Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(4): 562-565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238558

RESUMO

Imaging large fields of view at a high magnification requires tiling. Transmission electron microscopes typically have round beam profiles; therefore, tiling across a large area is either imperfect or results in uneven exposures, a problem for dose-sensitive samples. Here, we introduce a square electron beam that can easily be retrofitted in existing microscopes, and demonstrate its application, showing that it can tile nearly perfectly and deliver cryo-electron microscopy imaging with a resolution comparable to conventional set-ups.


Assuntos
Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica de Transmissão
2.
J Vis Exp ; (202)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108412

RESUMO

Advancements in cryo-electron microscopy (cryoEM) techniques over the past decade have allowed structural biologists to routinely resolve macromolecular protein complexes to near-atomic resolution. The general workflow of the entire cryoEM pipeline involves iterating between sample preparation, cryoEM grid preparation, and sample/grid screening before moving on to high-resolution data collection. Iterating between sample/grid preparation and screening is typically a major bottleneck for researchers, as every iterative experiment must optimize for sample concentration, buffer conditions, grid material, grid hole size, ice thickness, and protein particle behavior in the ice, amongst other variables. Furthermore, once these variables are satisfactorily determined, grids prepared under identical conditions vary widely in whether they are ready for data collection, so additional screening sessions prior to selecting optimal grids for high-resolution data collection are recommended. This sample/grid preparation and screening process often consumes several dozen grids and days of operator time at the microscope. Furthermore, the screening process is limited to operator/microscope availability and microscope accessibility. Here, we demonstrate how to use Leginon and Smart Leginon Autoscreen to automate the majority of cryoEM grid screening. Autoscreen combines machine learning, computer vision algorithms, and microscope-handling algorithms to remove the need for constant manual operator input. Autoscreen can autonomously load and image grids with multi-scale imaging using an automated specimen-exchange cassette system, resulting in unattended grid screening for an entire cassette. As a result, operator time for screening 12 grids may be reduced to ~10 min with Autoscreen compared to ~6 h using previous methods which are hampered by their inability to account for high variability between grids. This protocol first introduces basic Leginon setup and functionality, then demonstrates Autoscreen functionality step-by-step from the creation of a template session to the end of a 12-grid automated screening session.


Assuntos
Sistemas Computacionais , Gelo , Microscopia Crioeletrônica , Automação , Algoritmos
3.
Curr Opin Struct Biol ; 83: 102729, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988815

RESUMO

Cryo-electron microscopy (cryoEM) has become a popular method for determining high-resolution structures of biomolecules. However, data processing can be time-consuming, particularly for new researchers entering the field. To improve data quality and increase data collection efficiency, several software packages have been developed for on-the-fly data processing with various degrees of automation. These software packages allow researchers to perform tasks such as motion correction, CTF estimation, 2D classification, and 3D reconstruction in real-time, with minimal human input. On-the-fly data processing can not only improve data collection efficiency but also increase the productivity of instrumentation in high demand. However, the various software packages available differ in their performance, computational requirements, and levels of automation. In this review, we describe the minimal metrics used to assess data quality during data collection, outline the features of an ideal on-the-fly data processing software systems, and provide results from using three of these systems.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Humanos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Automação
6.
Nature ; 614(7949): 781-787, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725929

RESUMO

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , SARS-CoV-2 , Humanos , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/ultraestrutura , COVID-19/virologia , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Especificidade por Substrato , Guanosina Trifosfato/metabolismo , Capuzes de RNA
7.
J Struct Biol X ; 7: 100085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742017

RESUMO

Ice thickness is a critical parameter in single particle cryo-EM - too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50-150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM. We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.

8.
IUCrJ ; 10(Pt 1): 77-89, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598504

RESUMO

Single-particle cryo-electron microscopy (cryoEM) is a swiftly growing method for understanding protein structure. With increasing demand for high-throughput, high-resolution cryoEM services comes greater demand for rapid and automated cryoEM grid and sample screening. During screening, optimal grids and sample conditions are identified for subsequent high-resolution data collection. Screening is a major bottleneck for new cryoEM projects because grids must be optimized for several factors, including grid type, grid hole size, sample concentration, buffer conditions, ice thickness and particle behavior. Even for mature projects, multiple grids are commonly screened to select a subset for high-resolution data collection. Here, machine learning and novel purpose-built image-processing and microscope-handling algorithms are incorporated into the automated data-collection software Leginon, to provide an open-source solution for fully automated high-throughput grid screening. This new version, broadly called Smart Leginon, emulates the actions of an operator in identifying areas on the grid to explore as potentially useful for data collection. Smart Leginon Autoscreen sequentially loads and examines grids from an automated specimen-exchange system to provide completely unattended grid screening across a set of grids. Comparisons between a multi-grid autoscreen session and conventional manual screening by 5 expert microscope operators are presented. On average, Autoscreen reduces operator time from ∼6 h to <10 min and provides a percentage of suitable images for evaluation comparable to the best operator. The ability of Smart Leginon to target holes that are particularly difficult to identify is analyzed. Finally, the utility of Smart Leginon is illustrated with three real-world multi-grid user screening/collection sessions, demonstrating the efficiency and flexibility of the software package. The fully automated functionality of Smart Leginon significantly reduces the burden on operator screening time, improves the throughput of screening and recovers idle microscope time, thereby improving availability of cryoEM services.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Elétrons
9.
Nucleic Acids Res ; 51(4): 1943-1959, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36715343

RESUMO

Genomic regions with high guanine content can fold into non-B form DNA four-stranded structures known as G-quadruplexes (G4s). Extensive in vivo investigations have revealed that promoter G4s are transcriptional regulators. Little structural information exists for these G4s embedded within duplexes, their presumed genomic environment. Here, we report the 7.4 Å resolution structure and dynamics of a 28.5 kDa duplex-G4-duplex (DGD) model system using cryo-EM, molecular dynamics, and small-angle X-ray scattering (SAXS) studies. The DGD cryo-EM refined model features a 53° bend induced by a stacked duplex-G4 interaction at the 5' G-tetrad interface with a persistently unstacked 3' duplex. The surrogate complement poly dT loop preferably stacks onto the 3' G-tetrad interface resulting in occlusion of both 5' and 3' tetrad interfaces. Structural analysis shows that the DGD model is quantifiably more druggable than the monomeric G4 structure alone and represents a new structural drug target. Our results illustrate how the integration of cryo-EM, MD, and SAXS can reveal complementary detailed static and dynamic structural information on DNA G4 systems.


Assuntos
Quadruplex G , Espalhamento a Baixo Ângulo , Microscopia Crioeletrônica , Difração de Raios X , DNA/química
10.
Annu Rev Biochem ; 91: 1-32, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35320683

RESUMO

Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , Microscopia Crioeletrônica/métodos , Humanos , SARS-CoV-2 , Imagem Individual de Molécula
12.
Science ; 362(6411)2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309918

RESUMO

The yeast SWR1 complex exchanges histone H2A in nucleosomes with Htz1 (H2A.Z in humans). The cryo-electron microscopy structure of the SWR1 complex bound to a nucleosome at 3.6-angstrom resolution reveals details of the intricate interactions between components of the SWR1 complex and its nucleosome substrate. Interactions between the Swr1 motor domains and the DNA wrap at superhelical location 2 distort the DNA, causing a bulge with concomitant translocation of the DNA by one base pair, coupled to conformational changes of the histone core. Furthermore, partial unwrapping of the DNA from the histone core takes place upon binding of nucleosomes to SWR1 complex. The unwrapping, as monitored by single-molecule data, is stabilized and has its dynamics altered by adenosine triphosphate binding but does not require hydrolysis.


Assuntos
Adenosina Trifosfatases/química , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , Nucleossomos/ultraestrutura , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/ultraestrutura
13.
Nucleus ; 8(3): 275-278, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28340334

RESUMO

Contrast in electron cryo-microscopy (cryo-EM) is limited by the weak phase and radiation sensitive nature of biologic samples embedded in vitrified ice. We have recently shown that a new contrast enhancement technique utilizing the Volta phase plate can be combined with single particle analysis to determine the structure of a small chromatin complex, the nucleosome core particle, at near-atomic resolution. Here, we discuss advantages and limitations of the technique in terms of data collection, particle detection, and visualization of individual DNA molecules and higher-order chromatin structure.


Assuntos
Microscopia Crioeletrônica/métodos , DNA/metabolismo , Nucleossomos/metabolismo , DNA/química , Nucleossomos/química
14.
Nucleic Acids Res ; 44(17): 8013-9, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27563056

RESUMO

The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein-DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 Å and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors.


Assuntos
Microscopia Crioeletrônica/métodos , Nucleossomos/ultraestrutura , Animais , Cristalografia por Raios X , DNA/ultraestrutura , Xenopus laevis
15.
Nucleic Acids Res ; 43(11): 5284-96, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25916851

RESUMO

Platinum-based anticancer drugs act therapeutically by forming DNA adducts, but suffer from severe toxicity and resistance problems, which have not been overcome in spite of decades of research. And yet defined chromatin targets have generally not been considered in the drug development process. Here we designed novel platinum-intercalator species to target a highly deformed DNA site near the nucleosome center. Between two seemingly similar structural isomers, we find a striking difference in DNA site selectivity in vitro, which comes about from stereochemical constraints that limit the reactivity of the trans isomer to special DNA sequence elements while still allowing the cis isomer to efficiently form adducts at internal sites in the nucleosome core. This gives the potential for controlling nucleosome site targeting in vivo, which would engender sensitivity to epigenetic distinctions and in particular cell type/status-dependent differences in nucleosome positioning. Moreover, while both compounds yield very similar DNA-adduct structures and display antitumor cell activity rivalling that of cisplatin, the cis isomer, relative to the trans, has a much more rapid cytotoxic effect and distinct impact on cell function. The novel stereochemical principles for controlling DNA site selectivity we discovered could aid in the design of improved site discriminating agents.


Assuntos
Antineoplásicos/química , Substâncias Intercalantes/química , Naftalimidas/química , Nucleossomos/química , Compostos Organoplatínicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Adutos de DNA/análise , Humanos , Substâncias Intercalantes/toxicidade , Naftalimidas/toxicidade , Compostos Organoplatínicos/toxicidade , Estereoisomerismo
16.
Nucleic Acids Res ; 40(13): 6338-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453276

RESUMO

Chromatin organization and composition impart sophisticated regulatory features critical to eukaryotic genomic function. Although DNA sequence-dependent histone octamer binding is important for nucleosome activity, many aspects of this phenomenon have remained elusive. We studied nucleosome structure and stability with diverse DNA sequences, including Widom 601 derivatives with the highest known octamer affinities, to establish a simple model behind the mechanics of sequence dependency. This uncovers the unique but unexpected role of TA dinucleotides and a propensity for G|C-rich sequence elements to conform energetically favourably at most locations around the histone octamer, which rationalizes G|C% as the most predictive factor for nucleosome occupancy in vivo. In addition, our findings reveal dominant constraints on double helix conformation by H3-H4 relative to H2A-H2B binding and DNA sequence context-dependency underlying nucleosome structure, positioning and stability. This provides a basis for improved prediction of nucleosomal properties and the design of tailored DNA constructs for chromatin investigations.


Assuntos
DNA/química , Histonas/química , Nucleossomos/química , Animais , Sequência de Bases , Fenômenos Biomecânicos , Modelos Moleculares , Conformação de Ácido Nucleico , Xenopus laevis
17.
J Mol Biol ; 403(1): 1-10, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20800598

RESUMO

Nucleosome positioning plays a key role in genomic regulation by defining histone-DNA context and by modulating access to specific sites. Moreover, the histone-DNA register influences the double-helix structure, which in turn can affect the association of small molecules and protein factors. Analysis of genomic and synthetic DNA has revealed sequence motifs that direct nucleosome positioning in vitro; thus, establishing the basis for the DNA sequence dependence of positioning would shed light on the mechanics of the double helix and its contribution to chromatin structure in vivo. However, acquisition of well-diffracting nucleosome core particle (NCP) crystals is extremely dependent on the DNA fragment used for assembly, and all previous NCP crystal structures have been based on human α-satellite sequences. Here, we describe the crystal structures of Xenopus NCPs containing one of the strongest known histone octamer binding and positioning sequences, the so-called '601' DNA. Two distinct 145-bp 601 crystal forms display the same histone-DNA register, which coincides with the occurrence of DNA stretching-overtwisting in both halves of the particle around five double-helical turns from the nucleosome center, giving the DNA an 'effective length' of 147 bp. As we have found previously with stretching around two turns from the nucleosome center for a centromere-based sequence, the terminal stretching observed in the 601 constructs is associated with extreme kinking into the minor groove at purine-purine (pyrimidine-pyrimidine) dinucleotide steps. In other contexts, these step types display an overall nonflexible behavior, which raises the possibility that DNA stretching in the nucleosome or extreme distortions in general have unique sequence dependency characteristics. Our findings indicate that DNA stretching is an intrinsically predisposed site-specific property of the nucleosome and suggest how NCP crystal structures with diverse DNA sequences can be obtained.


Assuntos
DNA/química , Nucleossomos/química , Xenopus , Animais , Sequência de Bases , Cristalografia por Raios X , DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...