 was up-regulated and closely correlated patient OS in COAD and KIRC. Functionally, down-regulation of HOXC11 inhibited cell proliferation but promoted apoptosis of COAD and KIRC in vitro. Mechanistically, HOXC11 promoted cell proliferation of COAD and KIRC might by inactivating the peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway. SIGNIFICANCE: Our findings suggest that HOXC11 may act as a tumor driving gene in COAD and KIRC.

3.
Nat Commun ; 11(1): 196, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924760

RESUMO

The negative-capacitance field-effect transistor(NC-FET) has attracted tremendous research efforts. However, the lack of a clear physical picture and design rule for this device has led to numerous invalid fabrications. In this work, we address this issue based on an unexpectedly concise and insightful analytical formulation of the minimum hysteresis-free subthreshold swing (SS), together with several important conclusions. Firstly, well-designed MOSFETs that have low trap density, low doping in the channel, and excellent electrostatic integrity, receive very limited benefit from NC in terms of achieving subthermionic SS. Secondly, quantum-capacitance is the limiting factor for NC-FETs to achieve hysteresis-free subthermionic SS, and FETs that can operate in the quantum-capacitance limit are desired platforms for NC-FET construction. Finally, a practical role of NC in FETs is to save the subthreshold and overdrive voltage losses. Our analysis and findings are intended to steer the NC-FET research in the right direction.

4.
Cancer Gene Ther ; 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31902945

RESUMO

Chromosome translocation t(12;22)(p13;q12)/MN1-ETV6 and MN1 overexpression confer a subset of adverse prognostic AML but so far lack in-depth research. We focused on the clinical course and comprehensive genetic analysis of eight cases with t(12;22)(p13;q12) and one with t(12;17;22) (p13;q21;q13) to elucidate their molecular etiology and outcomes of allogeneic hemopoietic stem cell transplantation (allo-HSCT). The total incidence of t(12;22)(p13;q12) and related translocations was 0.32% in myeloid neoplasms. These patients were confirmed to have dismal prognosis when treated only with chemotherapy, and we firstly provided evidence that they can significantly benefit from timely allo-HSCT. Five cases were MN1-ETV6 positive, and a novel MN1-STAT3 fusion was identified in the patient with triadic translocation. Significant MN1 overexpression was observed in all three MN1-fusion-negative cases. Genetic analysis highlighted the evidence of an ectopic super-enhancer associated orchestrated mechanism of MN1 overexpression and ETV6 haploinsufficiency in t(12;22)(p13;q12) myeloid neoplasms, rather than the conventional thought of MN1-ETV6 fusion formation. We also disclosed the high concomitance of trisomy 8 and 531 Kbps focal 8q duplication in t(12;22)(p13;q12) cases. The new perspective about this entity of disease will enlighten further research to define the mechanism of tumorigenesis and discover effective treatments for MN1-driven malignancies.

5.
Expert Rev Proteomics ; : 1-15, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31914820

RESUMO

Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.

6.
J Mol Med (Berl) ; 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897508

RESUMO

Diabetic cardiomyopathy (DCM) is a major cause of morbidity and mortality in diabetic patients. Reactive oxygen species (ROS) produced by oxidative stress play an important role in the development of DCM. DCM involves abnormal energy metabolism, thereby reducing energy production. Exercise has been reported to be effective in protecting the heart against ROS accumulation during the development of DCM. We hypothesize that the AMPK/PGC-1α axis may play a crucial role in exercise-induced bioenergetic metabolism and aerobic respiration on oxidative stress parameters in the development of diabetic cardiomyopathy. Using a streptozotocin/high-fat diet mouse to generate a diabetic model, our aim was to evaluate the effects of exercise on the cardiac function, mitochondrial oxidative capacity, mitochondrial function, and cardiac expression of PGC-1α. Mice fed a high-fat diet were given MO-siPGC-1α or treated with AMPK inhibitor. Mitochondrial structure and effects of switching between the Warburg effect and aerobic respiration were analysed. Exercise improved blood pressure and systolic dysfunction in diabetic mouse hearts. The beneficial effects of exercise were also observed in a mitochondrial function study, as reflected by an enhanced oxidative phosphorylation level, increased membrane potential, and decreased ROS level and oxygen consumption. On the other hand, depletion of PGC-1α attenuated the effects of exercise on the enhancement of mitochondrial function. In addition, PGC-1α may be responsible for reversing the Warburg effect to aerobic respiration, thus enhancing mitochondrial metabolism and energy homoeostasis. In this study, we demonstrate the protective effects of exercise on shifting energy metabolism from fatty acid oxidation to glucose oxidation in an established diabetic stage. These data suggest that exercise is effective at ameliorating diabetic cardiomyopathy by improving mitochondrial function and reducing metabolic disturbances.

7.
Cancer Lett ; 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31838083

RESUMO

Understanding the molecular mechanisms regulating tumor dissemination and therapeutic resistance is of central importance for effective cancer therapies. Here, we report that nerve growth factor (NGF) and its receptor TrkA facilitate epithelial-mesenchymal transition (EMT) and EGFR inhibitor resistance via STAT3 activation in head and neck squamous cell carcinoma (HNSCC). Both NGF and TrkA expression were elevated in HNSCC, indicating poor clinical outcomes. NGF was highly expressed in cancer cells and nerves in perineural niche, whereas TrkA expression was higher in cancer cells with perineural invasion. The NGF/TrkA axis could promote HNSCC cell dissemination and trigger EMT via STAT3 activation. Moreover, we discovered that the NGF/TrkA axis conferred resistance to the EGFR inhibitor erlotinib via EMT processes in HNSCC cells. Blocking TrkA signaling markedly reversed EMT and sensitized HNSCC cells to erlotinib in both in vitro and in vivo models. Overall, our results demonstrate novel evidence that the paracrine NGF/TrkA axis favors EMT and confers EGFR-targeted therapeutic resistance in HNSCC.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31805209

RESUMO

Immunotherapy has emerged as a promising new approach for cancer treatment. However, clinically available drugs have been limited until recently, and the antitumor efficacy of most cancer immunotherapies still needs to be improved. Herein, we develop diselenide-pemetrexed assemblies that combine nature killer (NK) cell-based cancer immunotherapy with radiotherapy and chemotherapy in a single system. The assemblies are prepared via co-assembly between pemetrexed and cytosine-containing diselenide through hydrogen bonds. Under γ-radiation, the hydrogen bonds are cleaved, resulting in the release of pemetrexed. At the same time, diselenide can be oxidized to seleninic acid, which suppresses the expression of human leukocyte antigen E (HLA-E) in cancer cells, thus activating the immune response of NK cells. In this way, cancer immunotherapy is combined with radiotherapy and chemotherapy, which reveals a new strategy for combination therapy in cancer treatment.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31805234

RESUMO

Perovskite solar cells (PSCs) based on spiro-OMeTAD have achieved efficiencies greater than 20% in recent years, however, poorly designed dopants and ambiguous working mechanisms are still obstacles that restrict the process of commercialization. Various dopants have been introduced to modulate the electrical properties of spiro-OMeTAD, often accompanying some negative problems, such as complex synthetic routes and accelerated degradation of perovskite. Here, two novel metal organic complexes (Cu-2Cl and Cu-4Cl) with similar molecular fragments are designed and synthesized to investigate the effects on the chemical p-doping of spiro-OMeTAD. The unique coordination environment of copper ions and harmless oxidation byproducts make Cu-2Cl a superior ability of oxidation spiro-OMeTAD, and the possible synergetic mechanism of the heterogeneous reactions with Li-TFSI is also proposed. Utilizing Cu-2Cl doped hole transport materials to fabricate PSCs will facilitate hole transport, reduce interfacial charge recombination and passivate the trap states of perovskite, resulting in a champion efficiency of 20.97%. In addition, the intrinsic solid-state hydrophobic characteristics of Cu-2Cl nanoparticles well-dispersed in hole transport layer successfully suppress the invasion of water vapor and the corresponding device retains 84% of its original efficiency after stored for 720 h in ambient air condition.

10.
Int J Pharm ; : 118910, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805310

RESUMO

During the pharmaceutical development of pregabalin extended-release tablets, an unknown degradant at a relative retention time (RRT) of 11.7 was observed and its nominal amount exceeded the ICH identification threshold in an accelerated stability study. The aim of this study is to identify the structure and investigate the formation mechanism of this impurity for the purpose of developing a chemically stable pharmaceutical product. By utilizing multi-stage LC-MS analysis in conjunction with mechanism-based stress study, the structure of the RRT 11.7 impurity was rapidly identified as a dimeric degradant that is caused by dimerization of two pregabalin molecules with a methylene bridging the two pregabalin moieties. The structure of the dimer was confirmed by 1D and 2D NMR measurement. The formation pathway of the dimeric degradant was also inferred from the mechanism-based stress study, which implicated that the bridging methylene could originate from formaldehyde which might be the culprit that triggers the dimerization in the first place. The subsequent API-excipients compatibility study indicated that the degradant was indeed formed in the compatibility experiments between pregabalin API and two polymeric excipients (PEO and PVPP) that are known to contain residual formaldehyde, but only in the co-presence of another excipient, colloidal silicon dioxide (SiO2). The kinetic behavior of the degradant formation was also investigated and two kinetic models were utilized based on the Arrhenius and Eyring equations, respectively, to calculate the activation energy (Ea) as well as the enthalpy of activation (△H‡), entropy of activation (△S‡), and Gibbs free energy (△G‡) of the degradation reaction. The results of this study would be useful for the understanding of similar dimeric degradant formation in finished products of drug substances containing primary or secondary amine moieties.

11.
Sci Total Environ ; : 135092, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31806309

RESUMO

Zirconium oxide-modified pomelo peel biochar (ZrBC) was synthesized for the adsorption of sulfate ion from aqueous solution. Zirconyl chloride octahydrate (ZCO) was used to modify pomelo peel biochar into ZrBC. The optimal dose of ZCO for modification is 0.5 mol/L, at which ZrBC shows the highest adsorption of sulfate ion. The adsorbents were characterized by the field emission scanning electron microscopy, X-ray photoelectron spectroscopy and surface area measurement. The results confirm that the presence of zirconium oxides and hydroxide groups on the ZrBC surface, and ZrBC has a porous structure and a higher specific surface area in comparison with pomelo peel biochar. ZrBC shows good affinity for sulfate ion with a maximum sulfate adsorption capacity of 35.21 mg/g, which is much higher than that of pomelo peel biochar (1.02 mg/g). The adsorption of sulfate on ZrBC is pH dependent, and acidic conditions favor the adsorption. The adsorption can reach near-equilibrium in approximately 120 min. The adsorption kinetics and isotherm follow the pseudo second-order equation and Langmuir adsorption model, respectively. Furthermore, nitrate and fluoride anions exhibit little influence on the adsorption of sulfate by ZrBC, whereas phosphate inhibits the adsorption under the same concentration conditions. ZrBC has the potential to be used for removal of sulfate from aqueous solution.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31822979

RESUMO

In karst rocky desertification areas, bryophytes coexist with algae, bacteria, and fungi on exposed calcareous rocks to form a bryophyte crust, which plays an irreplaceable role in the restoration of karst degraded ecosystems. We investigated the biodiversity of crust bryophytes in karst rocky desertification areas from Guizhou Province, China. A total of 145 species in 22 families and 56 genera were identified. According to frequency and coverage, seven candidate dominant mosses were screened out, and five drought-resistant indexes of them were measured. Hypnum leptothallum, Racopilum cuspidigerum, and Hyophila involuta have high drought adaptability. We explored the interactions between two dominant mosses (H. leptothallum, H. involuta) and the structure of microbial communities in three karst rocky desertification types. Microbial diversity and function analysis showed that both moss species and karst rocky desertification types affect microbial communities. Moss species much more strongly affected the diversity and changed the community composition of these microbial groups. Bacteria were more sensitive in the microbiome as their communities changed strongly between mosses and drought resistance factors. Moreover, several species of fungi and bacteria could be significantly associated with three drought-resistant indexes: Pro (free proline content), SOD (superoxide dismutase activity), and POD (peroxidase activity), which were closely related to the drought adaptability of mosses. Our results enforced the potential role of moss-associated microbes that are important components involved in the related biological processes when bryophytes adapted to arid habitats, or as one kind of promoters in the distribution pattern of early mosses succession in karst rocky desertification areas.

13.
Sci Rep ; 9(1): 18269, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797983

RESUMO

Ultrahigh molecular weight (UHMW) diblock copolymers (DBCs) have emerged as a promising template for fabricating large-sized nanostructures. Therefore, it is of high significance to systematically study the influence of film thickness and solvent vapor annealing (SVA) on the structure evolution of UHMW DBC thin films. In this work, spin coating of an asymmetric linear UHMW polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) DBC is used to fabricate thin films, which are spherically structured with an inter-domain distance larger than 150 nm. To enhance the polymer chain mobility and facilitate approaching equilibrium nanostructures, SVA is utilized as a post-treatment of the spin coated films. With increasing film thickness, a local hexagonal packing of PMMA half-spheres on the surface can be obtained, and the order is improved at larger thickness, as determined by grazing incidence small angle X-ray scattering (GISAXS). Additionally, the films with locally hexagonal packed half-spherical morphology show a poor order-order-poor order transition upon SVA, indicating the realization of ordered structure using suitable SVA parameters.

14.
Nat Sci Sleep ; 11: 281-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31802960

RESUMO

Background: Sleep disorders (SDs) are usually associated with an increase in frequency of ventricular tachycardia (VT). However, the relationship between SDs and the prevalence of VT within the first week of acute myocardial infarction (AMI) remains unclear. This study aimed to evaluate their associations and potential mechanisms. Methods: This structured questionnaire-based cross-sectional study enrolled 303 patients with AMI from a hospital in northern China. Pittsburgh Sleep Quality Index (PSQI) was used to determine sleep quality of subjects. Heart rate variability (HRV) of patients was investigated by ambulatory electrocardiography recorders. Enzyme-linked immunosorbent assay was used to measure the plasma levels of catecholamine in a subgroup including 80 patients with AMI. Results: After adjusting to basic cardiovascular characteristics, results of multivariate logistic regression demonstrated that the global PSQI score and its main components were positively associated with VT prevalence in inpatients with AMI. There were significantly different HRV parameters interpreted as autonomic nerve activity in two groups of AMI patients with different sleep quality. In addition, we found the influence of sleep quality on plasma concentrations of adrenaline and norepinephrine in AMI patients. Conclusion: Sleep status was significantly associated with the initiation of VT within the first week of AMI, probably due to the effect of SDs on sympathetic nerve activity. Amelioration of sleep quality and sympathetic hyperactivity may be prospective strategy to curb arrhythmias after AMI.

15.
Ren Fail ; 41(1): 1036-1044, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31814501

RESUMO

Background: Most prior studies have explored surgery for the treatment of failed autologous arteriovenous fistulas (AVFs) with limited follow-up times and a lack of end point mortality. Accordingly, we conducted a retrospective cohort study to evaluate the clinical outcomes of the surgery of new AVF proximal to the failed forearm AVF.Methods: In this study, 538 end-stage renal disease patients (group A, 418 with primary AVF; and group B, 120 with failed AVF) were consecutively enrolled between January 2013 and June 2016, with a median follow-up time of 41 months. Primary and secondary patency, all-cause mortality, and risk factors associated with AVF failure were explored by the Kaplan-Meier method or Cox proportional hazards model.Results: In group A (n = 418), the primary and secondary patencies of AVF were 85.6% vs. 96.8%, 79.7% vs. 95.0%, 75.1% vs.93.9%, 73.2% vs. 93.6% and 73.2% vs. 93.6% at 12, 24, 36, 48 and 60 months, respectively. The primary patencies of AVF in group B were 95.0%, 91.7%, 89.2%, 88.3% and 88.3% at 12, 24, 36, 48 and 60 months, respectively. After adjusting for potential confounders, age, angiotensin-converting inhibitors or angiotensin-receptor blockers (anti-RAAS) drugs and D-dimer were independent predictors of AVF failure. However, there were no differences between functional and failed AVF regarding all-cause mortality.Conclusions: The study revealed that the primary and secondary patiencies of the surgery of new AVF proximal to the failed ones were ideal operations to restore failed forearm AVF.

16.
Opt Express ; 27(26): 38116-38124, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878583

RESUMO

The full three-dimensional photoelectron momentum distributions of argon are measured in intense near-circularly polarized laser fields. We observed that the transverse momentum distribution of ejected electrons by 410-nm near-circularly polarized field is unexpectedly narrowed with increasing laser intensity, which is contrary to the conventional rules predicted by adiabatic theory. By analyzing the momentum-resolved angular momentum distribution measured experimentally and the corresponding trajectories of ejected electrons semiclassically, the narrowing can be attributed to a temporary trapping and thereby focusing of a photoelectron by the atomic potential in a quasibound state. With the near-circularly polarized laser field, the strong Coulomb interaction with the rescattering electrons is avoided, thus the Coulomb focusing in the retrapped process is highlighted. We believe that these findings will facilitate understanding and steering electron dynamics in the Coulomb coupled system.

17.
J Phys Chem Lett ; 10(22): 7251-7258, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31698898

RESUMO

Water diffusion in nanopores has attracted considerable attention in the past decades. Recently the coupling between the vibration of pore walls and movement of confined water has been recognized to largely enhance diffusion. However, its impact on water diffusion in graphene oxide membranes remains to be discussed. Here we explore how water diffusion couples with the thermal fluctuation of graphene nanochannels by molecular dynamics simulations. Our finding demonstrates an approximately linear dependence of diffusion enhancement on temperature; i.e., the wiggling nanopore enhances diffusion at low temperature and inhibits diffusion at high temperature. This mechanism is further extended to be applicable for another two typical layered materials, hBN and MoS2. These results offer opportunities to tune surface diffusion by thermal operation or mechanical activation, advancing the application of two-dimensional materials in membrane separations.

18.
Zootaxa ; 4590(2): zootaxa.4590.2.6, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31716095

RESUMO

Epoicocladius Sulc et Zavrel from China is reviewed. Epoicocladius wangi Liu et Yan sp. n. is described and illustrated as male imago from China. The generic diagnosis is amended. Key to the known adult males of the genus and species distribution map worldwide are presented.


Assuntos
Chironomidae , Dípteros , Animais , China , Masculino
19.
Mikrochim Acta ; 186(11): 743, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31686218

RESUMO

This work describes the synthesis of a nanocomposite consisting of Ag2O, silver nanoparticles and N,S-doped carbon quantum dots (Ag2O/Ag@NS-CQD). The NS-CQD were prepared by hydrothermal treatment of p-aminobenzenesulfonic acid. They act as both the reducing and stabilizing agent for synthesis of Ag2O/Ag@NS-CQD. The composite was characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The glassy carbon electrode (GCE) was modified by coating it with Ag2O/Ag@NS-CQD. It exhibits excellent amperometric response to catechol, typically at a low working potential of around 0.25 V. Under the best experimental conditions, the sensor has a wide linear response (0.2 to 180 µM) and a low detection limit (13 nM; at S/N = 3). The method was applied to analysis of spiked water samples and gave satisfactory results. Graphical abstract Schematic representation of the preparation of the Ag/Ag2O@N,S-doped carbon quantum dots composite using p-aminobenzenesulfonic acid and silver nitrate as the starting materials. The corresponding modified glassy carbon electrode exhibits the excellent amperometric sensing performance toward catechol at pH 7.0 with low detection limit and good selectivity.

20.
Mikrochim Acta ; 186(12): 811, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745662

RESUMO

The N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a marker of heart failure. A novel sandwich type electrochemiluminescence (ECL) immunoassay is described for the NT-proBNP. The method is based on ECL resonance energy transfer (RET) between silver nanocubes that were covered with semicarbazide-modified gold nanoparticles (AgNC-sem@AuNPs) as the donor, and a Ti(IV)-based metal-organic framework of type MIL-125 as the acceptor. The ECL signal was strongly amplified by increasing the luminous efficiency. ECL-RET occurs due to the partial overlap between the ECL emission of the AgNC-sem@AuNPs (emission wavelength at 470 nm to 900 nm) and the visible absorption spectrum of MIL-125 (absorption wavelength at 406 nm to 900 nm). This results in the quenching of ECL. The AgNC-sem@AuNPs were placed on the electrode. The antibody was immobilized on AgNC-sem@AuNPs via Au-NH2 bond, and MIL-125 was utilized as a label for the secondary antibody. The assay works in the 0.25 pg mL-1 to 100 ng mL-1 concentration range and has a 0.11 pg mL-1 lower detection limit (at S/N = 3). Graphical abstract Schematic representation of self-enhanced luminescence mechanism (semicarbazide (Sem) as co-reaction accelerator) and Electrochemiluminescence resonance energy transfer (ECL-RET): silver nanocubes (AgNCs) as the energy donor and MIL-125 as the energy acceptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA