Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.011
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38956275

RESUMO

BACKGROUND & OBJECTIVE: Disposable face masks are a primary protective measure against the adverse health effects of exposure to infectious and toxic aerosols such as airborne viruses and particulate air pollutants. While the fit of high efficiency respirators is regulated in occupational settings, relatively little is known about the fitted filtration efficiencies of ear loop style face masks worn by the public. METHODS: We measured the variation in fitted filtration efficiency (FFE) of four commonly worn disposable face masks, in a cohort of healthy adult participants (N = 100, 50% female, 50% male, average age = 32.3 ± 9.2 years, average BMI = 25.5 ± 3.4) using the U.S. Occupational Safety and Health Administration Quantitative Fit Test, for an N95 (respirator), KN95, surgical, and KF94 masks. The latter three ear loop style masks were additionally tested in a clip-modified condition, tightened using a plastic clip to centrally fasten loops in the back of the head. RESULTS: The findings show that sex is a major determinant of the FFE of KN95, surgical, and KF94 masks. On average, males had an 11% higher FFE relative to females, at baseline testing. We show that a simple modification using an ear loop clip, results in improvements in the average FFE for females but provides comparatively minor changes for males. On average, females had a 20% increased FFE when a clip was worn behind the head, relative to a 6% increase for males. IMPACT: The efficacy of a disposable face mask as protection against air contaminants depends on the efficiency of the mask materials and how well it fits the wearer. We report that the sex of the wearer is a major determinant of the baseline fitted filtration efficiency (FFE) of commonly available ear loop style face masks. In addition, we show that a simple fit modifier, an ear loop clip fastened behind the head, substantially improves baseline FFE for females but produces only minor changes for males. These findings have significant public health implications for the use of face masks as a protective intervention against inhalational exposure to airborne contaminants.

2.
Asian J Pharm Sci ; 19(3): 100911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948400

RESUMO

Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites, increased therapeutic efficacy, and reduced adverse effects. Over the past few years, sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential. These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature. Inspired by their unique properties, thermosensitive hydrogels have been widely applied as drug delivery and treatment platforms for precision medicine. In this review, the state-of-the-art developments in thermosensitive hydrogels for precision therapy are investigated, which covers from the thermo-gelling mechanisms and main components to biomedical applications, including wound healing, anti-tumor activity, osteogenesis, and periodontal, sinonasal and ophthalmic diseases. The most promising applications and trends of thermosensitive hydrogels for precision therapy are also discussed in light of their unique features.

3.
Sci China Life Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38951428

RESUMO

Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.

4.
Fitoterapia ; 177: 106104, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950637

RESUMO

Four undescribed polyketides, beshanzones A (1) and B (2) as well as beshanhexanols A (3) and B (4), along with three known ones (5-7) were isolated from the rice fermentation of two endophytic fungi associated with the critically endangered Chinese endemic conifer Abies beshanzuensis. γ-Butyrolactone derivatives 1, 2, and 5 were isolated from Phomopsis sp. BSZ-AZ-2, an interesting strain that drawn our attention this time. The cyclohexanol derivatives 3, 4, 6, and 7 were obtained during a follow-up investigation on Penicillium commune BSZ-P-4-1. The chemical structures including absolute configurations of compounds 1-4 were determined by spectroscopic methods, Mo2(OAc)4 induced electronic circular dichroism (IECD), GIAO NMR calculations and DP4+ probability analyses. In particular, compound 2 contains a novel 5/5 bicyclic ring system, which might be biogenetically derived from the known compound 5 through hydrolysis followed by an Aldol reaction. All isolates were evaluated for their antimicrobial activities against a small panel of bacterial and fungal pathogens. Compounds 6 and 7 showed moderate inhibitory activities against Candida albicans, with MIC values of 16 and 32 µg/mL, respectively.

5.
BMC Neurol ; 24(1): 226, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951761

RESUMO

BACKGROUND: Idiopathic acute transverse myelitis (IATM) is a focal inflammatory disorder of the spinal cord that results in motor, sensory, and autonomic dysfunction. However, the comparative analysis of MRI-negative and MRI-positive in IATM patients were rarely reported. OBJECTIVES: The purpose of this study was to compare MRI-negative with MRI-positive groups in IATM patients, analyze the predictors for a poor prognosis, thus explore the relationship between MRI-negative and prognosis. METHODS: We selected 132 patients with first-attack IATM at the First Affiliated Hospital of Nanchang University from May 2018 to May 2022. Patients were divided into MRI-positive and MRI-negative group according to whether there were responsible spinal MRI lesions, and good prognosis and poor prognosis based on whether the EDSS score ≥ 4 at follow-up. The predictive factors of poor prognosis in IATM patients was analyzed by logistic regression models. RESULTS: Of the 132 patients, 107 first-attack patients who fulfilled the criteria for IATM were included in the study. We showed that 43 (40%) patients had a negative spinal cord MRI, while 27 (25%) patients were identified as having a poor prognosis (EDSS score at follow-up ≥ 4). Compared with MRI-negative patients, the MRI-positive group was more likely to have back/neck pain, spinal cord shock and poor prognosis, and the EDSS score at follow-up was higher. We also identified three risk factors for a poor outcome: absence of second-line therapies, high EDSS score at nadir and a positive MRI result. CONCLUSIONS: Compared with MRI-negative group, MRI-positive patients were more likely to have back/neck pain, spinal cord shock and poor prognosis, with a higher EDSS score at follow-up. The absence of second-line therapies, high EDSS score at nadir, and a positive MRI were risk factors for poor outcomes in patients with first-attack IATM. MRI-negative patients may have better prognosis, an active second-line immunotherapy for IATM patients may improve clinical outcome.


Assuntos
Imageamento por Ressonância Magnética , Mielite Transversa , Humanos , Mielite Transversa/diagnóstico por imagem , Mielite Transversa/diagnóstico , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Prognóstico , Adulto , Pessoa de Meia-Idade , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Estudos Retrospectivos
6.
Front Plant Sci ; 15: 1378881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957601

RESUMO

Platostoma palustre (Blume) A. J. Paton is an important edible and medicinal plant. To gain a comprehensive and clear understanding of the variation patterns of metabolites in P. palustre, we employed the UPLC-MS platform along with widely targeted metabolomics techniques to analyze the metabolites in the stems and leaves of P. palustre at different stages. Our results revealed a total of 1228 detected metabolites, including 241 phenolic acids, 203 flavonoids, 152 lipids, 128 terpenes, 106 amino acids, 79 organic acids, 74 saccharides, 66 alkaloids, 44 lignans, etc. As the growth time increased, the differential metabolites (DAMs) mainly enriched in P. palustre leaves were terpenoids, phenolic acids, and lipids, while the DAMs primarily enriched in stems were terpenoids. Compared to stems, there were more differential flavonoids in leaves, and saccharides and flavonoids were significantly enriched in leaves during the S1 and S2 stages. Additionally, we identified 13, 10, and 23 potential markers in leaf, stem, and leaf vs. stem comparison groups. KEGG enrichment analysis revealed that arginine biosynthesis was the common differential metabolic pathway in different growth stages and tissues. Overall, this study comprehensively analyzed the metabolic profile information of P. palustre, serving as a solid foundation for its further development and utilization.

7.
Cell Rep ; 43(7): 114424, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959111

RESUMO

Metabolic reprogramming dictates tumor molecular attributes and therapeutic potentials. However, the comprehensive metabolic characteristics in gastric cancer (GC) remain obscure. Here, metabolic signature-based clustering analysis identifies three subtypes with distinct molecular and clinical features: MSC1 showed better prognosis and upregulation of the tricarboxylic acid (TCA) cycle and lipid metabolism, combined with frequent TP53 and RHOA mutation; MSC2 had moderate prognosis and elevated nucleotide and amino acid metabolism, enriched by intestinal histology and mismatch repair deficient (dMMR); and MSC3 exhibited poor prognosis and enhanced glycan and energy metabolism, accompanied by diffuse histology and frequent CDH1 mutation. The Shandong Provincial Hospital (SDPH) in-house dataset with matched transcriptomic, metabolomic, and spatial-metabolomic analysis also validated these findings. Further, we constructed the metabolic subtype-related prognosis gene (MSPG) scoring model to quantify the activity of individual tumors and found a positive correlation with cuproptosis signaling. In conclusion, comprehensive recognition of the metabolite signature can enhance the understanding of diversity and heterogeneity in GC.

8.
J Nanobiotechnology ; 22(1): 389, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956645

RESUMO

BACKGROUND: Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS: This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION: This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.


