Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.237
Filtrar
1.
Asian J Surg ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34627688

RESUMO

OBJECTIVE: To investigate the outcomes of patients with mucoepidermoid carcinoma of the palate undergoing pedicled facial-submental artery island flap (FSIF) reconstruction following resection. PATIENTS AND METHODS: 41 patients with early stage disease and 9 patients with advanced-stage disease underwent radical excision and neck dissection. 37 IIb, 4 class IIa and 9 IIIb maxillary defects were reconstructed with FSIF, folded FSIF or folded FSIF with titanium mesh respectively. The skin paddles were 3 × 8 to 5 × 15 cm and 3 × 8 to 5 × 14 cm, respectively. 5 patients with high grade disease were treated with cobalt 60 adjuvant radiotherapy after operation. RESULTS: One flap failure occurred, yielding a success rate of 98.0% in the reconstruction of palate II and III defects with FSIF or titanium mesh. The patients were seen for follow-up for 16-60 months postoperative. 76.0% patients alive with no disease (AND); 14.0% patients alive with disease (AD) and 10.0% died of disease (DD). Rates of AND, AD and DD differed significantly according to histopathologic grade and TNM stage (P < 0.001); rates of AND, AD and DD differed obviously according to necrosis of the tumors lymph node metastasis, and tumour cell anaplasia and treatment (P < 0.05). CONCLUSIONS: Radical resection with wide safety margins of normal tissues including neck dissection is the mainstay of treatment modality. The patients with high grade disease should be treated with postoperative radiotherapy. The FSIF is a reliable and safe method for repairing Brown class II maxillary defects.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34624393

RESUMO

BACKGROUND: Orosomucoid 1-Like Protein 3 (ORMDL3), a transmembrane protein localized in the endoplasmic reticulum (ER), has been genetically associated with chronic obstructive pulmonary disease (COPD), in addition to childhood-onset asthma. However, the functional role of ORMDL3 in the pathogenesis of COPD is still unknown. OBJECTIVE: As cigarette smoke is the major risk factor for COPD, we aimed to investigate the role of ORMDL3 on cigarette smoke-induced in human airway smooth muscle cells (HASMCs) injury. METHODS: The mRNA and protein expression of ORMDL3 was examined in HASMCs from nonsmokers and smokers without or with COPD. Knockdown of ORMDL3 in primary healthy HASMCs was performed using siRNA prior to exposure to cigarette smoke medium (CSM) for 24 hours. Inflammatory, proliferative/apoptotic, ER stress and mitochondrial markers were evaluated. RESULTS: Elevation of ORMDL3 mRNA and protein expression was observed in HASMCs of smokers without or with COPD. CSM caused significant upregulation of ORMDL3 expression in healthy nonsmokers. ORMDL3 knockdown regulated CSM-induced inflammation, cell proliferation and apoptosis. Silencing ORMDL3 led to reduction of CSM-induced ER stress via inhibition of unfolded protein response (UPR) pathways such as activating transcription factor (ATF)6 and protein kinase RNA-like ER kinase (PERK). ORMDL3 was also involved in CSM-induced mitochondrial dysfunction via the mitochondrial fission process. CONCLUSION: We report the induction of ORMDL3 in human airway smooth muscle cells after cigarette smoke exposure. ORMDL3 may mediate cigarette smoke-induced activation of unfolded protein response pathways during airway smooth muscle cell injury.

3.
Life Sci ; : 120005, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606850

RESUMO

Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) and may influence renal graft survival. In this study, we investigate the involvement of SIRT3 and DRP1 in mitochondrial autophagy and AKI in a mouse model of IRI. Autophagy was detected in the absence of SIRT3, and hypoxic reoxygenation (H/R) experiments using renal tubular epithelial cells NRK52E were performed in vitro to validate these results. We found that autophagosomes increased following IRI and that the expression of autophagy-related genes was up-regulated. The inhibition of autophagy with 3-methyladenine exacerbated IRI, whereas the DRP1 inhibitor Mdivi-1 reversed this inhibition. Mdivi-1 did not reverse the inhibition of autophagy in the absence of SIRT3. During IRI, Mdivi-1 reduced autophagy and DRP1 expression, whereas SIRT3 overexpression attenuated this condition. Rescue experiment showed that autophagy was increased when both SIRT3 or DRP1 were over- or under-expressed or just DRP1 was under-expressed but expression was reduced when just SIRT3 was under-expressed. However, the expression of DRP1-related molecules was reduced when SIRT3 was overexpressed and when DRP1 was under-expressed. Taken together, these findings indicate that SIRT3 protects against kidney damage from IRI by modulating the DRP1 pathway to induce mitochondrial autophagy.

4.
Brain Imaging Behav ; 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608574

RESUMO

Understanding the neural correlates of cognitive problems in patients with breast cancer (BC) after systemic treatment have been a topic of increasing investigation. The heterogeneity of the systemic treatment regimens may undermine our ability to identify brain microstructural alterations resulting from any given regimen. We investigated the detrimental effects of the anthracycline-based systemic treatment (AST) regimen (epirubicin and cyclophosphamide + docetaxel + tamoxifen) on brain gray matter (GM) and white matter (WM) microstructural alteration in long-term BC survivors. We performed a battery of neuropsychological tests and structural magnetic resonance imaging (MRI) to 31 long-term BC survivors who had received the AST regimen (AST group) and 43 healthy controls (HC group). Voxel-based morphometry evaluated the whole-brain voxel-wise GM volume, while diffusion tensor imaging technique with tract-based spatial statistics analysis evaluated whole-brain WM microstructural alteration. Partial least squares regression (PLSR) was used to evaluate the relationship between cognitive impairment and brain microstructural alteration in BC survivors. Compared with the HC group, the AST group exhibited a significantly poorer performance in attention, as well as a marginal significantly poorer performance in verbal working memory and executive function. Significantly lower fractional anisotropy (FA), higher radial diffusivity (RD), and lower axial diffusivity (AD) in multiple brain WM regions were showed in AST group compared with the HC group. Overlap of lower FA and higher RD was found in the body of corpus callosum (CC) and bilateral superior corona radiata (SCR), whereas overlap of lower FA and AD was found in the body of CC and right SCR. The PLSR results showed that the WM regions with overlap of lower FA and AD were significantly associated with executive and verbal working memory decline. No significant difference was observed in the GM volume between groups. Our results suggest that microstructural abnormalities of certain vulnerable WM regions in the AST regimen-exposed brain may provide neuroimaging evidence for the identification of brain injury and cognitive impairment induced by specific chemotherapy regimens.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34613704

RESUMO

Perovskite photovoltaics (PPVs) using three-dimensional (3D) perovskites incorporated with two-dimensional (2D) perovskites have drawn great concentration in both academic and industrial sectors. Here, we report high performance of PPVs based on the 2D/3D perovskite bilayer thin film post-annealed with solvent vapor. The 2D/3D perovskite bilayer thin film post-annealed with solvent vapor possesses enlarged crystal size and crystallinity and blue-shifted photoluminescence compared to a 3D MAPbI3 thin film. Moreover, compared to the PPVs based on a 3D perovskite thin film, enlarged built-in potential, suppressed charge carrier recombination, boosted charge transport, and reduced charge carrier extraction time are observed from the PPVs based on the 2D/3D perovskite bilayer thin film post-annealed with solvent vapor. As a result, perovskite solar cells exhibit a power conversion efficiency of 22.13% and dramatically enhanced stability, and perovskite photodetectors show a photoresponsivity of 1.38 AW-1, detectivity of 6.52 × 1014 cm Hz1/2 W-1, and linear dynamic range of over 167 dB at room temperature. These results demonstrate that we develop a simple method to approach high-performance PPVs by the 2D/3D perovskite bilayer thin film.

6.
Aesthetic Plast Surg ; 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34595594

RESUMO

PURPOSE: The citation count of a scientific article is considered as the recognition it received from this field. The purpose of this bibliometric analysis was to identify the top 100 most-cited scientific articles in penile surgical reconstruction. METHODS: The Web of Science database was used to extract the top 100 most-cited articles. Individual articles were reviewed to identify the authorship, published journal, journal impact factor (IF), primary disease, article type, institution and country of origin, and year of publication. RESULTS: The top 100 most-cited articles were published between 1947 and 2013. The number of citations ranged from 23 to 233. Journal of Urology contributed the most articles (n = 36). Articles with a high level of evidence like prospective analysis (n = 5), systematic review and meta-analysis (n = 2), and guideline (n = 1) were all published after 2000. The average citation per year of articles published in high-IF journals was significantly higher than that of other articles (p = 0.0129). There was a positive linear correlation between citation count per year and publication year (r2 = 0.26, p < 0.001). Among the top 100 articles, 74 articles were interlinked via citation of each other. The major topic of co-citation network was the application of flaps in penile reconstruction. CONCLUSIONS: The analysis of top 100 most-cited articles facilitates the comprehensive recognition of current focus in the field of penile surgical reconstruction, which is the exploration of flaps and development of new techniques in penile reconstruction. In the future, more attention should be paid to evidence-based medicine to provide high-level evidence for research. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

7.
J Colloid Interface Sci ; 608(Pt 1): 386-395, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34626984

RESUMO

Developing cost-effective and stable non-noble electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is now the critical issue for large-scale application of zinc-air batteries. Here, we presented a simple method to synthesize highly dispersed cobalt manganate spinel nanodots in-situ embedded in amine-functionalized carbon black. Silane coupling agent 3-aminopropyltriethoxysilane (APTES) played dual roles in the preparation: (1) to achieve amine-functionalization of carbon support; (2) as weak alkali to precipitate metal hydroxides which were then converted to spinel nanodots after mild calcination. The hydrophilicity of the carbon substrate was enhanced by amine modification from APTES to disperse metal oxide evenly, and the electrochemical activity was promoted through the strong interface interaction between embedded spinel nanodots and carbon substrate during the calcination process. As expected, the CoMn2O4/C-NH2-300 catalyst exhibited satisfactory bifunctional catalytic performance for both ORR and OER with an ΔE (E1/2-Ej10) = 0.75 V, which was lower than most state-of-the-art catalysts. In addition, CoMn2O4/C-NH2-300 as a cathode also exhibited remarkable zinc-air battery performance in alkaline solution. This strategy of APTES as a bifunctional coupling agent provided a novel way to design and explore highly active, durable, and cost-effective catalysts for renewable energy conversion and storage.

8.
BMC Anesthesiol ; 21(1): 240, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620093

RESUMO

BACKGROUND: Better protection can be provided during neurosurgery due to the establishment of somatosensory-evoked potential (SEP) and motor-evoked potential (MEP) monitoring technologies. However, some studies have showed that inhaled halogenated anesthetics have a significant impact on neurophysiological monitoring. METHODS: A total of 40 consecutive patients undergoing neurosurgery were randomly assigned to two groups receiving inhaled anesthetics, either desflurane or sevoflurane. Multiples levels (concentrations of 0.3, 0.6 and 0.9) of anesthetics were administered at minimum alveolar concentration (MAC), and then the latencies and amplitudes of SEPs and MEPs were recorded. RESULTS: SEP and MEP signals were well preserved in patients who underwent neurosurgery under general anesthesia supplemented with desflurane or sevoflurane at concentrations of 0.3, 0.6 and 0.9 MAC. In each desflurane or sevoflurane group, the amplitudes of SEPs and MEPs decreased and the latencies of SEPs were prolonged significantly as the MAC increased (P < 0.05). The SEP latencies of both the upper and lower limbs in the desflurane group were significantly longer, and the SEP amplitudes were significantly lower than those in the sevoflurane group (P < 0.05). The MEP amplitudes in the desflurane group were significantly lower than those in the sevoflurane group (P < 0.05), only the amplitudes of the upper limbs at 0.3 MAC did not vary significantly. CONCLUSIONS: SEPs and MEPs were inhibited in a dose-dependent manner by both desflurane and sevoflurane. At the same MAC concentration, desflurane appeared to have a stronger inhibitory effect than sevoflurane. All patients studied had normal neurological examination findings, hence, these results may not be applicable to patients with preexisting deficits. TRIAL REGISTRATION: The study registered on the Chinese Clinical Trial Registry ( www.chictr.org.cn ), Clinical Trials identifier ChiCTR2100045504 (18/04/2021).

9.
J Hazard Mater ; 424(Pt B): 127354, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34634699

RESUMO

Due to its wide applications in tire and rubber products, carbon black (CB) implicates concerns on its safety during production, collection, and handling. Here we report that exposure CB, increases coagulation-thrombosis potential in a splenic extramedullary hemopoiesis (EMH)-dependent manner. Adult C57BL/6 mice are kept in whole-body inhalation chambers, and exposed to filtered room air (FRA) or CB for 28 consecutive days. CB exposure resulted in splenic EMH characterized with platelet precursor cells, megakaryocytes (MKs), hyperplasia and enhanced in vivo blood coagulation ability. Metabolomics analysis suggests significant enhance in PGE2 production but reduction in folic acid (FA) levels in murine serum following CB exposure. Mechanistically, activation of COX-dependent PGE2 production promotes IL-6 expression in splenic macrophages, which subsequently results in splenic EMH and increased platelet counts in circulation. Administration of FA protects the mice against CB-induced splenic EMH through inhibiting prostaglandin-endoperoxide synthase 2 (Ptgs2 or Cox2) and prostaglandin E synthase (Ptges) expression in splenic macrophages, eventually recover the coagulation capacity to normal level. The results strongly suggest the involvement of splenic EMH in response to CB exposure and subsequently increased coagulation-thrombosis potential. Supplementation with FA may be a candidate to prevent thrombosis potential attributable to CB exposure.

10.
Front Immunol ; 12: 711337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566966

RESUMO

Periodontitis is a highly prevalent chronic inflammatory disease leading to periodontal tissue breakdown and subsequent tooth loss, in which excessive host immune response accounts for most of the tissue damage and disease progression. Despite of the imperative need to develop host modulation therapy, the inflammatory responses and cell population dynamics which are finely tuned by the pathological microenvironment in periodontitis remained unclear. To investigate the local microenvironment of the inflammatory response in periodontitis, 10 periodontitis patients and 10 healthy volunteers were involved in this study. Single-cell transcriptomic profilings of gingival tissues from two patients and two healthy donors were performed. Histology, immunohistochemistry, and flow cytometry analysis were performed to further validate the identified cell subtypes and their involvement in periodontitis. Based on our single-cell resolution analysis, we identified HLA-DR-expressing endothelial cells and CXCL13+ fibroblasts which are highly associated with immune regulation. We also revealed the involvement of the proinflammatory NLRP3+ macrophages in periodontitis. We further showed the increased cell-cell communication between macrophage and T/B cells in the inflammatory periodontal tissues. Our data generated an intriguing catalog of cell types and interaction networks in the human gingiva and identified new inflammation-promoting cell subtypes involved in chronic periodontitis, which will be helpful in advancing host modulation therapy.

11.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4403-4409, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581043

RESUMO

This study aims to explore the pharmacodynamic differences of Puerariae Lobatae Radix(PLR), Puerariae Thomsonii Radix(PTR) and their different processed products and the influences of these medical materials on the diversity of intestinal flora. The Sennae Folium-induced diarrhea model, streptozotocin(STZ)-induced diabetes model and L-nitro-arginine methyl ester(L-NAME)-induced hypertension model were used to compare the pharmacodynamic differences in anti-diarrhea, blood glucose reduction and blood pressure lowering among raw, roasted and vinegar-processed PLR and PTR. The effects of raw and processed PLR and PTR on intestinal flora diversity of rats were evaluated by 16 S rDNA high-throughput sequencing. The roasted PLR and PTR performed better in anti-diarrhea, especially the former. PLR and its processed products all presented the efficacy of reducing blood glucose, and the vinegar-processed PLR was the most outstanding. The raw PTR was not that effective in reducing blood glucose, whereas its efficacy was improved after roasting and vinegar processing. Both PLR and PTR were capable of lowering blood pressure to a certain extent, and PLR is superior to PTR in this aspect. Further, the vinegar-processed PLR showed the best effect. The diversity of intestinal flora was different among rats to which different products of PLR and PTR were administered. The roasted PLR led to the highest abundance of Lactobacillus, which was closely related to its best antidiarrheal effect. The highest abilities of vinegar-processed PLR to lower blood glucose and blood pressure were associated with the high abundance of Blautia and Prevotella_9. This study lays a foundation for elucidating the processing mechanisms of PLR and PTR and provides a basis for their further development and application.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Pueraria , Animais , Raízes de Plantas , Ratos
12.
J Proteomics ; 249: 104369, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34481999

RESUMO

Pediatric ulcerative colitis (UC) is a distinct type of inflammatory bowel disease with severe disease activity and rapid progression, which can lead to detrimental life-long consequences. The pathogenesis of pediatric UC remains unclear, although dysbiosis of the gut microbiota has been considered an important factor. In this study, we collected intestinal mucosal-luminal interface microbiota samples from a cohort of treatment-naïve pediatric UC or control patients and used two different mass spectrometry-based glycomic approaches to examine the N-glycans that were associated with the microbiota. We observed abundant small N-glycans that were associated with the microbiota and found that the pediatric UC microbiota samples contained significantly higher levels of these atypical N-glycans compared to those of controls. Four paucimannosidic or other truncated N-glycans were identified to successfully segregate UC from control patients with an area under the ROC curve of ≥0.9. This study indicates that the aberrant metabolism of glycans in the intestinal by gut microbiota may be involved in the pathogenesis of UC and intestinal N-glycans, including small glycans, can act as novel biomarker candidates for pediatric UC. SIGNIFICANCE: There is no cure for pediatric ulcerative colitis (UC) due to its unclear pathogenesis and the diagnosis of UC in children still largely depends on invasive colonoscopic examination. Recent evidence suggests that the dysbiosis of intestinal microbiota is associated with the onset and development of UC, however how the microbiota interact with the host remains unclear. This study used two different mass spectrometry-based glycomic approaches to quantitatively examine N-glycans that are associated with colonic mucosal-luminal interface microbiota of pediatric UC or control patients. To the best of our knowledge, this is the first comprehensive glycomic study of intestinal microbiota samples in UC, which demonstrated that intestinal microbiota was associated with abundant atypical small N-glycans with elevated levels in UC than controls. This study also identified four intestinal paucimannosidic or other truncated N-glycans as promising biomarker candidates for pediatric UC. These findings shed light on the mechanism study of host-microbiome interactions in UC and indicate that atypical glycans present in the gut can be a source for UC biomarker discovery.

13.
Mil Med Res ; 8(1): 51, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517915

RESUMO

To determine the prevalence and clinical features of olfactory and taste disorders among coronavirus disease 2019 (COVID-19) patients in China. A cross-sectional study was performed in Wuhan from April 3, 2020 to April 15, 2020. A total of 187 patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) completed face-to-face interviews or telephone follow-ups. We found that the prevalence of olfactory and taste disorders was significantly lower in the Chinese cohort than in foreign COVID-19 cohorts. Females were more prone to olfactory and taste disorders. In some patients, olfactory and taste disorders precede other symptoms and can be used as early screening and warning signs.


Assuntos
COVID-19/complicações , Transtornos do Olfato/etiologia , Olfato , Distúrbios do Paladar/etiologia , Paladar , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Olfato/epidemiologia , Prevalência , SARS-CoV-2 , Fatores Sexuais , Distúrbios do Paladar/epidemiologia , Adulto Jovem
14.
ACS Appl Mater Interfaces ; 13(36): 43806-43819, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478269

RESUMO

The development of transparent and flexible sensors suitable for the full-range monitoring of human activities is highly desirable, yet presents a daunting challenge due to the need for a combination of properties such as high stretchability, high sensitivity, and good linearity. Gradient structures are commonly found in many biological systems and exhibit excellent mechanical properties. Here, we report a novel surface-confined gradient conductive network (SGN) strategy to construct conductive polymer hydrogel-based stain sensors (CHSS). This CHSS showed an ultrahigh stretchability of 4000% strain, transparency above 90% at a wavelength of 600 nm, as well as skin-like Young's modulus of 40 kPa. Impressively, the sensitivity was improved to 3.0 and outstanding linear sensing performance was achieved simultaneously in the ultrawide range of 0% to 4000% strain with a high R-square value of 0.994. With the help of SGN strategy, this CHSS was able to monitor both large-scale and small-scale human motions and activities. This SGN strategy can open a new avenue for the development of novel flexible strain sensors with excellent mechanical, transparent, and sensing performance for full-range monitoring of human activities.

15.
Drug Des Devel Ther ; 15: 3893-3901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548781

RESUMO

High intra-abdominal pressure induced by artificial pneumoperitoneum can obviously impair respiratory and circulatory functions and has a negative effect on the prognosis of patients undergoing conventional and robot-assisted laparoscopic surgery. The application of deep neuromuscular blockade during the operation is reported to lower the intra-abdominal pressure and improve patients' outcome. However, concern lies in the risks of postoperative residual muscular paralysis with the use of deep neuromuscular blockade. Sugammadex, a specific antagonist for aminosteroids muscle relaxants, can effectively and rapidly reverse rocuronium and vecuronium induced neuromuscular blockade of different depths. Thus, sugammadex allows the ability to safeguard the application of deep neuromuscular blockade in laparoscopic operations and helps to alleviate the adverse complications associated with pneumoperitoneum. Here, we review the application of deep neuromuscular blockade in different laparoscopic surgeries and discuss the benefits and possible risks of sugammadex administration in the reversal of deep neuromuscular blockade in these operations.

16.
Food Funct ; 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34558577

RESUMO

High L-carnitine ingestion has been shown to cause liver injury, mechanically due to an elevated circulating level of trimethylamine-N-oxide (TMAO), a gut microbiota-derived metabolite from L-carnitine. This study aimed to investigate whether chlorogenic acid (CGA), a health-promoting polyphenol, could inhibit TMAO formation and thereafter might prevent L-carnitine-induced liver injury in mice. Feeding of mice with 3% L-carnitine in drinking water increased the serum and urinary levels of TMAO (p < 0.01 vs. Normal), whereas the serum and urinary TMAO formation was sharply reduced by CGA administration (p < 0.01). At the phylum level, CGA inhibited the L-carnitine-induced increase in the abundance of Firmicutes and Proteobacteria, while it promoted Bacteroidetes. At the genus level, CGA notably increased the abundance of Akkermansia and Bacteroides, but reduced the population of Erysipelatoclostridium, Faecalibaculum and Erysipelotrichaceae in high L-carnitine feeding mice. Meanwhile, CGA caused strong inhibition against the increase of liver injury markers (i.e. AST, ALT and ALP), hepatic inflammatory cytokines (i.e. IL-1, IL-6, TNF-α and TNF-ß) and dyslipidemia (i.e. TC, TG, LDL-C and HDL-C) in L-carnitine-fed mice (p < 0.05). These findings suggest that CGA holds great potential to alleviate liver dysfunction induced by high L-carnitine ingestion. The beneficial effect might be attributed to the protection against TMAO formation and the improvement of the health-promoting gut microbiota, as well as the antioxidant and anti-inflammatory properties of CGA.

17.
PLoS One ; 16(9): e0257601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34547060

RESUMO

The Internet of Things (IoT) is a widely hyped concept, with its focus on the connection of smart devices to the Internet rather than on people. IoT for consumers is often called the smart home market, and a large part of that market consists of home security devices. Consumers are often motivated to purchase smart home security devices to prevent burglaries, which they fear may lead to damage to their property or threats to their families. However, they also understand that IoT home security devices may be a threat to the privacy of their personal information. To determine the relative roles of fear and privacy concerns in the decision to purchase IoT home security devices, we conducted a survey of American consumers. We used the Theory of Reasoned Action as the theoretical basis for the study. We found that fear positively affected consumer attitudes toward purchasing smart home security devices, while concerns about privacy negatively affected attitudes. We found that attitudes toward purchase, the opinions of important others, and experience with burglaries all affected intent to purchase. We also found that the relationship between privacy concerns and intent to purchase is completely mediated by attitudes, while fear has both direct and indirect effects on intent.

18.
Exp Eye Res ; 212: 108754, 2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506802

RESUMO

PURPOSE: To assess age-related changes in the rhesus macaque eye and evaluate them to corresponding human age-related eye disease. METHODS: Data from eye exams and imaging tests including intraocular pressure (IOP), lens thickness, axial length, and retinal optical coherence tomography (OCT) images were evaluated from 142 individuals and statistically analyzed for age-related changes. Quantitative autofluorescence (qAF) was measured as was the presence of macular lesions as related to age. RESULTS: Ages of the 142 rhesus macaques ranged from 0.7 to 29 years (mean = 16.4 years, stdev = 7.5 years). Anterior segment measurements such as IOP, lens thickness, and axial length were acquired. Advanced retinal imaging in the form of optical coherence tomography and qAF were obtained. Quantitative assessments were made and variations by age groups were analyzed to compare with established age-related changes in human eyes. Quantitative analysis of data revealed age-related increase in intraocular pressure (0.165 mm Hg per increase in year of age), ocular biometry (lens thickness 7.2 µm per increase in year of age; and axial length 52.8 µm per increase in year of age), and presence of macular lesions. Age-related changes in thicknesses of retinal layers on OCT were observed and quantified, showing decreased thickness of the retinal ganglion cell layer and inner nuclear layer, and increased thickness of photoreceptor outer segment and choroidal layers. Age was correlated with increased qAF by 1.021 autofluorescence units per increase in year of age. CONCLUSIONS: The rhesus macaque has age-related ocular changes similar to humans. IOP increases with age while retinal ganglion cell layer thickness decreases. Macular lesions develop in some aged animals. Our findings support the concept that rhesus macaques may be useful for the study of important age-related diseases such as glaucoma, macular diseases, and cone disorders, and for development of therapies for these diseases.

19.
Eur J Med Chem ; 225: 113824, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34509167

RESUMO

Hepatocellular carcinoma (HCC) is a major contributor to global cancer incidence and mortality. Many pathways are involved in the development of HCC and various proteins including mTOR and HDACs have been identified as potential drug targets for HCC treatment. In the present study, two series of novel hybrid molecules targeting mTOR and HDACs were designed and synthesized based on parent inhibitors (MLN0128 and PP121 for mTOR, SAHA for HDACs) by using a fusion-type molecular hybridization strategy. In vitro antiproliferative assays demonstrated that these novel hybrids with suitable linker lengths exhibited broad cytotoxicity against various cancer cell lines, with significant activity against HepG2 cells. Notably, DI06, an MLN0128-based hybrid, exhibited antiproliferative activity against HepG2 cells with an IC50 value of 1.61 µM, which was comparable to those of both parent drugs (MLN0128, IC50 = 2.13 µM and SAHA, IC50 = 2.26 µM). In vitro enzyme inhibition assays indicated that DI06, DI07 and DI17 (PP121-based hybrid) exhibited nanomolar inhibitory activity against mTOR kinase and HDACs (e.g., HDAC1, HDAC2, HDAC3, HADC6 and HADC8). Cellular studies and western blot analyses uncovered that in HepG2 cells, DI06 and DI17 induced cell apoptosis by targeting mTOR and HDACs, blocked the cell cycle at the G0/G1 phase and suppressed cell migration. The potential binding modes of the hybrids (DI06 and DI17) with mTOR and HDACs were investigated by molecular docking. DI06 displayed better stability in rat liver microsomes than DI07 and DI17. Collectively, DI06 as a novel mTOR and HDACs inhibitor presented here warrants further investigation as a potential treatment of HCC.

20.
Transbound Emerg Dis ; 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581009

RESUMO

Novel variant infectious bursal disease virus (nvIBDV) is an emerging pathotype that can cause sub-clinical disease with severe, prolonged immunosuppression in young chickens. At present, two major pathotypes, including vvIBDV and nvIBDV, are prevailing in China. In this study, we propose that the nvIBDV is a new genotype (A2dB1b) and also first isolated and characterized a nvIBDV reassortant strain YL160304 (A2dB3) with segments A and B derived, respectively, from the nvIBDV and the HLJ-0504-like vvIBDV from yellow chickens in southern China. The YL160304 causes more extensive cytotropism and can infect specific-pathogen-free chicken embryos with severe subcutaneous hemorrhage. The pathogenicity of YL160304 to 4-week-old three-yellow chickens was determined and compared with those of the nvIBDV QZ191002 and the HLJ-0504-like vvIBDV NN1172. Weight gain was significantly reduced in all the challenged birds. No clinical signs and associated mortality were observed in the birds challenged with QZ191002, while the mortalities in the birds challenged with NN1172 and YL160304 were 30% (3/10) and 10% (1/10), respectively. At 7 days postchallenge, the bursa was severely damaged and the percentage of peripheral blood B lymphocyte (PBBL) decreased significantly in all the challenged birds and the quantity of the viral RNA detected in the bursa was in accordance with the results of the histomorphometry and the depletion of PBBL. This study not only confirmed the emerging epidemic of the novel variant and its reassortant strains, but also discovered that the naturally reassortant nvIBDV strain with the segment B of HLJ 0504-like vvIBDV can significantly enhance the pathogenicity to chickens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...