Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.127
Filtrar
1.
Biomacromolecules ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825770

RESUMO

Biomacromolecular condensates formed via phase separation establish compartments for the enrichment of specific compositions, which is also used as a biological tool to enhance molecule condensation, thereby increasing the efficiency of biological processes. Proteolysis-targeting chimeras (PROTACs) have been developed as powerful tools for targeted protein degradation in cells, offering a promising approach for therapies for different diseases. Herein, we introduce an intrinsically disordered region in the PROTAC (denoted PSETAC), which led to the formation of droplets of target proteins in the cells and increased degradation efficiency compared with PROTAC without phase separation. Further, using a nucleus targeting intrinsically disordered domain, the PSETAC was able to target and degrade nuclear-located proteins. Finally, we demonstrated intracellular delivery of PSETAC using lipid nanoparticle-encapsulated mRNA (mRNA-LNP) for the degradation of the endogenous target protein. This study established the PSETAC mRNA-LNP method as a potentially translatable, safe therapeutic strategy for the development of clinical applications based on PROTAC.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124538, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38833885

RESUMO

Growth period determination and color coordinates prediction are essential for comparing postharvest fruit quality. This paper proposes a tomato growth period judgment and color coordinates prediction model based on hyperspectral imaging technology. It utilizes the most effective color coordinates prediction model to obtain a color visual image. Firstly, hyperspectral images were taken of tomatoes at different growth periods (green-ripe, color-changing, half-ripe, and full-ripe), and color coordinates (L*, a*, b*, c, h) were obtained using a colorimeter. The sample set was divided by the sample set partitioning based on joint X-Y distances (SPXY). The support vector machine (SVM), K-nearest neighbors (KNN), and linear discriminant analysis (LDA) were used to discriminate growth period. Results show that the LDA model has the best prediction effect with a prediction set accuracy of 93.1%. In addition, effective wavelengths were selected using competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA), and chromaticity prediction models were established using partial least squares regression (PLSR), multiple linear regression (MLR), principal component regression (PCR) and support vector machine regression (SVR) Finally, the color of each pixel of the tomato is calculated using the optimal model, generating a visual distribution image of the color coordinate. The results showed that hyperspectral imaging can non-destructively detect tomatoes' growth stage and color coordinates, providing great significance for designing a tomato quality grading system.

3.
J Hazard Mater ; 474: 134823, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38852254

RESUMO

Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-ß1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.

4.
BMC Pharmacol Toxicol ; 25(1): 34, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845014

RESUMO

Antiplatelet therapy is an important factor influencing the postterm patency rate of carotid artery stenting (CAS). Clopidogrel is a platelet aggregation inhibitor mediated by the adenosine diphosphate receptor and is affected by CYP2C19 gene polymorphisms in vivo. When the CYP2C19 gene has a nonfunctional mutation, the activity of the encoded enzyme will be weakened or lost, which directly affects the metabolism of clopidogrel and ultimately weakens its antiplatelet aggregation ability. Therefore, based on network pharmacology, analyzing the influence of CYP2C19 gene polymorphisms on the antiplatelet therapeutic effect of clopidogrel after CAS is highly important for the formulation of individualized clinical drug regimens. The effect of the CYP2C19 gene polymorphism on the antiplatelet aggregation of clopidogrel after CAS was analyzed based on network pharmacology. A total of 100 patients with ischemic cerebrovascular disease who were confirmed by the neurology department and required CAS treatment were studied. CYP2C19 genotyping was performed on all patients via a gene chip. All patients were classified into the wild-type (WT) group (*1/*1), heterozygous mutation (HTM) group (CYP2C19*1/*2, CYP2C19*1/*3), and homozygous mutation (HMM) group (CYP2C19*2/*2, CYP2C19*2/*3, and CYP2C19*3/*3). High-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) was used to detect the blood concentration of clopidogrel and the plasma clopidogrel clearance (CL) rate in different groups of patients before and after clopidogrel treatment. The platelet aggregation rate of patients with different genotypes was measured by turbidimetry. The incidences of clopidogrel resistance (CR) and stent thrombosis in different groups after three months of treatment were analyzed. The results showed that among the different CYP2C19 genotypes, patients from the HTM group accounted for the most patients, while patients from the HTM group accounted for the least patients. Similarly, the clopidogrel CL of patients in the HMM group was lower than that of patients in the WT group and HTM group (P < 0.01). The platelet inhibition rate of patients in the HMM group was evidently inferior to that of patients in the WT group and HTM group (P < 0.01). The incidence of CR and stent thrombosis in the WT group was notably lower than that in the HTM and HMM groups (P < 0.01). These results indicate that the CYP2C19 gene can affect CR occurrence and stent thrombosis after CAS by influencing clopidogrel metabolism and platelet count.


Assuntos
Clopidogrel , Citocromo P-450 CYP2C19 , Inibidores da Agregação Plaquetária , Agregação Plaquetária , Stents , Humanos , Citocromo P-450 CYP2C19/genética , Clopidogrel/uso terapêutico , Clopidogrel/farmacologia , Clopidogrel/farmacocinética , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/farmacocinética , Masculino , Feminino , Agregação Plaquetária/efeitos dos fármacos , Idoso , Pessoa de Meia-Idade , Polimorfismo Genético , Ticlopidina/análogos & derivados , Ticlopidina/uso terapêutico , Ticlopidina/farmacologia , Genótipo , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/cirurgia
5.
Langmuir ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848479

RESUMO

Understanding the microscopic electronic structure determines the macroscopic properties of the materials. Sufficient sampling has the same foundational importance in understanding the interactions. The NO2/MoS2 interaction is well known, but there are still many inconsistencies in the basic data, and the source of the NO2 direct dissociation activity has not been revealed. Based on a large-scale sampling density functional theory (DFT) study, the optimal adsorption of the NO2/MoS2 monolayer system is determined. The impurity state on the top of the valence band of the S-vacancy monolayer (MoS2-VS) was determined by cross-analysis of the band structure and density of states, which has been neglected for a long time. This provides a reasonable explanation for the direct dissociation of NO2 on the MoX2 monolayers. Further atomic structure analysis reveals that the impurity state originates from the not-fully occupied valence orbitals. This also corroborates the fact that the Mo material has dissociation activity, while the W material does not. There is no impurity state on the top of the valence band of the X-vacancy WS2 and WSe2 monolayers. Interestingly, NO2 dissociation did not occur in the MoTe2-VTe monolayer. This may be related to the 6s inert electron pair effect of the Te atom. The double-oriented adsorption behavior of NO2is also revealed. In contrast to the MoSe2 and MoTe2 monolayers, NO2-oriented adsorption on the MoS2 perfect monolayer deviates obviously, which is speculated to be related to space limitation and larger electronegativity of the S atom. The oriented adsorption ability of the MoX2 monolayers followed the order MoTe2 (64.4%) > MoSe2 (44.8%) > MoS2 (42.7%), according to the directed proportion. Renewed insights into the adsorption basic data and the understanding of the electronic structure of NO2/MoX2 (X = S, Se, Te) monolayer systems provide a basic understanding of the gas-surface interactions and various future surface-related advanced applications.

6.
Environ Sci Technol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860911

RESUMO

Foliar assimilation of elemental mercury (Hg0) from the atmosphere plays a critical role in the global Hg biogeochemical cycle, leading to atmospheric Hg removal and soil Hg insertion. Recent studies have estimated global foliar Hg assimilation; however, large uncertainties remained due to coarse accounting of observed foliar Hg concentrations, posing a substantial challenge in constraining the global Hg budget. Here, we integrated a comprehensive observation database of foliar Hg concentrations and machine learning algorithms to predict the first spatial distribution of foliar Hg concentrations on a global scale, contributing to the first estimate of global Hg pools in foliage. The global average of foliar Hg concentrations was estimated to be 24.0 ng g-1 (7.5-56.5 ng g-1), and the global total in foliar Hg pools reached 4561.3 Mg (1455.2-9062.8 Mg). The spatial distribution showed the hotspots in tropical regions, including the Amazon, Central Africa, and Southeast Asia. A range of 2268.5-2727.0 Mg yr-1 was estimated for annual foliar Hg assimilation accounting for the perennial continuous assimilation by evergreen vegetation foliage. The first spatial maps of foliar Hg concentrations and Hg pools may aid in understanding the global biogeochemical cycling of Hg, especially in the context of climate change and global vegetation greening.

7.
J Am Chem Soc ; 146(23): 15751-15760, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38833380

RESUMO

Safety hazards caused by flammable electrolytes have been major obstacles to the practical application of sodium-ion batteries (SIBs). The adoption of nonflammable all-phosphate electrolytes can effectively improve the safety of SIBs; however, traditional low-concentration phosphate electrolytes are not compatible with carbon-based anodes. Herein, we report an anion-cation interaction modulation strategy to design low-concentration phosphate electrolytes with superior physicochemical properties. Tris(2,2,2-trifluoroethyl) phosphate (TFEP) is introduced as a cosolvent to regulate the ion-solvent-coordinated (ISC) structure through enhancing the anion-cation interactions, forming the stable anion-induced ISC (AI-ISC) structure, even at a low salt concentration (1.22 M). Through spectroscopy analyses and theoretical calculations, we reveal the underlying mechanism responsible for the stabilization of these electrolytes. Impressively, both the hard carbon (HC) anode and Na4Fe2.91(PO4)2(P2O7) (NFPP) cathode work well with the developed electrolytes. The designed phosphate electrolyte enables Ah-level HC//NFPP pouch cells with an average Coulombic efficiency (CE) of over 99.9% and a capacity retention of 84.5% after 2000 cycles. In addition, the pouch cells can operate in a wide temperature range (-20 to 60 °C) and successfully pass rigorous safety testing. This work provides new insight into the design of the electrochemically compatibility electrolyte for high-safety and long-lifetime SIBs.

8.
World J Surg Oncol ; 22(1): 152, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849867

RESUMO

BACKGROUND: Although sorafenib has been consistently used as a first-line treatment for advanced hepatocellular carcinoma (HCC), most patients will develop resistance, and the mechanism of resistance to sorafenib needs further study. METHODS: Using KAS-seq technology, we obtained the ssDNA profiles within the whole genome range of SMMC-7721 cells treated with sorafenib for differential analysis. We then intersected the differential genes obtained from the analysis of hepatocellular carcinoma patients in GSE109211 who were ineffective and effective with sorafenib treatment, constructed a PPI network, and obtained hub genes. We then analyzed the relationship between the expression of these genes and the prognosis of hepatocellular carcinoma patients. RESULTS: In this study, we identified 7 hub ERGs (ACTB, CFL1, ACTG1, ACTN1, WDR1, TAGLN2, HSPA8) related to drug resistance, and these genes are associated with the cytoskeleton. CONCLUSIONS: The cytoskeleton is associated with sorafenib resistance in hepatocellular carcinoma. Using KAS-seq to analyze the early changes in tumor cells treated with drugs is feasible for studying the drug resistance of tumors, which provides reference significance for future research.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Sorafenibe , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Prognóstico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Citoesqueleto/metabolismo , Biomarcadores Tumorais/genética , Células Tumorais Cultivadas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica
9.
Complement Ther Med ; 83: 103062, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844046

RESUMO

OBJECTIVES: To evaluate the effectiveness of music therapy in reducing anxiety, pain, and vital sign changes in ophthalmic surgery patients. METHODS: An extensive search of databases, including PubMed, Embase, Cochrane, Web of Science, and Google Scholar, identified relevant studies up to Jan 2024. Selection of studies was conducted based on the PICOS criteria. The quality of methodology was assessed using the Cochrane risk-of-bias assessment tool and Review Manager 5.4. Meta-analysis comparing the control group and the music therapy group was performed using R and Stata/SE 15.1 random or fixed effects model. RESULTS: This meta-analysis included fifteen studies comprising 2098 participants. The analysis revealed that music therapy significantly reduced the risk of high anxiety levels as measured by Visual Analogue Scale (VAS) (I2 = 0 %, RR(95 %CI): 0.75(0.63, 0.88), p = 0.0006), indicating a substantial effect without heterogeneity. The Anxiety scores determined by State-Trait Anxiety Inventory-State (STAI-S) also showed a significant decrease (SMD(95 %CI): -0.75(-0.88, -0.61), p < 0.0001), albeit with moderate heterogeneity (I² = 36 %). Additionally, music therapy was associated with a reduction in intraoperative pain levels, with no observed heterogeneity (I2 = 0 %, SMD(95 %CI): -0.74(-0.93, -0.56), p < 0.0001). In contrast, music intervention did not significantly influence self-reported nervousness, relaxation, or satisfaction levels as determined by VAS. Regarding to physiological parameters, a marginal decrease in systolic blood pressure (SBP) was observed (SMD(95 %CI): -0.42(-0.79, -0.04), p = 0.0286), with considerable heterogeneity (I² = 92 %). Diastolic blood pressure (DBP) experienced a slight reduction (I² = 90 %, SMD(95 %CI): -0.45(-0.79, -0.11), p = 0.0088). However, no significant effect was observed on patients' heart rate (p = 0.0864). CONCLUSION: Music therapy effectively reduced anxiety and pain, and moderately improved vital signs in patients undergoing ophthalmic surgery, highlighting its role in enhancing patient well-being. Further in-depth RCTs are needed to confirm its efficacy.

10.
ACS Nano ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837241

RESUMO

The rapid advancement in nanofiber technologies has revolutionized the domain of yarn materials, marking a significant leap in textile technology. This review dissects the nexus between cutting-edge nanofiber technologies and yarn manufacturing, aiming to illuminate the pathway toward engineering advanced textiles with unparalleled functionality. It first discusses the fundamentals of nanofiber assemblies and spinning techniques, primarily focusing on electrospinning, centrifugal spinning, and blow spinning. Additionally, the study delves into integrating nanofiber spinning technologies with traditional and modern yarn fabrication principles, elucidating the design principles that underlie the creation of yarns incorporating nanofibers. Twisting technologies are explored to examine how they can be optimized and adapted for incorporating nanofibers, thus enabling the production of innovative nanofiber-based yarns. Special attention is given to scalable strategies like centrifugal and blow spinning, which are spotlighted for their efficiency and scalability in fabricating nanofiber yarns. This review further analyses recently developed nanofiber yarn applications, including wearable sensors, biomedical devices, moisture management textiles, and energy harvesting and storage devices. We finally present a forward-looking perspective to address unresolved issues in nanofiber-based yarn technologies.

11.
Phys Rev Lett ; 132(20): 201901, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829056

RESUMO

We calculate the next-to-next-to-leading-order (NNLO) QCD radiative correction to the pion electromagnetic form factor with large momentum transfer. We explicitly verify the validity of the collinear factorization to two-loop order for this observable and obtain the respective IR-finite two-loop hard-scattering kernel in the closed form. The NNLO QCD correction turns out to be positive and significant. Incorporating this new ingredient of correction, we then make a comprehensive comparison between the finest theoretical predictions and numerous data for both space- and timelike pion form factors. Our phenomenological analysis provides a strong constraint on the second Gegenbauer moment of the pion light-cone distribution amplitude obtained from recent lattice QCD studies.

12.
Sci Rep ; 14(1): 12911, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839857

RESUMO

Due to the increase in emission requirements for non-road vehicles in many countries and the reduction of agricultural personnel, tractors are developing towards high horsepower and electrification. According to the working conditions of high-horsepower tractors, a hydromechanical continuously variable transmission (HMCVT) is designed for hybrid tractors. Taking a tractor equipped with this transmission as the research object, an equivalent factor global optimization model was established and a genetic algorithm was used to optimize the equivalent factor S offline to obtain the optimal equivalent factor of the tractor under different operating mileage and the initial state of charge (SOC) of battery. By using the optimized equivalent factor, the tractor can be in the charge depleting (CD) mode for a longer time on the premise of making full use of the energy in the battery, so as to improve the auxiliary ability of the motor in the whole operation cycle to reduce the fuel consumption of the tractor. The effectiveness of the control strategy is verified by MATLAB/Simulink and hardware in the loop (HIL) tests, and the fuel economy of tractors is improved by 2.939% and 3.909% respectively in the two tests.

13.
Org Biomol Chem ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869462

RESUMO

A copper-catalyzed syn-hydrocarbonization of internal alkynes with N,N-dimethylformamide dimethylacetal and silanes has been disclosed that offers an efficient and expedient access to (E)-α,ß-unsaturated aldehydes. This highly selective process, which can be performed at gram-scale, enjoys operational simplicity, as well as syngas-free conditions.

14.
Nat Commun ; 15(1): 4940, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858370

RESUMO

Dielectric capacitors offer great potential for advanced electronics due to their high power densities, but their energy density still needs to be further improved. High-entropy strategy has emerged as an effective method for improving energy storage performance, however, discovering new high-entropy systems within a high-dimensional composition space is a daunting challenge for traditional trial-and-error experiments. Here, based on phase-field simulations and limited experimental data, we propose a generative learning approach to accelerate the discovery of high-entropy dielectrics in a practically infinite exploration space of over 1011 combinations. By encoding-decoding latent space regularities to facilitate data sampling and forward inference, we employ inverse design to screen out the most promising combinations via a ranking strategy. Through only 5 sets of targeted experiments, we successfully obtain a Bi(Mg0.5Ti0.5)O3-based high-entropy dielectric film with a significantly improved energy density of 156 J cm-3 at an electric field of 5104 kV cm-1, surpassing the pristine film by more than eight-fold. This work introduces an effective and innovative avenue for designing high-entropy dielectrics with drastically reduced experimental cycles, which could be also extended to expedite the design of other multicomponent material systems with desired properties.

15.
Angew Chem Int Ed Engl ; : e202408189, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774981

RESUMO

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as promising candidates in gas sensing, owing to their tunable porous structure and conductivity. Nevertheless, the reported gas sensing mechanisms heavily relied on electron transfer between metal nodes and gas molecules. Normally, the strong interaction between the metal sites and target gas molecule would result poor recovery and thus bad recycling property. Herein, we propose a redox synergy strategy to overcome this issue by balancing the reactivity of metal sites and ligands. A 2D c-MOF, Zn3(HHTQ)2, was prepared for nitrogen dioxide (NO2) sensing, which was constructed from active ligands (hexahydroxyl-tricycloquinazoline, HHTQ) and inactive transition-metal ions (Zn2+). Substantial characterizations and theoretical calculations demonstrated that by utilizing only the redox interactions between ligands and NO2, not only high sensitivity and selectivity, but also excellent cycling stability in NO2 sensing could be achieved. In contrast, control experiments employing isostructural 2D c-MOFs with Cu/Ni metal nodes exhibited irreversible NO2 sensing. Our current work provides a new design strategy for gas sensing materials, emphasizing harnessing the redox activity of only ligands to enhance the stability of MOF sensing materials.

16.
JMIR Form Res ; 8: e54334, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809602

RESUMO

BACKGROUND: In recent years, with the widespread use of the internet, the influence of electronic word-of-mouth (eWOM) has been increasingly recognized, particularly the significance of negative eWOM, which has surpassed positive eWOM in importance. Such reviews play a pivotal role in research related to service industry management, particularly in intangible service sectors such as hospitals, where they have become a reference point for improving service quality. OBJECTIVE: This study comprehensively collected negative eWOM from 5 military hospitals in Taiwan that were at or above the level of regional teaching hospitals. It aimed to investigate service quality issues before and after the pandemic. The findings provide important references for formulating strategies to improve service quality. METHODS: In this study, we used web scraping techniques to gather 1259 valid negative eWOM, covering the period from the inception of the first review to December 31, 2022. These reviews were categorized using content analysis based on the modified Parasuraman, Zeithaml, and Berry service quality (PZB SERVQUAL) scale and Flower of Services. Statistical data analysis was conducted to investigate the performance of service quality. RESULTS: The annual count of negative reviews for each hospital has exhibited a consistent upward trajectory over the years, with a more pronounced increase following the onset of the pandemic. In the analysis, among the 5 dimensions of PZB SERVQUAL framework, the "Assurance" dimension yielded the least favorable results, registering a negative review rate as high as 58.3%. Closely trailing, the "Responsiveness" dimension recorded a negative review rate of 34.2%. When evaluating the service process, the subitem "In Service: Diagnosis/Examination/Medical/Hospitalization" exhibited the least satisfactory performance, with a negative review rate of 46.2%. This was followed by the subitem "In Service: Pre-diagnosis Waiting," which had a negative review rate of 20.2%. To evaluate the average scores of negative reviews before and during the onset of the COVID-19 pandemic, independent sample t tests (2-tailed) were used. The analysis revealed statistically significant differences (P<.001). Furthermore, an ANOVA was conducted to investigate whether the length of the negative reviews impacted their ratings, which also showed significant differences (P=.01). CONCLUSIONS: Before and during the pandemic, there were significant differences in evaluating hospital services, and a higher word count in negative reviews indicated greater dissatisfaction with the service. Therefore, it is recommended that hospitals establish more comprehensive service quality management mechanisms, carefully respond to negative reviews, and categorize significant service deficiencies as critical events to prevent a decrease in overall service quality. Furthermore, during the service process, customers are particularly concerned about the attitude and responsiveness of health care personnel in the treatment process. Therefore, hospitals should enhance training and management in this area.

17.
Front Neurol ; 15: 1308058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746655

RESUMO

Background: Motor impairment is the most prevalent consequence following a stroke. Interhemispheric homotopic connectivity, which varies regionally and hierarchically along the axis of the somatomotor-association cortex, plays a critical role in sustaining normal motor functions. However, the impact of strokes occurring in various locations on homotopic connectivity is not fully understood. This study aimed to explore how motor deficits resulting from acute strokes in different locations influence homotopic connectivity. Methods: Eighty-four acute ischemic stroke patients with dyskinesia were recruited and divided into four demographically-matched subgroups based on stroke locations: Group 1 (G1; frontoparietal, n = 15), Group 2 (G2; radiation coronal, n = 16), Group 3 (G3; basal ganglia, n = 30), and Group 4 (G4; brain stem, n = 23). An additional 37 demographically-matched healthy controls were also recruited in the study. Multimodal MRI data, motor function assessments, and cognitive tests were gathered for analysis. Interhemispheric homotopic functional and structural connectivity were measured using resting-state functional MRI and diffusion tensor imaging, respectively. These measurements were then correlated with motor function scores to investigate the relationships. Results: Voxel-mirrored homotopic connectivity (VMHC) analysis showed that strokes in the frontoparietal and basal ganglia regions led to diminished homotopic connectivity in the somatosensory/motor cortex. In contrast, strokes in the radiation coronal and brainstem regions affected subcortical motor circuits. Structural homotopic connectivity analysis using diffusion tensor imaging showed that frontoparietal and basal ganglia strokes predominantly affected association fibers, while radiation coronal and brainstem strokes caused widespread disruption in the integrity of both cortical-cortical and cortical-subcortical white matter fibers. Correlation analyses demonstrated significant associations between the Fugl-Meyer Assessment (FMA), Modified Barthel Index (MBI), and National Institutes of Health Stroke Scale (NIHSS) scores with the VMHC in the inferior temporal gyrus for G1 (G1; r = 0.838, p < 0.001; r = 0.793, p < 0.001; and r = -0.834, p < 0.001, respectively). No statistically significant associations were observed in Groups 2, 3, and 4. Conclusion: Our results suggest that motor deficits following strokes in various regions involve distinct pathways from cortical to subcortical areas. Alterations in lesion topography and regional functional homotopy provide new insights into the understanding of neural underpinnings of post-stroke dyskinesia.

18.
Vet Res ; 55(1): 59, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715095

RESUMO

Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/fisiologia , Camundongos , Infecções por Klebsiella/terapia , Infecções por Klebsiella/veterinária , Infecções por Klebsiella/microbiologia , Bacteriófagos/fisiologia , Modelos Animais de Doenças , Terapia por Fagos , Feminino , Glicosídeo Hidrolases/metabolismo , Bovinos
19.
Food Res Int ; 187: 114459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763692

RESUMO

Staple foods serve as vital nutrient sources for the human body, and chewiness is an essential aspect of food texture. Age, specific preferences, and diminished eating functions have broadened the chewiness requirements for staple foods. Therefore, comprehending the formation mechanism of chewiness in staple foods and exploring approaches to modulate it becomes imperative. This article reviewed the formation mechanisms and quality control methods for chewiness in several of the most common staple foods (rice, noodles, potatoes and bread). It initially summarized the chewiness formation mechanisms under three distinct thermal processing methods: water medium, oil medium, and air medium processing. Subsequently, proposed some effective approaches for regulating chewiness based on mechanistic changes. Optimizing raw material composition, controlling processing conditions, and adopting innovative processing techniques can be utilized. Nonetheless, the precise adjustment of staple foods' chewiness remains a challenge due to their diversity and technical study limitations. Hence, further in-depth exploration of chewiness across different staple foods is warranted.


Assuntos
Pão , Manipulação de Alimentos , Oryza , Solanum tuberosum , Pão/análise , Humanos , Manipulação de Alimentos/métodos , Mastigação
20.
Sci Adv ; 10(20): eadn9692, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758781

RESUMO

Bases can promote keto-enol tautomerism, a prevalent form of prototropic tautomerism, and facilitate the ring opening of anhydride ring structures. The intrinsic chemical distinctions between these processes provide an opportunity to modulate these seemingly parallel reactions. However, this potential remains largely unexplored. In this work, we report homophthalic anhydride, the first molecule exhibiting simultaneous halochromism, turn-on fluorescence (halofluorochromism), and subsequent self-destruction. Through comprehensive spectroscopic analysis and theoretical calculations, we unravel the mechanisms underlying these phenomena, revealing that the pivotal roles of the base's basicity and nucleophilicity specifically allow us to achieve controlled durations of color change and turn-on fluorescence. Capitalizing on these intriguing properties, we develop a highly dynamic CMY (cyan-magenta-yellow) palette ideal for entity encryption and anti-counterfeiting applications. Our work reshapes the understanding of the relationship between the basicity and nucleophilicity of bases, enriching the comprehension of keto-enol tautomerism and homophthalic anhydride chemistry, and unveils a spectrum of potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...