Assuntos
Camellia sinensis , Nanopartículas Metálicas , Microbiota , Fotossíntese , Folhas de Planta , Brotos de Planta , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Fotossíntese/efeitos dos fármacos , Camellia sinensis/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Folhas de Planta/microbiologia , Nanopartículas Metálicas/química , Clorofila/metabolismo , Nanopartículas/química
9.
Med Image Anal ; 97: 103252, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38963973

RESUMO

Histopathology image-based survival prediction aims to provide a precise assessment of cancer prognosis and can inform personalized treatment decision-making in order to improve patient outcomes. However, existing methods cannot automatically model the complex correlations between numerous morphologically diverse patches in each whole slide image (WSI), thereby preventing them from achieving a more profound understanding and inference of the patient status. To address this, here we propose a novel deep learning framework, termed dual-stream multi-dependency graph neural network (DM-GNN), to enable precise cancer patient survival analysis. Specifically, DM-GNN is structured with the feature updating and global analysis branches to better model each WSI as two graphs based on morphological affinity and global co-activating dependencies. As these two dependencies depict each WSI from distinct but complementary perspectives, the two designed branches of DM-GNN can jointly achieve the multi-view modeling of complex correlations between the patches. Moreover, DM-GNN is also capable of boosting the utilization of dependency information during graph construction by introducing the affinity-guided attention recalibration module as the readout function. This novel module offers increased robustness against feature perturbation, thereby ensuring more reliable and stable predictions. Extensive benchmarking experiments on five TCGA datasets demonstrate that DM-GNN outperforms other state-of-the-art methods and offers interpretable prediction insights based on the morphological depiction of high-attention patches. Overall, DM-GNN represents a powerful and auxiliary tool for personalized cancer prognosis from histopathology images and has great potential to assist clinicians in making personalized treatment decisions and improving patient outcomes.

10.
Int Immunopharmacol ; 138: 112575, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963981

RESUMO

Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.

11.
Cell Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969803

RESUMO

Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to comprehensively learn both sequence and structure contexts from ~160 million proteins. ProMEP achieves state-of-the-art performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants. The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of proteins, thereby advancing studies in biomedicine and synthetic biology.

12.
Skin Res Technol ; 30(7): e13842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965799

RESUMO

BACKGROUND: As the most important modifications on the RNA level, N6-methyladenosine (m6A-) and 5-methylcytosine (m5C-) modification could have a direct influence on the RNAs. Long non-coding RNAs (lncRNAs) could also be modified by methylcytosine modification. Compared with mRNAs, the function of lncRNAs could be more potent to some extent in biological processes like tumorigenesis. Until now, rare reports have been done associated with cutaneous melanoma. Herein, we wonder if the m6A- and m5C- modified lncRNAs could influence the immune landscape and prognosis in melanoma, and we also want to find some lncRNAs which could directly affect the malignant behaviors of melanoma. METHODS: Systematically, we explored the expression pattern of m6A- and m5C- modified lncRNAs in melanoma from datasets including UCSC Xena and NCBI GEO, and the prognostic lncRNAs were selected. Then, according to the expression pattern of lncRNAs, melanoma samples from these datasets were divided into several subtypes. Prognostic model, nomogram survival model, drug sensitivity, GO, and KEGG pathway analysis were performed. Furthermore, among several selected lncRNAs, we identified one lncRNA named LINC00893 and investigated its expression pattern and its biological function in melanoma cell lines. RESULTS: We identified 27 m6A- and m5C- related lncRNAs which were significantly associated with survival, and we made a subtype analysis of melanoma samples based on these 27 lncRNAs. Among the two subtypes, we found differences of immune cells infiltration between these two subtypes. Then, LASSO algorithm was used to screen the optimized lncRNAs combination including ZNF252P-AS1, MIAT, FAM13A-AS1, LINC-PINT, LINC00893, AGAP2-AS1, OIP5-AS1, and SEMA6A-AS1. We also found that there was a significant correlation between the different risk groups predicted based on RS model and the actual prognosis. The nomogram survival model based on independent survival prognostic factors was also constructed. Besides, sensitivity to chemotherapeutic agents, GO and KEGG analysis were performed. In different risk groups, a total of 14 drug molecules with different distributions were obtained, which included AZD6482, AZD7762, AZD8055, camptothecin, dasatinib, erlotinib, gefitinib, gemcitabine, GSK269962A, nilotinib, rapamycin, and sorafenib. A total of 55 significantly related biological processes and 17 KEGG signaling pathways were screened. At last, we noticed that LINC00893 had a relatively lower expression in melanoma tissue and cell lines compared with adjacent tissues and epidermal melanocyte, and down-regulation of LINC00893 could promote the malignant behavior of melanoma cells in A875 and MV3. In these two melanoma cell lines, down-regulation of m6A-related molecules like YTHDF3 and METTL3 could promote the expression of LINC00893. CONCLUSION: We made an analysis of m6A- and m5C- related lncRNAs in melanoma samples and a prediction of these lncRNAs' role in prognosis, tumor microenvironment, immune infiltration, and clinicopathological features. We also found that LINC00893, which is potentially regulated by m6A modification, could serve as a tumor-suppressor in melanoma and play an inhibitory role in melanoma metastasis.


Assuntos
Adenosina , Melanoma , RNA Longo não Codificante , Neoplasias Cutâneas , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/mortalidade , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/mortalidade , Adenosina/análogos & derivados , Adenosina/metabolismo , Prognóstico , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Melanoma Maligno Cutâneo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Nomogramas
13.
J Ethnopharmacol ; : 118509, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971346

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alpha 7 nicotinic acetylcholine receptor (α7nAChR)-mediated astrocytic activation is closely related to central sensitization of chronic migraine (CM). Xiongzhi Dilong decoction (XZDL), originated from Xiongzhi Shigao decoction of Yi-zong-jin-jian, has been confirmed to relieve CM in experiment and clinic. However, its underlying mechanism for treating CM has not been elucidated. AIM OF THE STUDY: To reveal the underlying mechanisms of XZDL to alleviate CM in vivo focusing mainly on α7nAChR-mediated astrocytic activation and central sensitization in TNC. MATERIALS AND METHODS: CM rat model was established by subcutaneous injection of nitroglycerin (NTG) recurrently, and treated with XZDL simultaneously. Migraine-like behaviors of rats (ear redness, head scratching, and cage climbing) and pain-related reactions (mechanical hind-paw withdrawal threshold) of rats were evaluated before and after NTG injection and XZDL administration at different points in time for nine days. The immunofluorescence single and double staining were applied to detect the levels of CGRP, c-Fos, GFAP and α7nAChR in NTG-induced CM rats. ELISA kits were employed to quantify levels of TNF-α, IL-1ß, and IL-6 in medulla oblongata of CM rats. The expression levels of target proteins were examined using western blotting. Finally, methyllycaconitine citrate (MLA, a specific antagonist of α7nAChR) was applied to further validate the mechanisms of XZDL in vivo. RESULTS: XZDL significantly attenuated the pain-related behaviors of the NTG-induced CM rats, manifesting as constraints of aberrant migraine-like behaviors including elongated latency of ear redness and decreased numbers of head scratching and cage climbing, and increment of mechanical withdrawal threshold. Moreover, XZDL markedly lowered levels of CGRP and c-Fos, as well as inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in CM rats. Furthermore, XZDL significantly enhanced α7nAChR expression and its co-localization with GFAP, while markedly inhibited the expression of GFAP and the activation of JAK2/STAT3/NF-κB pathway in the TNC of CM rats. Finally, blocking α7nAChR with MLA reversed the effects of XZDL on astrocytic activation, central sensitization, and the pain-related behaviors in vivo. CONCLUSION: XZDL inhibited astrocytic activation and central sensitization in NTG-induced CM rats by facilitating α7nAChR expression and suppressing JAK2/STAT3/NF-κB pathway, implying that the regulation of α7nAChR-mediated astrocytic activation represents a novel mechanism of XZDL for relieving CM.

14.
Small ; : e2403073, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966892

RESUMO

Spin injection, transport, and detection across the interface between a ferromagnet and a spin-carrying channel are crucial for energy-efficient spin logic devices. However, interfacial conductance mismatch, spin dephasing, and inefficient spin-to-charge conversion significantly reduce the efficiency of these processes. In this study, it is demonstrated that an all van der Waals heterostructure consisting of a ferromagnet (Fe3GeTe2) and Weyl semimetal enables a large spin readout efficiency. Specifically, a nonlocal spin readout signal of 150 mΩ and a local spin readout signal of 7.8 Ω is achieved, which reach the signal level useful for practical spintronic devices. The remarkable spin readout signal is attributed to suppressed spin dephasing channels at the vdW interfaces, long spin diffusion, and efficient charge-spin interconversion in Td-MoTe2. These findings highlight the potential of vdW heterostructures for spin Hall effect-enabled spin detection with high efficiency, opening up new possibilities for spin-orbit logic devices using vdW interfaces.

15.
Free Radic Biol Med ; 222: 467-477, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969272

RESUMO

To investigate the effects of discharge plasma on Agropyron mongolicum seeds, various treatments including direct exposure to discharge plasma, combined treatment with discharge plasma and plasma-activated water (PAW) were applied to the seeds. The changes in germination rate, MDA content, and volatile compound levels of Agropyron mongolicum seeds after different treatments were examined. The results showed that the direct effect of plasma had no significant effect on the MDA content or germination rate of Agropyron mongolicum seeds due to the limited penetration depth. However, the combined effect of plasma and activated water could cause active nitrogen and oxygen particles to enter the seeds and cause oxidative stress damage. After 18 h of combined treatment, the MDA content increased significantly, and the germination rate decreased to below the semilethal dose, which was 33.44 %. After plasma treatment, 55 volatile compounds, mainly alcohols, aldehydes and ketones, were identified from the seeds of Agropyron mongolicum. Due to the oxidation and modification of the plasma, the content of most aldehydes increased with increasing reaction time. After screening, 13 volatile organic compounds could be used as potential markers to distinguish between different treatment methods. These results reveal the mechanism underlying the biological effects of plasma treatment on Agropyron mongolicum seeds.

16.
Front Surg ; 11: 1424809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978992

RESUMO

Purpose: Colorectal cancer (CRC) patients may experience inadequate preoperative colonoscopy due to bowel obstruction or inadequate bowel preparation, leading to potential oversight of other polyps. We aimed to identify risk factors for CRC complicated with synchronous high-risk polyps. Methods: A retrospective analysis of 6,674 CRC patients from December 2014 to September 2018 was conducted. High-risk polyps were defined as adenomas or serrated polyps that were ≥10 mm, or with tubulovillous/villous components or high-grade dysplasia. All other polyps were defined as low-risk polyps. Patients with complete pathological and clinical information were categorized into three groups: the no polyp group, the low-risk polyp group, and the high-risk polyp group. Univariate and multivariate logistic regression analyses were performed to calculate the odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for all potential risk factors. Results: Among the 4,659 eligible patients, 848 (18.2%) were found to have low-risk polyps, while 675 (14.5%) were diagnosed with high-risk polyps. In a multivariate logistic regression model, compared to patients without polyps, those with synchronous high-risk polyps were more likely to be male (OR = 2.07), aged 50 or older (OR = 2.77), have early-stage tumors (OR = 1.46), colon tumors (OR = 1.53), NRAS mutant tumors (OR = 1.66), and BRAF wild-type tumors (OR = 2.43). Conclusion: Our study has identified several risk factors associated with the presence of synchronous high-risk polyps in CRC patients. Based on these findings, we recommend that patients who exhibit these high-risk factors undergo early follow-up of colonoscopy to detect synchronous polyps early.

17.
Front Cardiovasc Med ; 11: 1373097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988668

RESUMO

Objective: To identify the correlation between thrombosis and atherosclerosis in systemic lupus erythematosus (SLE) patients with antiphospholipid antibodies (aPLs) (SLE/aPLs) through high-resolution magnetic resonance imaging (HR-MRI) of the carotid artery. Methods: A single-center, cross-sectional study was conducted. We collected consecutive patients with SLE/aPLs and healthy controls who underwent carotid HR-MRI examinations. The morphometric characteristics of the common carotid artery (CCA), internal carotid artery (ICA), external carotid artery (ECA), and carotid bulb (Sinus) were measured, and the differences in morphometric parameters between different groups were analyzed. Results: A total of 144 carotid arteries were analyzed. Compared with the control group, the wall area, wall thickness (WT and WTmax), and normalized wall index of CCA, ICA, ECA, and Sinus were increased in patients with SLE/aPLs, and the total vascular area (TVA) of CCA, ICA, and Sinus, and the bifurcation angle (BIFA) of ICA-ECA were also increased. A negative lupus anticoagulant (LAC) (with or without positive anticardiolipin antibody (aCL) or anti-ß2glycoprotein antibody (aß2GPI)) contributed to illustrating lower increased TVA and thickened vessel walls of CCA and ICA in SLE/aPLs patients without thrombotic events. Logistic regression analysis showed that WTmaxSinus and WTmaxGlobal were independent risk factors for thrombotic events in SLE/aPLs patients. The receiver operator characteristic curve showed that the cut-off value of WTmaxSinus was 2.855 mm, and WTmaxGlobal was 3.370 mm. Conclusion: HR-MRI ensures the complete and accurate measurement of carotid morphometric parameters. Compared with the control group, the carotid artery in patients with SLE/aPLs is mainly characterized by diffusely thickened vessel walls, and the patients with thrombotic events showed additional higher vascular area of CCA and ICA, and BIFA of ICA-ECA without significant change in lumen area. The carotid arteries of SLE/aPLs patients with thrombotic events exhibited significant vessel wall thickening in all segments except ECA compared to those without thrombotic events. LAC-negative and non-thrombotic events distinguish relatively early atherosclerosis in the carotid arteries in patients with SLE/aPLs. Patients with SLE/aPLs that possess circumscribed thickened carotid vessel walls (>3.370 mm), particularly thickened at the Sinus (>2.855 mm), may require management strategies for the risk of thrombotic events.

18.
J Hazard Mater ; 476: 135160, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991646

RESUMO

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.

19.
J Hosp Infect ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992840

RESUMO

PURPOSE: The primary aim was to determine the risk of infection after knee arthroscopy and to evaluate the risk factors for surgical site infection (SSI). METHODS: The PubMed/Medline, Embase and Cochrane Library databases were systematically searched, as were the reference lists of previous systematic reviews and meta-analysis manual studies. A random-effects model was used to calculate the estimated pooled odds ratio (OR). RESULTS: A total of 38,321 potential articles met the initial inclusion criteria. After a review of the titles, abstracts and full texts, the remaining 41 articles were included in the final analysis. We identified 9,089,578 patients who underwent knee arthroscopy in 41 articles. High-quality (class I) evidence showed that autografts (cruciate ligament reconstruction) (OR, 2.66% CI, 1.84-3.86) or high procedure complexity (OR, 2.02;95% CI, 1.69-2.43) had a higher risk of infection, while medium-quality (class II or class III) evidence showed that obesity (BMI ≥ 30 kg/m2) (OR, 1.27; 95% CI, 1.08-1.49) or male (OR, 1.52; 95% CI, 1.32-1.75) or diabetes (OR, 1.71; 95% CI, 1.36-2.14) or tobacco use (OR, 1.65; 95% CI, 1.38-1.97) or preoperative steroid use (OR, 3.41; 95% CI, 2.10-5.54) had a higher risk of infection. The meta-analysis showed that there was no association between age or antibiotic prophylaxis and infection incidence. CONCLUSIONS: The meta-analysis showed that significant risk factors for infection after knee arthroscopy included obesity, male sex, diabetes, tobacco use, high procedure complexity, graft type, and preoperative steroid use. LEVEL OF EVIDENCE: Level IV, systematic review of Level III and Level IV studies.

20.
Adv Sci (Weinh) ; : e2306167, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992965

RESUMO

Quasi-2D perovskites light-emitting diodes (PeLEDs) have achieved significant progress due to their superior optical and electronic properties. However, the blue PeLEDs still exist inefficient energy transfer and electroluminescence performance caused by mixed multidimensional phase distribution. In this work, transition metal salt (zinc bromide, ZnBr2) is introduced to modulate phase distributions by suppressing the nucleation of high n phase perovskites, which effectively shortens the energy transfer path for blue emission. Moreover, ZnBr2 also facilitates energy level matching and reduces non-radiative recombination, thus improving electroluminescence (EL) efficiency. Benefiting from these combined improvements, an efficient blue PeLEDs is obtained with a maximum external quantum efficiency (EQE) of 16.2% peaking located at 486 nm. This work provides a promising approach to tune phase distribution of quasi-2D perovskites and achieving highly efficient blue PeLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA