Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.408
Filtrar
2.
Comput Struct Biotechnol J ; 23: 1348-1363, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38596313

RESUMO

Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.

3.
Br J Cancer ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561434

RESUMO

BACKGROUND: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38574253

RESUMO

Background: Clonorchiasis remains a serious public health problem. However, the molecular mechanism underlying clonorchiasis remains largely unknown. Amino acid (AA) metabolism plays key roles in protein synthesis and energy sources, and improves immunity in pathological conditions. Therefore, this study aimed to explore the AA profiles of spleen in clonorchiasis and speculate the interaction between the host and parasite. Methods: Here targeted ultrahigh performance liquid chromatography multiple reaction monitoring mass spectrometry was applied to discover the AA profiles in spleen of rats infected with Clonorchis sinensis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was performed to characterize the dysregulated metabolic pathways. Results: Pathway analysis revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and ß-alanine metabolism were significantly altered in clonorchiasis. There were no significant correlations between 14 significant differential AAs and interleukin (IL)-1ß. Although arginine, asparagine, histidine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were positively correlated with IL-6, IL-10, tumor necrosis factor (TNF)-α as well as aspartate aminotransferase and alanine aminotransferase; ß-alanine and 4-hydroxyproline were negatively correlated with IL-6, IL-10, and TNF-α. Conclusion: This study reveals the dysregulation of AA metabolism in clonorchiasis and provides a useful insight of metabolic mechanisms at the molecular level.

6.
Chem Bio Eng ; 1(2): 99-112, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38566967

RESUMO

Enzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments. However, this often leads to a compromised enzyme activity. In recent years, extensive research efforts have been dedicated to enhancing enzymatic activity within MOFs, leading to the development of new enzyme-MOF composites that not only preserve their catalytic potential but also outperform their free counterparts. This Review provides a comprehensive review on recent developments in enzyme-MOF composites with a specific emphasis on their enhanced enzymatic activity compared to free enzymes.

8.
Sci Total Environ ; 927: 172037, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38575003

RESUMO

Despite increasing concerns regarding the harmful effects of plastic-induced gut injury, mechanisms underlying the initiation of plastic-derived intestinal toxicity remain unelucidated. Here, mice were subjected to long-term exposure to polystyrene nanoplastics (PS-NPs) of varying sizes (80, 200, and 1000 nm) at doses relevant to human dietary exposure. PS-NPs exposure did not induce a significant inflammatory response, histopathological damage, or intestinal epithelial dysfunction in mice at a dosage of 0.5 mg/kg/day for 28 days. However, PS-NPs were detected in the mouse intestine, coupled with observed microstructural changes in enterocytes, including mild villous lodging, mitochondrial membrane rupture, and endoplasmic reticulum (ER) dysfunction, suggesting that intestinal-accumulating PS-NPs resulted in the onset of intestinal epithelial injury in mice. Mechanistically, intragastric PS-NPs induced gut microbiota dysbiosis and specific bacteria alterations, accompanied by abnormal metabolic fingerprinting in the plasma. Furthermore, integrated data from mass spectrometry imaging-based spatial metabolomics and metallomics revealed that PS-NPs exposure led to gut dysbiosis-associated host metabolic reprogramming and initiated intestinal injury. These findings provide novel insights into the critical gut microbial-host metabolic remodeling events vital to nanoplastic-derived-initiated intestinal injury.

9.
Front Med (Lausanne) ; 11: 1362336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560382

RESUMO

Background: Dry eye causes corneal inflammation, epitheliopathy and sensorineural changes. This study evaluates the hypothesis that dry eye alters the percentages and transcriptional profiles of immune cell populations in the cornea. Methods: Desiccating stress (DS) induced dry eye was created by pharmacologic suppression of tear secretion and exposure to drafty low humidity environment. Expression profiling of corneal immune cells was performed by single-cell RNA sequencing (scRNA-seq). Cell differentiation trajectories and cell fate were modeled through RNA velocity analysis. Confocal microscopy was used to immunodetect corneal immune cells. Irritation response to topical neurostimulants was assessed. Results: Twelve corneal immune cell populations based on their transcriptional profiles were identified at baseline and consist of monocytes, resident (rMP) and MMP12/13 high macrophages, dendritic cells (cDC2), neutrophils, mast cells, pre T/B cells, and innate (γDT, ILC2, NK) and conventional T and B lymphocytes. T cells and resident macrophages (rMP) were the largest populations in the normal cornea comprising 18.6 and 18.2 percent, respectively. rMP increased to 55.2% of cells after 5 days of DS. Significant changes in expression of 1,365 genes (adj p < 0.0001) were noted in rMP with increases in cytokines and chemokines (Tnf, Cxcl1, Ccl12, Il1rn), inflammatory markers (Vcam, Adam17, Junb), the TAM receptor (Mertk), and decreases in complement and MHCII genes. A differentiation trajectory from monocytes to terminal state rMP was found. Phagocytosis, C-type lectin receptor signaling, NF-kappa B signaling and Toll-like receptor signaling were among the pathways with enhanced activity in these cells. The percentage of MRC1+ rMPs increased in the cornea and they were observed in the basal epithelium adjacent to epithelial nerve plexus. Concentration of the chemokine CXCL1 increased in the cornea and it heightened irritation/pain responses to topically applied hypertonic saline. Conclusion: These findings indicate that DS recruits monocytes that differentiate to macrophages with increased expression of inflammation associated genes. The proximity of these macrophages to cornea nerves and their expression of neurosensitizers suggests they contribute to the corneal sensorineural changes in dry eye.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38565816

RESUMO

Miscanthus has good tolerance to multi-metal(loid)s and has received increasing attention in remediated studies of metal(loid)s-contaminated soil. In this study, we conducted phytoextraction techniques to investigate the synergic effects of remediation of multi-metal(loid)s-contaminated soil by Miscanthus floridulus (Lab.) and two plant growth-promoting bacteria (PGPB), TS8 and MR2, affiliated to Enterobacteriaceae. The results exhibited a decrease of arsenic (15.27-21.50%), cadmium (8.64-15.52%), plumbum (5.92-12.76%), and zinc (12.84-24.20%) except for copper contents in the soil in bacterial inoculation groups, indicating that MR2 and TS8 could enhance the remediation of metal(loid)s. Moreover, increased fresh/dry weight and height indicated that inoculated bacteria could promote Miscanthus growth. Although the activities of antioxidant enzymes and the content of chlorophyll in the overground tissues showed no significant increase or even decrease, the activities of antioxidant enzymes in the underground tissues and soil were elevated by 48.95-354.17%, available P by 19.07-23.02%, and available K by 15.34-17.79% (p < 0.05). Bacterial inoculants could also decrease the soil pH. High-throughput sequencing analysis showed that the bacterial inoculant affected the rhizosphere bacterial community and reduced community diversity, but the relative abundance of some PGPB was found to increase. Phylogenetic molecular ecological networks indicated that bacterial inoculants reduced interactions between rhizosphere bacteria and thereby led to a simpler network structure but increased the proportion of positive-correlation links and enhanced the metabiosis and symbiosis of those bacteria. Spearman's test showed that OTUs affiliated with Enterobacteriaceae and soil nutrients were critical for metal(loid) remediation and Miscanthus growth. The results of this study provide a basis for the synergic remediation of multi-metal(loid)s-contaminated soils by Miscanthus and PGPB and provide a reference for the subsequent regulation of Miscanthus remediation efficiency by the other PGPB or critical bacteria.

11.
Cell Rep Med ; : 101506, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38593808

RESUMO

Prostate cancer (PCa) is a common malignancy in males. The pathology review of PCa is crucial for clinical decision-making, but traditional pathology review is labor intensive and subjective to some extent. Digital pathology and whole-slide imaging enable the application of artificial intelligence (AI) in pathology. This review highlights the success of AI in detecting and grading PCa, predicting patient outcomes, and identifying molecular subtypes. We propose that AI-based methods could collaborate with pathologists to reduce workload and assist clinicians in formulating treatment recommendations. We also introduce the general process and challenges in developing AI pathology models for PCa. Importantly, we summarize publicly available datasets and open-source codes to facilitate the utilization of existing data and the comparison of the performance of different models to improve future studies.

12.
J Magn Reson Imaging ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587265

RESUMO

BACKGROUND: Cardiac diffusion-weighted imaging (DWI) using second-order motion-compensated spin echo (M2C) can provide noninvasive in-vivo microstructural assessment, but limited by relatively low signal-to-noise ratio (SNR). Echo-planar imaging (EPI) with compressed sensitivity encoding (EPICS) could address these issues. PURPOSE: To combine M2C DWI and EPCIS (M2C EPICS DWI), and compare image quality for M2C DWI. STUDY TYPE: Prospective. POPULATION: Ten ex-vivo hearts, 10 healthy volunteers (females, 5 [50%]; mean ± SD of age, 25 ± 4 years), and 12 patients with diseased hearts (female, 1 [8.3%]; mean ± SD of age, 44 ± 16 years; including coronary artery heart disease, congenital heart disease, dilated cardiomyopathy, amyloidosis, and myocarditis). FIELD STRENGTH/SEQUENCE: 3-T, M2C EPICS DWI, and M2C DWI. ASSESSMENT: The apparent SNR (aSNR) and the rating scores were used to evaluate and compared image quality of all three groups. The aSNR was calculated using aSNR = Mean intensity myocardium / Standard deviation myocardium $$ \mathrm{aSNR}={\mathrm{Mean}\ \mathrm{intensity}}_{\mathrm{myocardium}}/{\mathrm{Standard}\ \mathrm{deviation}}_{\mathrm{myocardium}} $$ , and the myocardium was segmented manually. Three observers independently rated subjective image quality using a 5-point Likert scale. STATISTICAL TESTS: Bland-Altman analysis and paired t-tests. The threshold for statistical significance was set at P < 0.05. RESULTS: In healthy volunteers, the aSNR with a b-value of 450 s/mm2 acquired by M2C EPICS DWI was significantly higher than M2C DWI at in-plane resolutions of 3.0 × 3.0, 2.5 × 2.5, and 2.0 × 2.0 mm2. In patients with diseased hearts, the aSNR ofM2C EPICS DWI was also significantly higher than that for M2C DWI (bias of M2C EPICS-M2C = 1.999, 95% limits of agreement, 0.362 to 3.636; mean ± SD, 7.80 ± 1.37 vs. 5.80 ± 0.81). The ADC values of M2C EPICS was significantly higher than M2C DWI in in-vivo hearts. Over 80% of the images with rating scores for M2C EPICS DWI were higher than M2C DWI in in-vivo hearts. DATA CONCLUSION: Cardiac imaging by M2C EPICS DWI may demonstrate better overall image quality and higher aSNR than M2C DWI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

13.
Sci Data ; 11(1): 332, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575621

RESUMO

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, introduces more than 800 new sampling sites, and comprises LFMC values obtained from samples collected until the calendar year 2023. Each entry within the dataset provides essential information, including date, geographical coordinates, plant species, functional type, and, where available, topographical details. Moreover, the dataset encompasses insights into the sampling and weighing procedures, as well as information about land cover type and meteorological conditions at the time and location of each sampling event. Globe-LFMC 2.0 can facilitate advanced LFMC research, supporting studies on wildfire behaviour, physiological traits, ecological dynamics, and land surface modelling, whether remote sensing-based or otherwise. This dataset represents a valuable resource for researchers exploring the diverse LFMC aspects, contributing to the broader field of environmental and ecological research.

14.
15.
J Colloid Interface Sci ; 666: 76-87, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583212

RESUMO

The pressing demand for propylene has spurred intensive research on the catalytic dehydrogenation of propane to produce propylene. Gallium-based catalysts are regarded as highly promising due to their exceptional dehydrogenation activity in the presence of CO2. However, the inherent coking issue associated with high temperature reactions poses a constraint on the stability development of this process. In this study, we employed the electrospinning method to prepare a range of Ga2O3-Al2O3 mixed oxide one-dimensional nanofiber catalysts with varying molar ratios for CO2 oxidative dehydrogenation of propane (CO2-OPDH). The propane conversion was up to 48.4 % and the propylene selectivity was high as 96.8 % at 500 °C, the ratio of propane to carbon dioxide is 1:2. After 100 h of reaction, the catalyst still maintains approximately 10 % conversion and exhibits a propylene selectivity of around 98 %. The electrospinning method produces one-dimensional nanostructures with a larger specific surface area, unique multi-stage pore structure and low-coordinated Ga3+, which enhances mass transfer and accelerates reaction intermediates. This results in less coking and improved catalyst stability. The high activity of the catalyst is attributed to an abundance of low-coordinated Ga3+ ions associated with weak/medium-strong Lewis acid centers. In situ infrared analysis reveals that the reaction mechanism involves a two-step dehydrogenation via propane isocleavage, with the second dehydrogenation of Ga-OR at the metal-oxygen bond being the decisive speed step.

16.
Front Immunol ; 15: 1370658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571945

RESUMO

Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Verrucomicrobia/metabolismo , Intestinos , Obesidade , Akkermansia
17.
J Inflamm Res ; 17: 2159-2167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617385

RESUMO

Background: The neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) are inflammatory biomarkers. Until now, it is unknown the impact of opioid dosage on perioperative immunity in glioma patients. The aim of this study was to explore the effect of intraoperative opioid dosage on perioperative immune perturbations using NLR and LMR as inflammatory biomarkers and evaluate the correlation between inflammatory biomarkers and pathological grade of glioma. Methods: The study included 208 patients with primary glioma who underwent glioma resection from February 2012 to November 2019 at Harbin Medical University Cancer Hospital. Complete blood count (CBC) was collected at 3 time points: one week before surgery, and 24 hours and one week after surgery. Patients were divided into high-dose and low-dose groups, based on the median value of intraoperative opioid dose. The relationships between perioperative NLR, LMR and intraoperative opioid dosage were analyzed using repeated measurement analysis of variance (ANOVA). Correlations between preoperative various factors and pathological grade were analyzed by Spearman analysis. Receiver operating characteristic (ROC) curves were performed to assess the predictive performance of the NLR and LMR for pathological grade. Results: The NLR (P=0.020) and lower LMR (P=0.037) were statistically significant different between high-dose and low-dose groups one week after surgery. The area under the curve (AUC) of the NLR to identify poor diagnosis was 0.685, which was superior to the LMR (AUC: 0.607) and indicated a correlation between the NLR with pathological grade. The preoperative NLR (P=0.000), LMR (P=0.009), age (P=0.000) and tumor size (P=0.001) exhibited a significant correlation with the pathological grade of glioma. Conclusion: Intraoperative opioids in the high-dose group were associated with higher NLR and lower LMR in postoperative glioma patients. The preoperative NLR and LMR demonstrated predictive value for distinguishing between high-grade and low-grade gliomas.

18.
EClinicalMedicine ; 71: 102580, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38618206

RESUMO

Background: The pathological examination of lymph node metastasis (LNM) is crucial for treating prostate cancer (PCa). However, the limitations with naked-eye detection and pathologist workload contribute to a high missed-diagnosis rate for nodal micrometastasis. We aimed to develop an artificial intelligence (AI)-based, time-efficient, and high-precision PCa LNM detector (ProCaLNMD) and evaluate its clinical application value. Methods: In this multicentre, retrospective, diagnostic study, consecutive patients with PCa who underwent radical prostatectomy and pelvic lymph node dissection at five centres between Sep 2, 2013 and Apr 28, 2023 were included, and histopathological slides of resected lymph nodes were collected and digitised as whole-slide images for model development and validation. ProCaLNMD was trained at a dataset from a single centre (the Sun Yat-sen Memorial Hospital of Sun Yat-sen University [SYSMH]), and externally validated in the other four centres. A bladder cancer dataset from SYSMH was used to further validate ProCaLNMD, and an additional validation (human-AI comparison and collaboration study) containing consecutive patients with PCa from SYSMH was implemented to evaluate the application value of integrating ProCaLNMD into the clinical workflow. The primary endpoint was the area under the receiver operating characteristic curve (AUROC) of ProCaLNMD. In addition, the performance measures for pathologists with ProCaLNMD assistance was also assessed. Findings: In total, 8225 slides from 1297 patients with PCa were collected and digitised. Overall, 8158 slides (18,761 lymph nodes) from 1297 patients with PCa (median age 68 years [interquartile range 64-73]; 331 [26%] with LNM) were used to train and validate ProCaLNMD. The AUROC of ProCaLNMD ranged from 0.975 (95% confidence interval 0.953-0.998) to 0.992 (0.982-1.000) in the training and validation datasets, with sensitivities > 0.955 and specificities > 0.921. ProCaLNMD also demonstrated an AUROC of 0.979 in the cross-cancer dataset. ProCaLNMD use triggered true reclassification in 43 (4.3%) slides in which micrometastatic tumour regions were initially missed by pathologists, thereby correcting 28 (8.5%) missed-diagnosed cases of previous routine pathological reports. In the human-AI comparison and collaboration study, the sensitivity of ProCaLNMD (0.983 [0.908-1.000]) surpassed that of two junior pathologists (0.862 [0.746-0.939], P = 0.023; 0.879 [0.767-0.950], P = 0.041) by 10-12% and showed no difference to that of two senior pathologists (both 0.983 [0.908-1.000], both P > 0.99). Furthermore, ProCaLNMD significantly boosted the diagnostic sensitivity of two junior pathologists (both P = 0.041) to the level of senior pathologists (both P > 0.99), and substantially reduced the four pathologists' slide reviewing time (-31%, P < 0.0001; -34%, P < 0.0001; -29%, P < 0.0001; and -27%, P = 0.00031). Interpretation: ProCaLNMD demonstrated high diagnostic capabilities for identifying LNM in prostate cancer, reducing the likelihood of missed diagnoses by pathologists and decreasing the slide reviewing time, highlighting its potential for clinical application. Funding: National Natural Science Foundation of China, the Science and Technology Planning Project of Guangdong Province, the National Key Research and Development Programme of China, the Guangdong Provincial Clinical Research Centre for Urological Diseases, and the Science and Technology Projects in Guangzhou.

19.
J Clin Transl Hepatol ; 12(3): 257-265, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38426199

RESUMO

Background and Aims: The impact of the characteristics of extrahepatic organ failure (EHOF) including the onset time, number, type, and sequence on the prognosis of acute-on-chronic liver failure (ACLF) patients remains unknown. This study aimed to identify the association between the characteristics of EHOF and the prognosis of ACLF patients. Methods: ACLF subjects enrolled at six hospitals in China were included in the analysis. The risk of mortality based on the characteristics of EHOF was evaluated. Survival of study groups was compared by Kaplan-Meier analysis and log-rank tests. Results: A total of 736 patients with ACLF were included. EHOF was observed in 402 patients (54.6%), of which 295 (73.4%) developed single EHOF (SEHOF) and 107 (26.6%) developed multiple EHOF (MEHOF). The most commonly observed EHOF was coagulation failure (47.0%), followed by renal (13.0%), brain (4.9%), respiratory (4.3%), and circulatory (2.3%) failure. Survival analysis found that MEHOF or SEHOF patients with brain failure had a worse prognosis. However, no significant outcome was found in the analysis of the effect of onset time and sequence of failed organs on prognosis. Patients were further divided into three risk subgroups by the EHOF characteristics. Kaplan-Meier analysis showed that risk stratification resulted in the differentiation of patients with different risks of mortality both in the training and validation cohorts. Conclusions: The mortality of ACLF patients was determined by the number and type, but not the onset time and sequence of EHOF. Risk stratification applicable to clinical practice was established.

20.
Hum Mol Genet ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453143

RESUMO

Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...