Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802139

RESUMO

It is usually a tedious task to profile the chemical composition of a given herbal medicine (HM) using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) due to the time-consuming sample preparation and laborious post-acquisition data processing procedures. Even worse, some labile compounds may face degradation risks when exposed to organic solvents for a relatively long period. As one of the most popular HMs, the promising therapeutic benefits of Epimedii Herba (Chinese name: Yinyanghuo) are well defined; however, the chemical profile, and in particular those flavonoids that have been claimed to be responsible for the efficacy, remains largely unknown. Attempts are devoted here to achieve direct LC-MS measurement and efficient post-acquisition data processing, and chemome comparison among three original sources of Epimedii Herba, such as Epimedium sagittatum (Esa), E. pubescens (Epu), and E. koreanum (Eko) was employed to illustrate the strategy utility. A home-made online liquid extraction (OLE) module was introduced at the front of the analytical column to comprehensively transfer the compounds from raw materials onto the LC-MS instrument. A mass defect filtering approach was programmed to efficiently mine the massive LC-MS dataset after which a miniature database was built involving all chemical information of flavonoids from the genus Epimedium to draw a pentagonal frame to rapidly capture potential quasi-molecular ions (mainly [M-H]-). A total of 99 flavonoids (66 in Esa, 84 in Eko, and 66 in Epu) were captured, and structurally annotated by summarizing the mass fragmentation pathways from the mass spectrometric data of authentic compounds and an in-house data library as well. Noteworthily, neutral loss of 144 Da was firstly assigned to the neutral cleavage of rhamnosyl residues. Significant species-differences didn't occur among their chemical patterns. The current study proposed a robust strategy enabling rapid chemical profiling of, but not limited to, HMs.

2.
EMBO Mol Med ; : e13524, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821572

RESUMO

Pancreatic beta cells undergo compensatory proliferation in the early phase of type 2 diabetes. While pathways such as FoxM1 are involved in regulating compensatory beta cell proliferation, given the lack of therapeutics effectively targeting beta cell proliferation, other targetable pathways need to be identified. Herein, we show that Pbk, a serine/threonine protein kinase, is essential for high fat diet (HFD)-induced beta cell proliferation in vivo using a Pbk kinase deficiency knock-in mouse model. Mechanistically, JunD recruits menin and HDAC3 complex to the Pbk promoter to reduce histone H3 acetylation, leading to epigenetic repression of Pbk expression. Moreover, menin inhibitor (MI) disrupts the menin-JunD interaction and augments Pbk transcription. Importantly, MI administration increases beta cell proliferation, ameliorating hyperglycemia, and impaired glucose tolerance (IGT) in HFD-induced diabetic mice. Notably, Pbk is required for the MI-induced beta cell proliferation and improvement of IGT. Together, these results demonstrate the repressive role of the menin/JunD/Pbk axis in regulating HFD-induced compensatory beta cell proliferation and pharmacologically regulating this axis may serve as a novel strategy for type 2 diabetes therapy.

3.
Appetite ; 163: 105205, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33771649

RESUMO

Suboptimal food is defined as physically imperfect food product that deviates from the normal visual standards without intrinsic quality or safety concerns. The forms of suboptimal food can be visual (e.g., cosmetic appearance), temporal (e.g., close to or past expiration date), or peripheral (e.g., superficially damaged packaging). This study aimed to identify the salient inferential determinants, attitudinal determinants, and behavioral intentions toward the three suboptimal food types and to evaluate the associations between the determinants and consumers' behavioral intentions. Results from an experimental research showed that consumers associated temporally suboptimal food with the highest financial loss and discard intentions, yet lowest moral concerns. This research also revealed that consumers regarded peripherally (damaged package) suboptimal food with lower taste perception compared to conventional food. Moreover, consistent association patterns appeared between a certain set of inferential and attitudinal determinants and distinctive behavioral intentions across the three suboptimal types.

5.
JCI Insight ; 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33690222

RESUMO

Vaccine delivery technologies are mainly designed to minimally invasively deliver vaccines to target tissues with little or no adjuvant effects. This study presents a prototype laser-based powder delivery (LPD) with inherent adjuvant effects for more immunogenic vaccination without incorporation of external adjuvants. LPD takes advantage of aesthetic ablative fractional laser to generate skin microchannels to support high-efficient vaccine delivery and at the same time creates photothermal stress in microchannel-surrounding tissues to boost vaccination. LPD could significantly enhance pandemic influenza 2009 H1N1 vaccine immunogenicity and protective efficacy as compared to needle-based intradermal delivery in murine models. The ablative fractional laser was found to induce host DNA release, activate NLR family pyrin domain containing 3 (NLRP3) inflammasome, and stimulate interleukin 1ß release despite of their dispensability for laser adjuvant effects. Instead, the ablative fractional laser activated MyD88 to mediate its adjuvant effects by potentiation of antigen uptake, maturation, and migration of dendritic cells. LPD also induced minimal local or systemic adverse reactions due to the micro-fractional and sustained vaccine delivery. Our data support the development of self-adjuvanted vaccine delivery technologies by intentional induction of well-controlled tissue stress to alert innate immune systems for more immunogenic vaccination.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33710521

RESUMO

Tribonema biomass is considered promising biorefinery feedstock for the co-production of biodiesel and valuable bioproducts; however, the extraction of these useful compounds produces large amounts of algal residues, which produce increased environmental concerns. Herein, cellulose was extracted from the waste residue of T. utriculosum via alkalization and bleaching, followed by the production of high-value-added cellulose nanocrystals (CNCs) via acid hydrolysis. The hydrolysis was performed with 60% (wt%) H2SO4 at a yield of 13.31%, resulting in the generation of rod-shaped nanoparticles averaging 39.5 nm in diameter and 239.2 nm in length. The structural characterization analysis revealed that the prepared CNCs had high crystallinity (73.0%) due to the removal of non-cellulose components and amorphous regions by chemical treatment, as well as possessing good aqueous suspension stability (zeta potential = - 40.1 mV). Although the CNCs showed lower thermal stability than extracted cellulose, they spanned a broader temperature range due to two-stage degradation behaviour, with higher residue weight (16.7%). This work represents the first report on the preparation of a high-value-added industrial product, CNCs, from the filamentous microalga T. utriculosum, aiming to maximize benefits from waste algal residue reutilization.

7.
Zhongguo Zhong Yao Za Zhi ; 46(1): 130-138, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645062

RESUMO

As a precious traditional Chinese medicine(TCM), snake bile has been widely used in numerous Chinese medicine prescriptions. Bile acid(BA) derivatives have been demonstrated as the primary chemical family in snake bile. In-depth chemical characterization of BAs is of great importance towards the establishment of quality standards and clarification of the effective material basis for snake bile. This study firstly employed ~1H-NMR to preliminarily analyze the chemical profiles of snake bile, an automated fraction collector was subsequently implemented to obtain the fractions-of-interest. The fraction was then concentrated and re-analyzed by LC-MS. Based on ~1H-NMR, BAs were found to be the main components of snake bile, and six BAs including CDCA, CA, TCDCA, TCA, TDCA and GCA were tentatively identified from the representative spectrum with the assistance of literature and reference compounds. Whereas the content of TCA in snake bile was too great, resulting in a great obstacle for the detection of trace components, the automated fraction collector was subsequently implemented to obtain the fractions-of-interest for LC-MS analysis. According to matching MS/MS information and retention time with reference compounds as well as database retrieval, a total of 57 BAs were detected and annotated. Because of the combination of ~1H-NMR and LC-MS platforms, the findings are beneficial for the in-depth characterization of BAs in snake bile, which provides references for the establishment of quality control and evaluation methods of snake bile.


Assuntos
Ácidos e Sais Biliares , Espectrometria de Massas em Tandem , Animais , Bile , Cromatografia Líquida , Serpentes
8.
Anal Bioanal Chem ; 413(7): 2021-2031, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33528601

RESUMO

A novel surface plasmon resonance-based P-gp ligand screening system (SPR-PLSS) combined with lentiviral particle (LVP) stabilization strategy was constructed to screen out potential P-gp inhibitors from natural products. Firstly, we constructed LVPs with high and low expression levels of P-gp. The LVPs can ensure the natural conformation of P-gp based on the principle that LVPs germinated from packaging cells will contain cell membrane fragments and P-gp they carry. Then the LVPs with high P-gp expression for active channel and LVPs with low P-gp expression for reference channel were immobilized on CM5 chip respectively. The affinity detection was thus carried out with the signal reduction on the two channels. The P-gp inhibitors, Valspodar (Val) and cyclosporin (CsA), as positive compounds, were detected to characterize the chip's activity, and the KD of Val and CsA were 14.09 µM and 16.41 µM, respectively. Forty compounds from natural product library were screened using the SPR CM5 chip, and magnolol (Mag), honokiol (Hon), and resveratrol (Res) were screened out as potential P-gp ligands, showing a significant response signal. This work presented a novel P-gp ligand screening system based on LVP-immobilized biosensor to rapidly screen out P-gp ligands from natural product library. Compared with traditional cell experiments which the screening time may take up to several days, our method only takes several hours. Furthermore, this study has also provided solid evidences to support that some complicated membrane proteins would apply to the lentivirus-based SPR screening system.

9.
Medicine (Baltimore) ; 100(4): e24337, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33530226

RESUMO

BACKGROUND: Gastric cancer (GC) has high incidence and mortality worldwide, and peritoneal metastasis is a primary cause of mortality in patients. Hyperthermic intraperitoneal chemotherapy (HIPEC) is a feasible and effective treatment. Traditional Chinese Medicine (TCM) therapies have been combined with HIPEC for certain therapeutic advantages, but there is a lacking of evidence of evidence-based medicine. Therefore, we provide a protocol to evaluate the efficacy and safety of TCM therapies combined with HIPEC in the treatment for peritoneal metastasis of GC. METHODS AND ANALYSIS: From inception until December 2020, a systematic and comprehensive literature search will be conducted in both 3 English databases and 4 Chinese databases. Randomized controlled trials (RCTs) will be included related to TCM therapies combined with HIPEC in the treatment for peritoneal metastasis of GC. Two researchers independently conducted data extraction and literature quality evaluation. The methodological qualities, including the risk of bias, will be evaluated using the Cochrane risk of bias assessment tool, while confidence in the cumulative evidence will be evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS: This study assessed the efficacy and safety of TCM therapies combined with HIPEC in the treatment of peritoneal metastasis of GC by effective rate, Karnofsky Performance Status (KPS), Carcinoemybryonic Angtigen remission rate, and incidence of adverse reactions etc. CONCLUSIONS: This study will provide reliable evidence-based evidence for the clinical application of TCM therapies combined with HIPEC in the treatment for peritoneal metastasis of GC. ETHICS AND DISSEMINATION: Ethical approval is not required, as this study is based on the review of published research. This review will be published in a peer-reviewed journal and disseminated both electronically and in print. REGISTRATION NUMBER: INPLASY2020120048.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medicina Tradicional Chinesa/métodos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Adulto , Feminino , Humanos , Avaliação de Estado de Karnofsky , Masculino , Metanálise como Assunto , Neoplasias Peritoneais/mortalidade , Neoplasias Peritoneais/secundário , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Revisões Sistemáticas como Assunto , Resultado do Tratamento
10.
Free Radic Biol Med ; 164: 20-33, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418108

RESUMO

Sp1-CSE-H2S pathway plays an important role in homocysteine-metabolism, whose disorder can result in hyperhomocysteinemia. H2S deficiency in hyperhomocysteinemia has been reported, while the underlying mechanism and whether it in turn affects the progress of hyperhomocysteinemia are unclear. This study focused on the post-translational modification of Sp1/CSE and revealed four major findings: (1) Homocysteine-accumulation augmented CSE's nitration, inhibited its bio-activity, thus caused H2S deficiency. (2) H2S deficiency inhibited the S-sulfhydration of Sp1, down-regulated CSE and decreased H2S further, which in turn weakened CSE's own S-sulfhydration. (3) CSE was S-sulfhydrated at Cys84, Cys109, Cys172, Cys229, Cys252, Cys307 and Cys310, among which the S-sulfhydration of Cys172 and Cys310 didn't affect its enzymatic activity, while the S-sulfhydration of Cys84, Cys109, Cys229, Cys252 and Cys307 was necessary for its bio-activity. (4) H2S deficiency trapped homocysteine-metabolism into a vicious cycle, which could be broken by either blocking nitration or restoring S-sulfhydration. This study detected a new mechanism that caused severe hyperhomocysteinemia, thereby provided new therapeutic strategies for hyperhomocysteinemia.

11.
Sci Rep ; 11(1): 2649, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514851

RESUMO

Porous hollow fibres made of polyvinylidene fluoride were employed as membrane contactor for carbon dioxide (CO2) absorption in a gas-liquid mode with methyldiethanolamine (MDEA) based nanofluid absorbent. Both theoretical and experimental works were carried out in which a mechanistic model was developed that considers the mass transfer of components in all subdomains of the contactor module. Also, the model considers convectional mass transfer in shell and tube subdomains with the chemical reaction as well as Grazing and Brownian motion of nanoparticles effects. The predicted outputs of the developed model and simulations showed that the dispersion of CNT nanoparticles to MDEA-based solvent improves CO2 capture percentage compared to the pure solvent. In addition, the efficiency of CO2 capture for MDEA-based nanofluid was increased with rising MDEA content, liquid flow rate and membrane porosity. On the other hand, the enhancement of gas velocity and the membrane tortuosity led to reduced CO2 capture efficiency in the module. Moreover, it was revealed that the CNT nanoparticles effect on CO2 removal is higher in the presence of lower MDEA concentration (5%) in the solvent. The model was validated by comparing with the experimental data, and great agreement was obtained.

12.
Org Lett ; 23(3): 858-862, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33481613

RESUMO

Three tetrahydroquinoline alkaloids, lycibarbarines A-C (1-3), possessing a unique tetracyclic tetrahydroquinoline-oxazine-ketohexoside fused motif, were isolated from the fruits of Lycium barbarum. Their structures were determined by spectroscopic analysis and quantum-chemical calculations. Compounds 1 and 3 exhibited neuroprotective activity when evaluated for corticosterone-induced injury by reducing the apoptosis of PC12 cells through the inhibition of caspase-3 and caspase-9.

13.
Food Chem ; 348: 129111, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516994

RESUMO

In this study, we report a novel peptide corresponding to the sequence of human ß-casein (named BCCY-1), which was identified in our previous peptidome analysis of human milk and has great immunomodulatory activity. The results revealed that peptide BCCY-1, but not the scrambled version, enhanced monocyte migration without obvious toxicities. This selective effect was mediated via increased production of chemokines by peptide stimulated monocytes. Moreover, BCCY-1 exerted its modulatory effects by activating nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. The abundances of peptide BCCY-1 and the peptides partially encompassing its fragment were found to be lower in preterm milk than in term milk. Our study may lead to new insights into the immunoregulatory effects of casein-derived peptides and facilitate the discovery of novel peptide-based food and pharmaceutical products.


Assuntos
Caseínas/química , Imunidade Inata/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Caseínas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Leite Humano/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Peptídeos/química
14.
Nat Prod Res ; : 1-6, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33432825

RESUMO

A new flavonoid, saffloflavone , along with six known compounds, kaempferol-3-O-rutinoside, kaempferol-3-O-sophoroside, quercetin-3-O-ß-d-glucoside, quercetin-7-O-ß-d-glucoside, luteolin-7-O-ß-d-glucoside and kaempferol 3-O-ß-d-glucoside were isolated from the flowers of Carthamus tinctorius L. All the structures were determined by interpretation of their spectroscopic data. The cardioprotective effects of all the isolates against oxidative stress of H9c2 cells induced by H2O2 were investigated. The results showed that compounds 4-6 exhibited protective effects against of H9c2 cells injury induced by H2O2.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33479510

RESUMO

Orphan G protein Coupled Receptors (GPCRs) present attractive targets both for understanding neuropsychiatric diseases and for development of novel therapeutics. GPR139 is an orphan GPCR expressed in select brain circuits involved in controlling movement, motivation and reward. It has been linked to the opioid and dopamine neuromodulatory systems; however, its role in animal behavior and neuropsychiatric processes is poorly understood. Here we present a comprehensive behavioral characterization of a mouse model with a GPR139 null mutation. We show that loss of GPR139 in mice results in delayed onset hyperactivity and prominent neuropsychiatric manifestations including elevated stereotypy, increased anxiety-related traits, delayed acquisition of operant responsiveness, disruption of cued fear conditioning and social interaction deficits. Furthermore, mice lacking GPR139 exhibited complete loss of pre-pulse inhibition and developed spontaneous 'hallucinogenic' head-twitches, altogether suggesting schizophrenia-like symptomatology. Remarkably, a number of these behavioral deficits could be rescued by the administration of µ-opioid and D2 dopamine receptor (D2R) antagonists: naltrexone and haloperidol, respectively, suggesting that loss of neuropsychiatric manifestations in mice lacking GPR139 are driven by opioidergic and dopaminergic hyper-functionality. The inhibitory influence of GPR139 on D2R signaling was confirmed in cell-based functional assays. These observations define the role of GPR139 in controlling behavior and implicate in vivo actions of this receptor in the neuropsychiatric process with schizophrenia-like pathology.

16.
Sci Total Environ ; 753: 141690, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32896730

RESUMO

Biomass, as a renewable energy source, has high potential for supplying the energy needs of modern societies. Gasification is a thermochemical route for converting biomass into combustible gas at high temperatures. The main purpose of the present study was to develop an Aspen Plus model of air-steam gasification of biomass (sawdust) to predict the gasification characteristics and performances. The prediction capability of the model was evaluated by comparison with experimental data obtained in a fluidized bed biomass gasifier. First, the influence of gasification temperature on gas composition, product yields and gasifier performances was investigated. The biomass feeding rate and air flow rate were set at~0.445 kg/h and 0.5 Nm3/h, respectively, while the gasifier temperature was varied between 700 °C to 800 °C. With the increase of temperature, the gas yield (DGY) increased steadily from 1.72 to 2.0 Nm3/kg, while the HHV of the produced syngas (HHVgas) increased initially from 5.38 to 5.73 MJ/Nm3 and then decreased to 5.69 MJ/Nm3. After determining optimal temperature (800 °C), the influence of equivalence ratio (ER) and steam/biomass ratio (S/B) on gasification characteristics, dry gas yield (DGY) and tar yield (TRY) was studied. As ER increased from 0.19 to 0.23, TRY decreased from 9.13 g/Nm3 to 8.45 g/Nm3. In contrast, DGY initially increased from 2.02 Nm3/kg to 2.43 Nm3/kg as ER increased from 0.19 to 0.21 and then dropped to 2.24 Nm3/kg at ER of 0.23. An increase in S/B from 0.61 to 2.7 also resulted in a slight increase in HHVgas; however, TRY showed a decreasing trend (from 9.65 g/Nm3 to 8.95 g/Nm3). The results showed that the model developed in this paper is a promising tool for simulating the biomass gasification at various operating conditions.


Assuntos
Gases , Vapor , Biomassa , Hidrogênio , Temperatura
17.
Nat Chem ; 13(1): 77-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349694

RESUMO

Membrane proteins on the cell surface perform a myriad of biological functions; however, ligand discovery for membrane proteins is highly challenging, because a natural cellular environment is often necessary to maintain protein structure and function. DNA-encoded chemical libraries (DELs) have emerged as a powerful technology for ligand discovery, but they are mainly limited to purified proteins. Here we report a method that can specifically label membrane proteins with a DNA tag, and thereby enable target-specific DEL selections against endogenous membrane proteins on live cells without overexpression or any other genetic manipulation. We demonstrate the generality and performance of this method by screening a 30.42-million-compound DEL against the folate receptor, carbonic anhydrase 12 and the epidermal growth factor receptor on live cells, and identify and validate a series of novel ligands for these targets. Given the high therapeutic significance of membrane proteins and their intractability to traditional high-throughput screening approaches, this method has the potential to facilitate membrane-protein-based drug discovery by harnessing the power of DEL.


Assuntos
Anidrases Carbônicas/química , DNA/química , Receptores ErbB/química , Receptores de Folato com Âncoras de GPI/química , Bibliotecas de Moléculas Pequenas/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Anidrases Carbônicas/metabolismo , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Fluoresceína-5-Isotiocianato/química , Receptores de Folato com Âncoras de GPI/metabolismo , Células HeLa , Humanos , Ligantes , Microscopia de Fluorescência , Bibliotecas de Moléculas Pequenas/metabolismo
18.
Clin Exp Pharmacol Physiol ; 48(4): 524-533, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33325046

RESUMO

Ageing and hyperhomocysteinemia (HHcy) are important risk factors for cardiovascular diseases (CVDs). HHcy affects the occurrence of vascular diseases in the elderly. So far, the mechanism of HHcy-induced vascular ageing remains largely unknown. Autophagy level is significantly reduced in the ageing process, and restoring impaired autophagy to a normal state may be one of the possible ways to extend the expected longevity and lifespan in the future. In this study, we established the HHcy rat model by feeding a 2.5% methionine diet. Small animal ultrasound and the tail-cuff method indicated that the vascular pulse wave velocity (PWV) and pulse pressure (PP) of HHcy rats were increased significantly compared with the control group. Vascular morphology and structure have been changed in HHcy rats, including lumen dilation, increased collagen fibre deposition and increased p53/p21/p16 expression. In vitro, under the stimulation of homocysteine (500 µmol/L, 24 hours), the rat vascular smooth muscle cells (VSMCs) presented senescence, which was characterized by the increased expression of ageing-related markers, such as p16, p21 and p53 as well as increased senescence-associated beta-galactosidase (SA-ß-gal) activity. Meanwhile, the autophagy level was decreased both in vivo and in vitro, shown as the increased level of autophagy substrate p62 and the reduced level of autophagy marker LC3 II/I in the thoracic aorta of HHcy rats and in Hcy-treated VSMCs, respectively. The senescence phenotype of VSMCs was reversed by increased autophagy levels induced by rapamycin. Our findings indicate that decreased autophagy of VSMCs is involved in hyperhomocysteinemia-induced vascular ageing.

19.
J Proteomics ; 230: 103979, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32932007

RESUMO

The emerging technology of urinary proteomics has become an efficient biological approach for identifying biomarkers and characterizing pathogenesis in renal involvement. In this study, we attempted to elucidate the relationship between IgAN and HSPN in children, employing LC-MS/MS to perform urinary proteomic analyses using the DIA method. Early-morning spot urine was collected from patients with biopsy-proven IgAN (n = 19) and HSPN (n = 19) prior to treatment and renal biopsy in the Department of Pediatrics, Jinling Hospital, Nanjing, China, and did healthy volunteers (n = 14), from June 2018 to December 2019. Two hundred seventy-six urinary proteins and 125 urinary proteins were determined to be differentially expressed in children with IgAN (n = 4) and HSPN (n = 4), respectively, compared to the urinary proteins of healthy children (n = 4) (p < 0.05). GO analysis demonstrated that the differentially expressed proteins of the two groups, which were located in the extracellular matrix and cell membrane, were primarily involved in biological processes, including metabolic processes, immune system processes, cellular adhesion, cell proliferation, signaling, and biological regulation. KEGG analysis revealed that the differentially expressed proteins of the two groups were associated with cell adhesion molecules, ECM-receptor interactions, the PI3K-Akt signaling pathway, the complement and coagulation cascades, regulation of actin cytoskeleton, cholesterol metabolism, and platelet activation. The target proteins (alpha-1B-glycoprotein (A1BG) and afamin (AFM)), which participated in the complement and coagulation cascades and the regulation of complement activation, were further investigated in the independent validation cohort by ELISA. These proteins were significantly increased in children with IgAN (n = 15) and HSPN (n = 15) compared with the proteins observed in healthy controls (n = 10, P < 0.05). The validated results were consistent with the mass spectrometry results. SIGNIFICANCE: IgAN and HSPN both result from the glomerular deposition of abnormally glycosylated IgA1 with mesangial proliferative changes, and both diseases are common glomerulopathies in the pediatric population that are believed to be correlated. Interestingly, our data, by combining urinary proteomic analyses, showed that several uniform enrichment pathways played an important role in the progression of IgAN and HSPN, suggesting that we might reduce the renal involvement of the two diseases in children through these pathways. The same urinary proteins along these pathways were observed to be differentially expressed in children with IgAN and HSPN, implying that these proteins may be potential biomarkers to identify the two diseases. Future studies examining larger cohorts are warranted to confirm the validity of our findings.

20.
Analyst ; 146(3): 1040-1047, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325460

RESUMO

A high performance, electroenzymatic microsensor for choline based on choline oxidase (ChOx) immobilized on Pt coated with permselective polymer layers has been created that exhibits sensitivity approaching the theoretical performance limit. Sensor construction was guided by simulations performed with a detailed mathematical model. Implantable microsensors with an array of electroenzymatic sensing sites provide a means to record concentration changes of choline, an effective surrogate for acetylcholine due to its very rapid turnover in the brain, and other neurochemicals in vivo. However, electroenzymatic sensors generally have insufficient sensitivity and response time to monitor neurotransmitter signaling on the millisecond timescale with cellular-level spatial resolution. Model simulations suggested that choline sensor performance can be improved significantly by optimizing immobilized ChOx layer thickness and minimizing the thicknesses of permselective polymer coatings as well. Electroenzymatic choline sensors constructed with a ∼5 µm-thick crosslinked ChOx layer atop 200 nm-thick permselective films (poly(m-phenylenediamine) and Nafion) exhibited unprecedented sensitivity and response time of 660 ± 40 nA µM-1 cm-2 at 37 °C and 0.36 ± 0.05 s, respectively, while maintaining excellent selectivity. Such performance characteristics provide greater flexibility in the design of microelectrode array (MEA) probes with near cellular-scale sensing sites arranged in more dense arrays. Also, faster response times enable better resolution of transient acetylcholine signals and better correlation of these events with electrophysiological recordings so as to advance study of brain function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...