Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.948
Filtrar
3.
Phytomedicine ; 132: 155846, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38964155

RESUMO

BACKGROUND: The lack of effective treatments for methicillin-resistant Staphylococcus aureus (MRSA) infection, which often leads to severe acute lung injury (ALI), poses a grave threat to human life. Sophoricoside (SOP), an isoflavone glycoside abundant in the fruit of traditional Chinese herbal Sophora japonica l., showed anti-inflammatory effects against atopic dermatitis, allergic inflammation, and lipopolysaccharide-induced ALI. However, its effect and underlying mechanism on MRSA-induced ALI remain unclear. PURPOSE: The aim of this study is to assess the protective effect of SOP in MRSA-induced ALI and elucidate its underlying molecular mechanisms. METHODS: In vivo experiments were conducted using wild-type mice to establish MRSA-induced ALI mouse model, and the effects of SOP on ALI were evaluated by hematoxylin-eosin staining, flow cytometry, quantitative real-time polymerase chain reaction, and several biochemical indicators. Adoptive transfer experiments and BTB and CNC homology 1 knockout (Bach1-/-) mice were also utilized in this study. In vitro studies employed murine macrophages RAW264.7 cells, primary bone marrow-derived macrophages (BMDMs), and primary lung macrophages to explore the underlying molecular mechanisms. RESULTS: The administration of SOP ameliorated MRSA-induced ALI by improving pulmonary histological damages, reducing neutrophil infiltration, suppressing oxidative stress levels, and decreasing the expression of inflammatory cytokines. In isolation experiments with ALI mouse lung macrophages and macrophage adoptive transfer experiments, SOP prevented macrophage activation, thereby reducing the production of proinflammatory cytokines. In vitro experiments demonstrated that SOP decreased the expression of inflammatory mediators in lipoteichoic acid (LTA)-stimulated RAW264.7 cells, BMDMs, and primary lung macrophages. Additionally, SOP inhibited protein kinase B (Akt) phosphorylation and treatment with MK2206-a specific inhibitor of Akt-eliminated SOP's ability to suppress LTA-stimulated macrophage inflammation. Furthermore, stimulation with LTA or MRSA up-regulated Bach1 expression; however, deletion of Bach1 abolished the inhibitory effect of SOP on p-Akt activation as well as inflammation and ALI development. CONCLUSION: This study provides the first evidence that SOP effectively mitigates MRSA-induced ALI via suppressing macrophage activation through the inhibition of Bach1/Akt pathway. These findings highlight the potential of SOP as a novel therapeutic agent for treating MRSA-induced ALI.

4.
Int Nurs Rev ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967088

RESUMO

AIM: This study aims to investigate the status of academic support perception among nursing interns and explore the correlation between academic support perception, emotional intelligence, and bullying behaviors in nursing education, especially the moderating role of bullying behavior on the relationship between emotional intelligence and academic support perception. BACKGROUND: Academic support perception is closely related to the nursing interns' mental health and academic performance. To some extent, it can reflect nursing interns' satisfaction and happiness during their internship, affecting their motivation to continue their studies. However, little is known about the nursing interns' academic support perception in China. METHODS: A total of 1020 nursing interns participated in this study. A sociodemographic information questionnaire, Bullying Behaviors in Nursing Education Scale, Wong and Law's Emotional Intelligence Scale, and Academic Support in the Practicum Scale were used to collect data. FINDINGS: Bullying behaviors and emotional intelligence were significantly associated with nursing interns' academic support perception. In addition, bullying behaviors in nursing education moderated the association between emotional intelligence and academic support perception. DISCUSSION: Nursing interns who possess high emotional intelligence and experience less bullying in nursing education tend to perceive higher academic support in clinical practice. The positive effects of emotional intelligence on nursing interns' academic support perceptions are contingent on the level of bullying behavior experienced in nursing education. Less bullying behaviors in nursing education enhance the impact of emotional intelligence on academic support perception. CONCLUSION AND IMPLICATIONS FOR NURSING: Strategies should be created to promote emotional intelligence and decrease bullying behaviors in nursing education to improve the perception of academic support among nursing interns.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38990259

RESUMO

As a consequence of the tight linkages between plants, soil, and microorganisms, we hypothesized the variations in plant species would change soil and microbial stoichiometry. Here, we examined the plant leaf carbon (C):nitrogen (N):phosphorus (P) ratios of nine species coming from three plant functional groups (PFGs) in the riparian zones of Hulunbuir steppe during near-peak biomass. The soil C:N:P, microbial biomass carbon (MBC):microbial biomass nitrogen (MBN), and extracellular enzyme's C:N:P were also assessed using the soils from each species. We found that plant tissue, soil nutrient, microbial, and enzyme activity stoichiometry significantly differed among different PFGs. Plant leaf and soil nutrient ratios tended to be similar (p > 0.05) between different species within the same PFGs. The variations in leaf C:N:P significantly correlated with the changes in soil C:N:P and MBC:MBN ratios. The homeostatic coefficients (H) < 1 suggested the relationships between plants and their resources C:N:P ratios might be non-homeostatic in the examined riparian zone. By assessing plant tissue and its soil nutrient stoichiometry, this study provided a perspective to understand the linkages of plant community, soil nutrient, and microbial characteristics.

6.
Elife ; 132024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995840

RESUMO

Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Proteínas de Ligação a RNA , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , NF-kappa B/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Processamento Alternativo , Metástase Neoplásica , Transdução de Sinais , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos
7.
Reprod Toxicol ; : 108671, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038764

RESUMO

Maternal prenatal hypoxia is an important contributor to intrauterine growth restriction (IUGR), which impedes fetal lung maturation and leads to the development of chronic lung diseases. Although evidence suggests the involvement of pyroptosis in IUGR, the molecular mechanism of pyroptosis is still unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been found to potentially interact with gasdermin D (GSDMD), the key protein responsible for pyroptosis, indicating its crucial role in inhibiting pyroptosis. Therefore, we hypothesized that Nrf2 deficiency is a key molecular responsible for lung pyroptosis in maternal hypoxia-induced IUGR offspring mice. Pregnant WT and Nrf2-/- mice were exposed to hypoxia (10.5% O2) to mimic IUGR model. We assessed body weight, lung histopathology, pulmonary angiogenesis, oxidative stress levels, as well as mRNA and protein expressions related to inflammation in the 2-week-old offspring. Additionally, we conducted a dual-luciferase reporter assay to confirm the targeting relationship between Nrf2 and GSDMD. Our findings revealed that offspring with maternal hypoxia-induced IUGR exhibited reduced birth weight, catch-up growth delay, and pulmonary dysplasia. Furthermore, we observed impaired nuclear translocation of Nrf2 and increased GSDMD-mediated pyroptosis in these offspring with IUGR. Moreover, the dual-luciferase reporter assay demonstrated that Nrf2 could directly inhibit GSDMD transcription; deficiency of Nrf2 exacerbated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR. Collectively, our findings suggest that Nrf2 deficiency induces GSDMD-mediated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR; thus highlighting the potential therapeutic approach of targeting Nrf2 for treating prenatal hypoxia-induced pulmonary dysplasia in offspring.

8.
BMJ Health Care Inform ; 31(1)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032946

RESUMO

BACKGROUND AND OBJECTIVES: Patient-clinician communication and shared decision-making face challenges in the perioperative period. Chatbots have emerged as valuable support tools in perioperative care. A simultaneous and complete comparison of overall benefits and harm of chatbot application is conducted. MATERIALS: MEDLINE, EMBASE and the Cochrane Library were systematically searched for studies published before May 2023 on the benefits and harm of chatbots used in the perioperative period. The major outcomes assessed were patient satisfaction and knowledge acquisition. Untransformed proportion (PR) with a 95% CI was used for the analysis of continuous data. Risk of bias was assessed using the Cochrane Risk of Bias assessment tool version 2 and the Methodological Index for Non-Randomised Studies. RESULTS: Eight trials comprising 1073 adults from four countries were included. Most interventions (n = 5, 62.5%) targeted perioperative care in orthopaedics. Most interventions use rule-based chatbots (n = 7, 87.5%). This meta-analysis found that the majority of the participants were satisfied with the use of chatbots (mean proportion=0.73; 95% CI: 0.62 to 0.85), and agreed that they gained knowledge in their perioperative period (mean proportion=0.80; 95% CI: 0.74 to 0.87). CONCLUSION: This review demonstrates that perioperative chatbots are well received by the majority of patients with no reports of harm to-date. Chatbots may be considered as an aid in perioperative communication between patients and clinicians and shared decision-making. These findings may be used to guide the healthcare providers, policymakers and researchers for enhancing perioperative care.


Assuntos
Assistência Perioperatória , Humanos , Satisfação do Paciente , Comunicação , Tomada de Decisão Compartilhada , Relações Médico-Paciente
9.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999010

RESUMO

Hypochlorite (ClO-) and viscosity both affect the physiological state of mitochondria, and their abnormal levels are closely related to many common diseases. Therefore, it is vitally important to develop mitochondria-targeting fluorescent probes for the dual sensing of ClO- and viscosity. Herein, we have explored a new fluorescent probe, XTAP-Bn, which responds sensitively to ClO- and viscosity with off-on fluorescence changes at 558 and 765 nm, respectively. Because the emission wavelength gap is more than 200 nm, XTAP-Bn can effectively eliminate the signal crosstalk during the simultaneous detection of ClO- and viscosity. In addition, XTAP-Bn has several advantages, including high selectivity, rapid response, good water solubility, low cytotoxicity, and excellent mitochondrial-targeting ability. More importantly, probe XTAP-Bn is successfully employed to monitor the dynamic change in ClO- and viscosity levels in the mitochondria of living cells and zebrafish. This study not only provides a reliable tool for identifying mitochondrial dysfunction but also offers a potential approach for the early diagnosis of mitochondrial-related diseases.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Mitocôndrias , Peixe-Zebra , Ácido Hipocloroso/análise , Corantes Fluorescentes/química , Animais , Mitocôndrias/metabolismo , Viscosidade , Humanos , Imagem Óptica/métodos , Células HeLa
10.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999111

RESUMO

The increasing discharge of antibiotic wastewater leads to increasing water pollution. Most of these antibiotic wastewaters are persistent, strongly carcinogenic, easy to bioaccumulate, and have other similar characteristics, seriously jeopardizing human health and the ecological environment. As a commonly used wastewater treatment technology, non-homogeneous electro-Fenton technology avoids the hazards of H2O2 storage and transportation as well as the loss of desorption and reabsorption. It also facilitates electron transfer on the electrodes and the reduction of Fe3+ on the catalysts, thereby reducing sludge production. However, the low selectivity and poor activity of electro-synthesized H2O2, along with the low concentration of its products, combined with the insufficient activity of electrically activated H2O2, results in a low ∙OH yield. To address the above problems, composites of layered bimetallic hydroxides and carbon materials were designed and prepared in this paper to enhance the performance of electro-synthesized H2O2 and non-homogeneous electro-Fenton by changing the composite mode of the materials. Three composites, NiFe layered double hydroxides (LDHs)/reduced graphene oxide (rGO), NiMn LDHs/rGO, and NiMnFe LDHs/rGO, were constructed by the electrostatic self-assembly of exfoliated LDHs with few-layer graphene. The LDHs/rGO was loaded on carbon mats to construct the electro-Fenton cathode materials, and the non-homogeneous electro-Fenton oxidative degradation of organic pollutants was realized by the in situ electrocatalytic reduction of O2 to ∙OH. Meanwhile, the effects of solution pH, applied voltage, and initial concentration on the performance of non-homogeneous electro-Fenton were investigated with ceftazidime as the target pollutant, which proved that the cathode materials have an excellent electro-Fenton degradation effect.

11.
ACS Appl Mater Interfaces ; 16(28): 36892-36900, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963902

RESUMO

Dynamic color-changing materials have attracted broad interest due to their widespread applications in visual sensing, dynamic color display, anticounterfeiting, and image encryption/decryption. In this work, we demonstrate a novel pH-responsive dynamic color-changing material based on a metal-insulator-metal (MIM) Fabry-Perot (FP) cavity with a pH-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brush layer as the responsive insulating layer. The pH-responsive PDMAEMA brush undergoes protonation at a low pH value (pH < 6), which induces different swelling degrees in response to pH and thus refractive index and thickness change of the insulator layer of the MIM FP cavity. This leads to significant optical property changes in transmission and a distinguishable color change spanning the whole visible region by adjusting the pH value of the external environment. Due to the reversible conformational change of the PDMAEMA and the formation of covalent bonds between the PDMAEMA molecular chain and the Ag substrate, the MIM FP cavity exhibits stable performance and good reproducibility. This pH-responsive MIM FP cavity establishes a new way to modulate transmission color in the full visible region and exhibits a broad prospect of applications in dynamic color display, real-time environment monitoring, and information encryption and decryption.

12.
Am J Transl Res ; 16(6): 2483-2491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006284

RESUMO

OBJECTIVE: To assess the therapeutic efficacy of combining a programmed death-1 (PD-1) inhibitor with recombinant human endostatin in patients diagnosed with advanced non-small cell lung cancer (NSCLC). METHODS: We retrospectively collected data from 83 patients with advanced NSCLC who received treatment at Xi'an Daxing Hospital between May 2020 and July 2022. Among them, 42 patients were treated with a PD-1 inhibitor combined with recombinant human endostatin (observation group), while 41 patients received PD-1 inhibitor monotherapy (control group). We evaluated the objective response rate, changes in serum tumor markers pre- and post-treatment, occurrence of adverse reactions, progression-free survival (PFS), 1-year survival rate, and identified independent risk factors affecting prognosis in both groups. RESULTS: The treatment efficacy in the observation group significantly surpassed that in the control group. Following treatment, the levels of cytokeratin 19 fragment antigen 21-1, carcinoembryonic antigen, and carbohydrate antigen 125 decreased significantly in the observation group compared to the control group (P < 0.001). There was no notable difference in the incidence of adverse reactions between the two groups (P < 0.001). The median PFS and 1-year survival rate were notably higher in the observation group (P < 0.001). Age, liver metastasis, and treatment regimen emerged as independent risk factors affecting poor prognosis in patients (P < 0.001). CONCLUSION: Combining a PD-1 inhibitor with recombinant human endostatin in patients with advanced NSCLC not only enhances clinical efficacy but also increases PFS and the 1-year survival rate while ensuring treatment safety. This combination therapy shows promise for clinical application.

13.
Adv Ophthalmol Pract Res ; 4(3): 147-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022764

RESUMO

Purpose: Observational studies have reported positive associations between glaucoma and stroke; however, controversial results exist. Importantly, the nature of the relationship remains unknown since previous studies were not designed to test causality. Therefore, we aimed to investigate the possible causal relationships between glaucoma and stroke. Methods: Our two-sample Mendelian randomization (MR) encompassed multi-ethnic large-scale genome-wide association studies with more than 20000 cases and 260000 controls for glaucoma, and more than 80000 cases and 630000 controls for stroke. Individual effect estimates for each SNP were combined using the inverse-variance weighted (IVW) method. To avoid potential pleiotropic effects, we adjusted the main results by excluding genetic variants associated with metabolic factors. The weighted median and MR-Egger methods were also used for the sensitivity analysis. Results: Our MR analysis revealed that glaucoma and its subtypes, including primary open-angle glaucoma and primary angle-closure glaucoma, exhibited no causal role in relation to any stroke (AS), any ischemic stroke (AIS), large-artery atherosclerotic stroke (LAS), small-vessel stroke (SVS), or cardioembolic stroke (CES) across MR analyses (all P â€‹> â€‹0.05). The null associations remained robust even after adjusting for metabolic-related traits and were consistent in both the European and Asian populations. Furthermore, reverse MR analyses also did not indicate any significant causal effects of AS, AIS, LAS, or CES on glaucoma risk. Conclusions: Evidence from our series of causal inference approaches using large-scale population-based MR analyses did not support causal effects between glaucoma and stroke. These findings suggest that the relationship of glaucoma management and stroke risk prevention should be carefully evaluated in future studies. In turn, stroke diagnosis should not be simply applied to glaucoma risk prediction.

14.
Sci Total Environ ; 946: 174427, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964413

RESUMO

Hazard assessment is fundamental in the field of disaster risk management. With the increase in global warming, compound water and temperature events have become more frequent. Current research lacks risk assessments of low temperatures and their compound events, necessitating relevant hazard assessment work to improve the accuracy and diversity of maize disaster prevention and mitigation strategies. This study comparatively analyzed the dynamic evolution characteristics and hazards of compound drought/waterlogging and low temperature events (CDLEs and CWLEs) for maize in the Songliao Plain during different growth periods from 1981 to 2020. First, composite drought/waterlogging and low temperature magnitude indices (CDLMI and CWLMI) were constructed to quantify the intensity of CDLEs and CWLEs by fitting non-exceedance probabilities. Next, static and dynamic hazard assessment models were developed by fitting probability density and cumulative probability density curves to CDLMI and CWLMI. The results showed that the correlations between SPRI and LTI across different decades were mainly negative during the three growth periods. The hazard ratings for both CDLEs and CWLEs were relatively high in the northern part of the study area, consistent with the higher occurrence, duration, and severity of both CDLEs and CWLEs at higher latitudes. Relative to 2001-2010, the center of gravity of hazard shifted southward for CDLEs and northward for CWLEs in 2011-2020. The mean duration, frequency, and hazard were generally higher for CWLEs, but CDLEs were associated with more severe maize yield reductions. This study provides new insights into compound disaster risk assessment, and the research methodology can be generalized to other agricultural growing areas to promote sustainable development of agricultural systems and food security.


Assuntos
Secas , Zea mays , Zea mays/crescimento & desenvolvimento , Medição de Risco , Temperatura Baixa , China , Monitoramento Ambiental/métodos
15.
Microbiol Resour Announc ; : e0044824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980042

RESUMO

Human papillomavirus genomes replicate extrachromosomally in infected tissues and derived keratinocyte cells. The cell line CIN12 9E was established from a cervical CIN1 lesion, contains replicating HPV31 genomes, and is widely used as a model to study the HPV life cycle. Here, we clone and sequence the HPV31 9E genome.

16.
Sci Rep ; 14(1): 16102, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997305

RESUMO

FVP is a polysaccharide extracted from Flammulina velutipes with immunomodulatory, anti-tumor, and anti-oxidation activities. In this study, we obtained the crude polysaccharide FVP-C from the water extract of Flammulina velutipes, and its main component FVP-S1 was obtained after further purification. Upon structural identification, we found that FVP-C is a neutral polysaccharide, and FVP-S1 was an acidic golden mushroom polysaccharide, consisting of glucuronic acid, xylose, and glucose. Lung adenocarcinoma (A549) was treated with FVP-S1 and FVP-C, respectively, and we found that FVP-S1 and FVP-C inhibited the proliferation and migration ability of tumor cells, as well as changed the morphology of the tumor cells and caused chromosome sheteropythosis, among which FVP-S1 had the best inhibition effect. The results of flow cytometry experiments and mitochondrial membrane potential, RT-qPCR, and Western blot showed that FVP-S1 and FVP-C were able to decrease the mitochondrial membrane potential, increase the expression level of apoptotic proteins Casepase-3 and Casepase-9 proteins, and at the same time, increase the ratio of Bax and Bcl-2, which promoted apoptosis of tumor cells. In conclusion, these data indicated that FVP-S1 and FVP-C were able to induce apoptosis in A549 cells through the mitochondrial pathway, which played an important role in inhibiting tumor cells.


Assuntos
Adenocarcinoma de Pulmão , Apoptose , Proliferação de Células , Flammulina , Neoplasias Pulmonares , Potencial da Membrana Mitocondrial , Mitocôndrias , Humanos , Flammulina/química , Apoptose/efeitos dos fármacos , Células A549 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Movimento Celular/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Antineoplásicos/farmacologia
17.
Sci Rep ; 14(1): 16904, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043832

RESUMO

Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proliferação de Células , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Estresse Oxidativo , Ratos Endogâmicos SHR , Remodelação Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Proliferação de Células/genética , Remodelação Vascular/genética , Ratos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Endogâmicos WKY , Masculino , Humanos , Hipertensão/metabolismo , Hipertensão/genética , Hipertensão/patologia , Regulação da Expressão Gênica
18.
Integr Zool ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872343

RESUMO

Amid coevolutionary arms races between brood parasitic birds and their diverse host species, the formation of host-specific races, or gentes, has drawn significant research focus. Nevertheless, numerous questions about gentes evolutionary patterns persist. Here, we investigated the potential for gentes evolution across multiple common cuckoo (Cuculus canorus) populations parasitizing diverse host species in China. Using maternal (mitochondrial and W-linked DNA) and biparental (autosomal and Z-linked DNA) markers, we found consistent clustering of cuckoo gentes (rather than geographical populations) into distinct clades in matrilineal gene trees, indicating robust differentiation. In contrast, biparental markers indicated intermixing of all gentes, suggesting asymmetric gene flow regardless of geography. Unlike the mitonuclear discordance commonly resulting from incomplete lineage sorting, adaptive introgression, or demographic disparities, the observed pattern in brood parasitic cuckoos might reflect biased host preferences between sexes. We hereby present the "Isolation by Gentes with Asymmetric Migration" model. According to this model, the maternal line differentiation of the common cuckoo in China is potentially driven by host preferences in females, whereas males maintained the integrity of the cuckoo species through random mating. To achieve this, cuckoo males could perform flexible migration among gentes or engage in early copulation with females before reaching the breeding sites, allowing female cuckoos to store sperm from various gentes. Future studies collecting additional samples from diverse cuckoo gentes with overlapping distribution and investigating the migratory and copulation patterns of each sex would enhance our understanding of sex-biased differentiation among cuckoo populations in China.

19.
Curr Med Imaging ; 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38874026

RESUMO

PURPOSE: To explore the potential of diffusion kurtosis imaging (DKI) for assessing the degree of liver injury in a paracetamol-induced rat model and to simultaneously investigate the effect of intravenous gadoxetate on DKI parameters. METHODS: Paracetamol was used to induce hepatoxicity in 39 rats. The rats were pathologically classified into 3 groups: normal (n=11), mild necrosis (n=18), and moderate necrosis (n=10). DKI was performed before and, 15 min, 25 min, and 45 min after gadoxetate administration. Repeated-measures ANOVA with Tukey's multiple comparison test was used to investigate the effect of gadoxetate on mean diffusivity (MD) and mean diffusion kurtosis (MK) and to assess the differences in MD and MK among the three groups. A receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of the MD values when discriminating between the necrotic groups. RESULTS: Gadoxetate had no significant effect on either the MD or the MK, and the effect size was small. The MD in the moderate necrosis group was significantly lower than that in the other two groups (F = 13.502, p < 0.001; η2 = 0.428 [95% CI: 0.082-0.637]), while the MK did not significantly differ among the three groups (F = 2.702, p = 0.081; η2 = 0.131 [95% CI: 0.001-0.4003]). The AUCs of MD for discriminating the moderate necrosis or normal group from the other groups were 0.921 (95% CI: 0.832-1.000) and 0.831 (95% CI: 0.701-0.961), respectively. CONCLUSION: It would be better to measure the MD and MK before gadoxetate injection. MD showed potential for assessing the degree of liver necrosis in a paracetamol-induced liver injury rat model.

20.
Hum Reprod Update ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942605

RESUMO

BACKGROUND: Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE: This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS: A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES: The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS: Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER: Not applicable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA