Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.612
Filtrar
1.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003052

RESUMO

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Assuntos
Acidithiobacillus , Antimônio , Sulfatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efeitos dos fármacos , Sulfatos/metabolismo , Compostos Férricos , Oxirredução , Mineração , Ferro/metabolismo
2.
J Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958057

RESUMO

Mycobacterium tuberculosis (Mtb), the infectious agent of tuberculosis (TB), causes over 1.5 million deaths globally every year. Host-directed therapies (HDT) for TB are desirable for their potential to shorten treatment and reduce the development of antibiotic resistance. Previously, we described a modular biomimetic strategy to identify SMIP-30, targeting PPM1A (IC50 = 1.19 µM), a metal-dependent phosphatase exploited by Mtb to survive intracellularly. SMIP-30 restricted the survival of Mtb in macrophages and lungs of infected mice. Herein, we redesigned SMIP-30 to create SMIP-031, which is a more potent inhibitor for PPM1A (IC50 = 180 nM). SMIP-031 efficiently increased the level of phosphorylation of S403-p62 and the expression of LC3B-II to activate autophagy, resulting in the dose-dependent clearance of Mtb in infected macrophages. SMIP-031 possesses a good pharmacokinetic profile and oral bioavailability (F = 74%). In vivo, SMIP-031 is well tolerated up to 50 mg/kg and significantly reduces the bacteria burden in the spleens of infected mice.

3.
Orphanet J Rare Dis ; 19(1): 246, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956726

RESUMO

OBJECTIVE: The Center for Neurologic Study Bulbar Function Scale (CNS-BFS) was specifically designed as a self-reported measure of bulbar function. The purpose of this research was to validate the Chinese translation of the CNS-BFSC as an effective measurement for the Chinese population with ALS. METHODS: A total of 111 ALS patients were included in this study. The CNS-BFSC score, three bulbar function items from the ALSFRS-R, and visual analog scale (VAS) score for speech, swallowing and salivation were assessed in the present study. Forty-six ALS patients were retested on the same scale 5-10 days after the first evaluation. RESULTS: The CNS-BFSC sialorrhea, speech and swallowing subscores were separately correlated with the VAS subscores (p < 0.001). The CNS-BFSC total score and sialorrhea and speech scores were significantly correlated with the ALSFRS-R bulbar subscore (p < 0.001). The CNS-BFSC total score and ALSFRS-R bulbar subscale score were highly predictive of a clinician diagnosis of impaired bulbar function (area under the receiver operating characteristic curve, 0.947 and 0.911, respectively; p < 0.001). A cutoff value for the CNS-BFSC total score was selected by maximizing Youden's index; this cutoff score was 33, with 86.4% sensitivity and 93.3% specificity. The CNS-BFSC total score and the sialorrhea, speech and swallowing subscores had good-retest reliability (p > 0.05). The Cronbach's α of the CNS-BFSC was 0.972. CONCLUSION: The Chinese version of the CNS-BFSC has acceptable efficacy and reliability for the assessment of bulbar dysfunction in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/fisiopatologia
4.
Curr Med Sci ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970738

RESUMO

OBJECTIVE: The standardization of warfarin anticoagulant therapy is the key to lifelong treatment for patients after heart valve replacement. The present study explored the possible risk factors for anxiety and depression during the coronavirus disease 2019 (COVID-19) pandemic and analyzed the influence of psychological state on medication safety. METHODS: Eligible patients received a web-based questionnaire survey via the Wenjuanxing platform during outpatient visits. Depression was evaluated by the Self-Rating Depression Scale (SDS). Anxiety was evaluated by the Self-Rating Anxiety Scale (SAS). Medication adherence was evaluated by the Morisky scale. RESULTS: A total of 309 patients (aged 52.2±11.4 years) were included in the present study. The SDS score of all included patients was 36.9±9.4 points, of which 11 (3.6%) patients were diagnosed as having depression. The SAS score of all included patients was 43.1±9.3 points, of which 71 (23%) patients were diagnosed as having anxiety. Seven patients (2.3%) had both anxiety and depression. Logistic regression analysis revealed that only monthly income was an independent influencing factor for depression. Regarding anxiety, patients who underwent repeated operations had a 2.264-fold greater risk, and patients who received combination medication had a 2.140-fold greater risk. More bleeding events and coagulation disorders could be observed in patients with anxiety, depression or both. When anxiety occurred, patients showed worse medication adherence. However, depression had no significant effect on medication adherence. CONCLUSION: During the COVID-19 pandemic, the detection rate of mental illnesses such as anxiety and depression was high, which seriously affected the medication safety of warfarin. Analysis of its influencing factors will provide a reference for further standardized regulation of warfarin anticoagulant therapy after valve replacement.

5.
Biomaterials ; 311: 122699, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981153

RESUMO

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.

6.
Cancer Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992901

RESUMO

The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarkers that can facilitate clinical management and treatment decisions. This study recruited 491 ESCC patients who underwent surgical treatment at Huashan Hospital, Fudan University. We incorporated 14 blood metabolic indicators and identified independent prognostic indicators for overall survival through univariate and multivariate analyses. Subsequently, a metabolism score formula was established based on the biochemical markers. We constructed a nomogram and machine learning models utilizing the metabolism score and clinically significant prognostic features, followed by an evaluation of their predictive accuracy and performance. We identified alkaline phosphatase, free fatty acids, homocysteine, lactate dehydrogenase, and triglycerides as independent prognostic indicators for ESCC. Subsequently, based on these five indicators, we established a metabolism score that serves as an independent prognostic factor in ESCC patients. By utilizing this metabolism score in conjunction with clinical features, a nomogram can precisely predict the prognosis of ESCC patients, achieving an area under the curve (AUC) of 0.89. The random forest (RF) model showed superior predictive ability (AUC = 0.90, accuracy = 86%, Matthews correlation coefficient = 0.55). Finally, we used an RF model with optimal performance to establish an online predictive tool. The metabolism score developed in this study serves as an independent prognostic indicator for ESCC patients.

7.
Br J Pharmacol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992898

RESUMO

BACKGROUND AND PURPOSE: Colorectal cancer (CRC) ranks second in mortality worldwide and requires effective and affordable remedies. Cyclovirobuxine D (CVB-D) is the main effective component of Huangyangning tablet, an approved traditional patent medicine, which is mainly used for cardiovascular treatment. As a multibioactive natural compound, CVB-D possesses underlying anticancer activities. EXPERIMENTAL APPROACH: Cell viability and clone-forming ability were determined in human CRC lines. Western blot, immunofluorescence assay, transmission electron microscopy and senescence-associated ß-galactosidase (SA-ß-Gal) staining were utilized to investigate cell autophagy and senescence. The molecular mechanisms were explored by virtual prediction and experimental validation. Patient-derived xenograft (PDX), dextran sulfate sodium salt (DSS), and azomethane (AOM)/DSS mouse models were employed for in vivo studies. KEY RESULTS: CVB-D inhibited the growth and development of advanced CRC cells / mice by inducing autophagic and senescent activities through the chaperonin containing TCP1 subunit 3 (CCT3)/yes-associated protein (YAP) axis. CVB-D acted as a promising inhibitor of CCT3 by interacting with its ATP site. In PDX tumours, CVB-D showed potential therapeutic effects by targeting CCT3. Treatment with CVB-D alleviated the mouse model of colitis induced by DSS and attenuated AOM/DSS-induced formation of adenomatous polyps by its action on CCT3. CONCLUSIONS AND IMPLICATIONS: Our study has provided a scientific basis for the suggestion that CVB-D may be recognized as a prospective drug candidate for the therapy of CRC in patients.

8.
Eur J Med Chem ; 275: 116622, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959727

RESUMO

Blockade of the programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy, but the clinical application of small molecule PD-1/PD-L1 inhibitors remains unclear. In this work, based on BMS-202 and our previous work YLW-106, a series of compounds with benzo[d]isothiazol structure as scaffold were designed and synthesized. Their inhibitory activity against PD-1/PD-L1 interaction was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay. Among them, LLW-018 (27c) exhibited the most potent inhibitory activity with an IC50 value of 2.61 nM. The cellular level assays demonstrated that LLW-018 exhibited low cytotoxicity against Jurkat T and MDA-MB-231. Further cell-based PD-1/PD-L1 blockade bioassays based on PD-1 NFAT-Luc Jurkat cells and PD-L1 TCR Activator CHO cells indicated that LLW-018 could interrupt PD-1/PD-L1 interaction with an IC50 value of 0.88 µM. Multi-computational methods, including molecular docking, molecular dynamics, MM/GBSA, MM/PBSA, Metadynamics, and QM/MM MD were utilized on PD-L1 dimer complexes, which revealed the binding modes and dissociation process of LLW-018 and C2-symmetric small molecule inhibitor LCH1307. These results suggested that LLW-018 exhibited promising potency as a PD-1/PD-L1 inhibitor for further investigation.


Assuntos
Antígeno B7-H1 , Desenho de Fármacos , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Células Jurkat , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Animais , Benzotiazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química
9.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000908

RESUMO

Next-generation communication systems demand the integration of sensing, communication, and power transfer (PT) capabilities, requiring high spectral efficiency, energy efficiency, and low cost while also necessitating robustness in high-speed scenarios. Integrated sensing and communication systems (ISACSs) exhibit the ability to simultaneously perform communication and sensing tasks using a single RF signal, while simultaneous wireless information and power transfer (SWIPT) systems can handle simultaneous information and energy transmission, and orthogonal time frequency space (OTFS) signals are adept at handling high Doppler scenarios. Combining the advantages of these three technologies, a novel cyclic prefix (CP) OTFS-based integrated simultaneous wireless sensing, communication, and power transfer system (ISWSCPTS) framework is proposed in this work. Within the ISWSCPTS, the CP-OTFS matched filter (MF)-based target detection and parameter estimation (MF-TDaPE) algorithm is proposed to endow the system with sensing capabilities. To enhance the system's sensing capability, a waveform design algorithm based on CP-OTFS ambiguity function shaping (AFS) is proposed, which is solved by an iterative method. Furthermore, to maximize the system's sensing performance under communication and PT quality of service (QoS) constraints, a semidefinite relaxation (SDR) beamforming design (SDR-BD) algorithm is proposed, which is solved using through the SDR technique. The simulation results demonstrate that the ISWSCPTS exhibits stronger parameter estimation performance in high-speed scenarios compared to orthogonal frequency division multiplexing (OFDM), the waveform designed by CP-OTFS AFS demonstrates superior interference resilience, and the beamforming designed by SDR-BD strikes a balance in the overall performance of the ISWSCPTS.

10.
Angew Chem Int Ed Engl ; : e202410457, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004608

RESUMO

Single-atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering-induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of Fe2O3 support. By manipulating the location of single atoms at the surface or subsurface, catalysts with distinct adsorption properties and reaction mechanisms can be achieved. It was observed that the subsurface Cu single atoms in Fe2O3 remained isolated under both oxidation and reduction environments, whereas surface Cu single atoms on Fe2O3 experienced sintering under reduction conditions. The unique properties of these subsurface single-atom catalysts call for innovations and new understandings in catalyst design.

11.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954907

RESUMO

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.


Assuntos
Aflatoxina B1 , Ferroptose , Flavonoides , Hepatócitos , Proteína Supressora de Tumor p53 , Flavonoides/farmacologia , Aflatoxina B1/toxicidade , Ferroptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Animais , Proteína Supressora de Tumor p53/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Masculino , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Humanos , Espécies Reativas de Oxigênio/metabolismo
12.
Heliyon ; 10(13): e33857, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39044964

RESUMO

Background: Multiple empirical investigations have indicated a connection between asthma and adverse pregnancy outcomes (APOs). Nevertheless, the effects of asthma on APOs remain uncertain. Methods: We performed bi-directional Univariable Mendelian randomization (UVMR) analyses using combined information obtained from genome-wide association studies (GWAS) data that is publicly accessible. The principal approach used to analyze the causal association between asthma or age when diagnosed and APOs was the inverse variance weighted (IVW) method. The two types of data regarding exposure originate from the IEU Open GWAS project, which includes 56,167 and 47,222 European asthma patients, respectively. The data of four APOs were acquired via the GWAS dataset of the FinnGen collaboration. In addition, we implemented multivariable Mendelian randomization (MVMR), controlling for confounding factors such as smoking status, frequent drinking, body mass index (BMI), and live birth quantity. Furthermore, we executed several meticulous sensitivity studies to ascertain the reliability of our MR results. Results: Following the implementation of the Bonferroni adjustment, the UVMR assessment revealed that in the IVW model, asthma was significantly linked to an elevated risk of spontaneous abortion (SA) (odds ratio [OR]: 1.115; 95 % confidence interval [CI]: 1.031-1.206; P = 0.006) and gestational diabetes mellitus (GDM) (OR: 1.125; 95 % CI: 1.037-1.220; P = 0.005). However, there was no causal correlation between asthma and preterm birth (PTB) (OR: 0.979; 95 % CI: 0.897-1.068; P = 0.629) or preeclampsia (PE) (OR: 1.059; 95 % CI: 0.951-1.179; P = 0.297). After adjusting for confounding factors, including smoking status, frequent drinking, BMI, and live birth quantity, the MVMR analysis shows a statistically significant causal relationship between asthma and SA or GDM. Furthermore, our investigation's findings did not reveal a substantial correlation between the age of asthma onset based on genetics and the likelihood of SA or GDM. The inverse MR outcomes indicate a lack of causal connection linking APOs to the incidence of asthma. The validity of these findings were verified by sensitivity analyses. Conclusions: The evidence provided by this study proves that genetically determined asthma is linked to a higher likelihood of SA and GDM. Further research is required to examine potential pathways. However, no conclusive evidence has been found to support the increased risk of SA and GDM in early asthma diagnosis or the interaction between asthma and PTB or PE, indicating that confounding factors may affect the results of previous observational studies.

13.
Front Psychiatry ; 15: 1432149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045552

RESUMO

Somatosensory abnormalities are commonly recognized as diagnostic criteria in autism spectrum disorder (ASD), and may also exist in individuals with autistic traits. The present research included two studies to explore the painful and non-painful sensation and their cognitive-neurological mechanisms of individuals with autistic traits. Study 1 included 358 participants to assess the relationship between autistic traits and pain/non-pain sensitivities using questionnaires: the Autism Spectrum Quotient (AQ), the Pain Sensitivity Questionnaire, and the Highly Sensitive Person Scale, respectively. Study 1 found that autistic traits were positively correlated with non-pain sensitivity, but not associated with pain sensitivity. Study 2 recruited 1,167 participants whose autistic traits were assessed using the AQ. Subsequently, thirty-three participants who scored within the top 10% and bottom 10% on the AQ were selected into High-AQ and Low-AQ groups, respectively, to explore the cognitive-neural responses of individuals with autistic traits to both painful and non-painful stimuli with event-related potential (ERP) technology. Results of Study 2 showed that the High-AQ group showed higher intensity ratings, more negative emotional reactions, and larger N1 amplitudes than the Low-AQ group to the non-painful stimuli, but no difference of response to the painful stimuli was found between High-AQ and Low-AQ groups. These findings suggest that individuals with autistic traits may experience enhanced non-painful sensation but intact painful sensation.

14.
Front Immunol ; 15: 1403272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040102

RESUMO

Introduction: Granulocytic myeloid-derived suppressor cells (G-MDSCs) show fast recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) constituting the major part of peripheral blood in the early phase. Although G-MDSCs mediate immune suppression through multiple mechanisms, they may also promote inflammation under specific conditions. Methods: G-MDSCs were isolated from 82 patients following allo-HSCT within 90 days after allo-HSCT, and their interactions with autologous CD3+ T-cells were examined. T-cell proliferation was assessed by flow cytometry following CFSE staining, while differentiation and interferon-γ secretion were characterized using chemokine receptor profiling and ELISpot assays, respectively. NK cell cytotoxicity was evaluated through co-culture with K562 cells. An aGVHD xenogeneic model in humanized mice was employed to study the in vivo effects of human leukocytes. Furthermore, transcriptional alterations in G-MDSCs were analyzed via RNA sequencing to investigate functional transitions. Results: G-MDSCs promoted inflammation in the early-stage, by facilitating cytokine secretion and proliferation of T cells, as well as their differentiation into pro-inflammatory T helper subsets. At day 28, patients with a higher number of G-MDSCs exhibited an increased risk of developing grades II-IV aGvHD. Besides, adoptive transfer of G-MDSCs from patients at day 28 into humanized mice exacerbated aGvHD. However, at day 90, G-MDSCs led to immunosuppression, characterized by upregulated expression of indoleamine 2,3-dioxygenase gene and interleukin-10 secretion, coupled with the inhibition of T cell proliferation. Furthermore, transcriptional analysis of G-MDSCs at day 28 and day 90 revealed that 1445 genes were differentially expressed. These genes were associated with various pathways, revealing the molecular signatures of early post-transplant differentiation in G-MDSCs. In addition, genes linked to the endoplasmic reticulum stress were upregulated in patients without aGvHD. The acquisition of immunosuppressive function by G-MDSCs may depend on the activation of CXCL2 and DERL1 genes. Conclusion: Our findings revealed the alteration in the immune characteristics of G-MDSCs within the first 90 days post-allo-HSCT. Moreover, the quantity of G-MDSCs at day 28 may serve as a predictive indicator for the development of aGvHD.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Supressoras Mieloides , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Animais , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Camundongos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/genética , Doença Enxerto-Hospedeiro/imunologia , Inflamação/imunologia , Adulto Jovem , Granulócitos/imunologia , Granulócitos/metabolismo , Adolescente , Antígeno CD11b/metabolismo , Antígeno CD11b/imunologia
15.
Innovation (Camb) ; 5(4): 100655, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39040688

RESUMO

Micro(nano)plastics (MNPs) have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health. Here, we propose for the first time a MNPs capture, utilization, and storage (PCUS) concept to achieve MNPs remediation from water while meeting economically productive upcycling and environmentally sustainable plastic waste management. A highly efficient capturing material derived from surface-modified woody biomass waste (M-Basswood) is developed to remove a broad spectrum of multidimensional and compositional MNPs from water. The M-Basswood delivered a high and stable capture efficiency of >99.1% at different pH or salinity levels. This exceptional capture performance is driven by multiscale interactions between M-Basswood and MNPs, involving physical trapping, strong electrostatic attractions, and triggered MNPs cluster-like aggregation sedimentation. Additionally, the in vivo biodistribution of MNPs shows low ingestion and accumulation of MNPs in the mice organs. After MNPs remediation from water, the M-Basswood, together with captured MNPs, is further processed into a high-performance composite board product where MNPs serve as the glue for utilization and storage. Furthermore, the life cycle assessment (LCA) and techno-economic analysis (TEA) results demonstrate the environmental friendliness and economic viability of our proposed full-chain PCUS strategy, promising to drive positive change in plastic pollution and foster a circular economy.

16.
MedComm (2020) ; 5(8): e654, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39040848

RESUMO

Liver fibrosis can cause hepatitis B virus (HBV)-associated hepatocellular carcinoma. Menstrual blood-derived mesenchymal stem cells (MenSCs) can ameliorate liver fibrosis through paracrine. Single-cell RNA sequencing (scRNA-seq) may be used to explore the roadmap of activated hepatic stellate cell (aHSC) inactivation to target liver fibrosis. This study established HBV transgenic (HBV-Tg) mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis and demonstrated that MenSCs migrated to the injured liver to improve serological indices and reduce fibrotic accumulation. RNA-bulk analysis revealed that MenSCs mediated extracellular matrix accumulation and cell adhesion. Liver parenchymal cells and nonparenchymal cells were identified by scRNA-seq in the control, CCl4, and MenSC groups, revealing the heterogeneity of fibroblasts/HSCs. A CellChat analysis revealed that diminished intercellular adhesion molecule (ICAM) signaling is vital for MenSC therapy. Specifically, Icam1 in aHSCs acted on Itgal/Itgb2 and Itgam/Itgb2 in neutrophils, causing decreased adhesion. The expression of Itgal, Itgam, and Itgb2 was higher in CCl4 group than in the control group and decreased after MenSC therapy in neutrophil clusters. The Lcn2, Pglyrp1, Wfdc21, and Mmp8 had high expression and may be potential targets in neutrophils. This study highlights interacting cells, corresponding molecules, and underlying targets for MenSCs in treating HBV-associated liver fibrosis.

17.
Proc Natl Acad Sci U S A ; 121(31): e2404830121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042689

RESUMO

Rigorous comparisons between single site- and nanoparticle (NP)-dispersed catalysts featuring the same composition, in terms of activity, selectivity, and reaction mechanism, are limited. This limitation is partly due to the tendency of single metal atoms to sinter into aggregated NPs at high loadings and elevated temperatures, driven by a decrease in metal surface free energy. Here, we have developed a unique two-step method for the synthesis of single Cu sites on ZSM-5 (termed CuS/ZSM-5) with high thermal stability. The atomic-level dispersion of single Cu sites was confirmed through scanning transmission electron microscopy, X-ray absorption fine structure (XAFS), and electron paramagnetic resonance spectroscopy. The CuS/ZSM-5 catalyst was compared to a CuO NP-based catalyst (termed CuN/ZSM-5) in the oxidation of NH3 to N2, with the former exhibiting superior activity and selectivity. Furthermore, operando XAFS and diffuse reflectance infrared Fourier transform spectroscopy studies were conducted to simultaneously assess the fate of the Cu and the surface adsorbates, providing a comprehensive understanding of the mechanism of the two catalysts. The study shows that the facile redox behavior exhibited by single Cu sites correlates with the enhanced activity observed for the CuS/ZSM-5 catalyst.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39043499

RESUMO

INTRODUCTION: BV is an antibody-drug conjugate directed against CD30 and is safe and effective in relapsed/refractory (R/R) Hodgkin lymphoma (HL). Most patients with r/r cHL respond well to BV monotherapy; however, the large of majority of them eventually progress on this drug, and BV-resistant HL remains an unmet need. Preclinical data suggest that BV resistance is mediated at least in part by increased drug efflux associated with increased expression of multidrug resistance pump 1 (MDR1) while CD30 expression appears to be preserved in BV resistant cell lines and patient samples. We conducted a phase 1 study evaluating BV + cyclosporine (CsA) in BV-refractory HL and previous reported results in the dose finding cohort. Here we report the final results from the phase 1 study. METHODS: This was a phase I trial of BV + CsA in patients with r/r HL with dose-finding and dose escalation cohorts. Eligibility criteria included age ≥ 18 years with r/r HL after at least 1 prior line of therapy. Treatment consisted of 1.8 mg/kg BV intravenously on day 1 and CsA 5 to 7.5 mg/kg PO twice daily on days 1 to 5; cycles were 21 days long. Patients in the expansion cohort had to have cHL refractory to BV. The primary objectives were to evaluate safety and tolerability and to determine MTD of BV + CsA; the secondary objective was to determine efficacy of this combination. RESULTS: 29 patients were enrolled onto the study, 14 in the dose finding cohort and 15 in the dose expansion BV refractory cohort. Study accrual was terminated before target accrual due to unacceptable toxicity. 62% of patients were male, and the median age was 36 years (range: 20-69). The median number of prior therapies was 5 (range: 3-12); all patients had prior BV, and 93% had PD-1 directed therapy, and 93% were BV-refractory. Of 22 evaluable patients, CR rate was 27% and ORR 64%; median DOR 4.9 months. Treatment-related deaths occurred in 3 patients, and another patient died during cycle 1 due to cardiac arrest deemed unlikely related to be protocol therapy. All grade GI toxicity was seen in 90% of patients (G3+ in 24%); other common adverse events were nausea (90%), hypertension (90%), nausea (90%), hypertension (90%), anemia (86%), fatigue (76%), neutropenia (76%), leukopenia (76%), hypomagnesemia (76%), anorexia (66%), and hyponatremia (66%). DISCUSSION: BV + CsA demonstrated modest activity in BV-refractory r/r HL; however, toxicity is substantial.

19.
BMC Musculoskelet Disord ; 25(1): 530, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987728

RESUMO

PURPOSE: Few studies have focused on the risk factors leading to postoperative blood transfusion after open reduction and internal fixation (ORIF) of proximal humeral fractures (PHFs) in the elderly. Therefore, we designed this study to explore potential risk factors of blood transfusion after ORIF for PHFs. We have also established a nomogram model to integrate and quantify our research results and give feedback. METHODS: In this study, we retrospectively analyzed the clinical data of elderly PHF patients undergoing ORIF from January 2020 to December 2021. We have established a multivariate regression model and nomograph. The prediction performance and consistency of the model were evaluated by the consistency coefficient and calibration curve, respectively. RESULTS: 162 patients met our inclusion criteria and were included in the final study. The following factors are related to the increased risk of transfusion after ORIF: time to surgery, fibrinogen levels, intraoperative blood loss, and surgical duration. CONCLUSIONS: Our patient-specific transfusion risk calculator uses a robust multivariable model to predict transfusion risk.The resulting nomogram can be used as a screening tool to identify patients with high transfusion risk and provide necessary interventions for these patients (such as preoperative red blood cell mobilization, intraoperative autologous blood transfusion, etc.).


Assuntos
Transfusão de Sangue , Fixação Interna de Fraturas , Nomogramas , Redução Aberta , Fraturas do Ombro , Humanos , Idoso , Feminino , Masculino , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Estudos Retrospectivos , Fraturas do Ombro/cirurgia , Idoso de 80 Anos ou mais , Estudos Transversais , Redução Aberta/efeitos adversos , Redução Aberta/métodos , Fatores de Risco , Medição de Risco , Perda Sanguínea Cirúrgica/prevenção & controle
20.
Toxicon ; 247: 107857, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996976

RESUMO

Fluoride is a double-edged sword. It was widely used for early caries prevention while excessive intake caused a toxicology effect, affected enamel development, and resulted in dental fluorosis. The study aimed to evaluate the protective effect and mechanism of Epigallocatechin-3-gallate (EGCG) on the apoptosis induced by fluoride in ameloblast-like cells. We observed that NaF triggered apoptotic alterations in cell morphology, excessive NaF arrested cell cycle at the G1, and induced apoptosis by up-regulating Bax and down-regulating Bcl-2. NaF activated the insulin-like growth factor receptor (IGFR), and phosphatidylinositol-3-hydroxylase (p-PI3K), while dose-dependently down-regulating the expression of Forkhead box O1 (FoxO1). EGCG supplements reversed the changes in LS8 morphology, the cell cycle, and apoptosis induced by fluoride. These results indicated that EGCG possesses a protective effect against fluoride toxicity. Furthermore, EGCG suppressed the activation of p-PI3K and the down-regulation of FoxO1 caused by fluoride. Collectively, our findings suggested that EGCG attenuated fluoride-induced apoptosis by inhibiting the PI3K/FoxO1 signaling pathway. EGCG may serve as a new alternative method for dental fluorosis prevention, control, and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA