Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(21): 27394-27399, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752670

RESUMO

In the continuous pursuit of an energy-efficient alternative to the energy-intensive mechanochemical process, we developed a coprecipitation strategy for synthesizing halide-based solid-state electrolytes that warrant both structural control and commercial scalability. In this study, we propose a new coprecipitation approach to synthesized Li3InCl6, exhibiting both structural and electrochemical performance stability, with a high ionic conductivity of 1.42 × 10-3 S cm-1, comparable to that of traditionally prepared counterparts. Through the in situ synchrotron X-ray diffraction technique, we unveil the stability mechanisms and rapid chemical reactions of Li3InCl6 under dry Ar, dry O2, and high-humidity atmosphere, which were not previously reported. Furthermore, the fast reversibility capability of moisture-exposed Li3InCl6 was tracked under vacuum, revealing the optimal recovery conditions at low temperatures (150-200 °C). This work addresses the critical challenges in structural engineering and sustainable mass production and provides insights into chemical reactions under real-world conditions.

2.
ACS Appl Mater Interfaces ; 16(21): 27329-27338, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764171

RESUMO

The different electrolyte conditions, e.g., pH value, for driving efficient HER and OER are one of the major issues hindering the aim for electrocatalytic water splitting in a high efficiency. In this regard, seeking durable and active HER electrocatalysts to align the alkaline conditions of the OER is a promising solution. However, the success in this strategy will depend on a fundamental understanding about the HER mechanism at the atomic scale. In this work, we have provided thorough understanding for the electrochemical HER mechanisms in KOH over Ni- and Co-based hollow pyrite microspheres by in operando X-ray spectroscopies and DFT calculations, including NiS2, CoS2, and Ni0.5Co0.5S2. We discovered that the Ni sites in hollow NiS2 microspheres were very stable and inert, while the Co sites in hollow CoS2 microspheres underwent reduction and generated Co metallic crystal domains under HER. The generation of Co metallic sites would further deactivate H2 evolution due to the large hydrogen desorption free energy (-1.73 eV). In contrast, the neighboring Ni and Co sites in hollow Ni0.5Co0.5S2 microspheres exhibited the electronic interaction to elevate the reactivity of Ni and facilitate the stability of Co without structure or surface degradation. The energy barrier in H2O adsorption/dissociation was only 0.73 eV, followed by 0.06 eV for hydrogen desorption over the Ni0.5Co0.5S2 surface, revealing Ni0.5Co0.5S2 as a HER electrocatalyst with higher durability and activity than NiS2 and CoS2 in the alkaline medium due to the synergy of neighboring Ni and Co sites. We believe that the findings in our work offer a guidance toward future catalyst design.

3.
J Am Chem Soc ; 146(5): 2977-2985, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284994

RESUMO

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.

4.
Inorg Chem ; 63(1): 784-794, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38153269

RESUMO

Nanosized zerovalent iron (NZVI) Fe@Fe3O4 with a core-shell structure derived from photocatalytic MeOH aqueous solution of dinitrosyl iron complex (DNIC) [(N3MDA)Fe(NO)2] (N3MDA = N,N-dimethyl-2-(((1-methyl-1H-imidazole-2-yl)methylene)amino)ethane-1-amine) (1-N3MDA), eosin Y, and triethylamine (TEA) is demonstrated. The NZVI Fe@Fe3O4 core shows a high percentage of zerovalent iron (Fe0 %) and is stabilized by a hydrophobic organic support formed through the photodegradation of eosin Y hybridized with the N3MDA ligand. In addition to its well-known reductive properties in wastewater treatment and groundwater remediation, NZVI demonstrates the ability to form heterostructures when it interacts with metal ions. In this research, Co2+ is employed as a model contaminant and reacted with NZVI Fe@Fe3O4 to result in the formation of a distinct Fe-Co heterostructure, cracked NZVI (CNZVI). The slight difference in the standard redox potentials between Fe2+ and Co2+, the magnetic properties of Co2+, and the absence of surface hydroxides of Fe@Fe3O4 enable NZVI to mildly reduce Co2+ and facilitate Co2+ penetration into the iron core. Taking advantage of the well-dispersed nature of CNZVI on an organic support, the reduction in particle size due to Co2+ penetration, and Fe-Co synergism, CNZVI is employed as a catalyst in the alkaline oxygen evolution reaction (OER). Remarkably, CNZVI exhibits a highly efficient OER performance, surpassing the benchmark IrO2 catalyst. These findings show the potential of using NZVI as a template for synthesizing highly efficient OER catalysts. Moreover, the study demonstrates the possibility of repurposing waste materials from water treatment as valuable resources for catalytic energy conversion, particularly in water oxidation processes.

5.
Small ; : e2307910, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072788

RESUMO

To investigate synergistic effect between geometric and electronic structures on directing CO2 RR selectivity, water phase synthetic protocol and surface architecture engineering strategy are developed to construct monodispersed Bi-doped Cu-based nanocatalysts. The strongly correlated catalytic directionality and Bi3+ dopant can be rationalized by the regulation of [*COOH]/[*CO] adsorption capacities through the appropriate doping of Bi3+ electronic modulator, resulting in volcano relationship between FECO /TOFCO and surface EVBM values. Spectroscopic study reveals that the dual-site binding mode ([Cu─µâ”€C(═O)O─Bi3+ ]) enabled by Cu1 Bi3+ 2 motif in single-phase Cu150 Bi1 nanocatalyst drives CO2-to-CO conversion. In contrast, the study of dynamic Bi speciation and phase transformation in dual-phase Cu50 Bi1 nanocatalyst unveils that the Bi0 -Bi0 contribution emerges at the expense of BOC phase, suggesting metallic Bi0 phase acting as [H]˙ formation center switches CO2 RR selectivity toward CO2-to-HCOO- conversion via [*OCHO] and [*OCHOK] intermediates. This work provides significant insight into how geometric architecture cooperates with electronic effect and catalytic motif/phase to guide the selectivity of electrocatalytic CO2 reduction through the distinct surface-bound intermediates and presents molecular-level understanding of catalytic mechanism for CO/HCOO- formation.

6.
Chem Asian J ; 18(20): e202300679, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37695094

RESUMO

Single-atom catalysts (SACs) have the unique coordination environment and electronic structure due to the quantum size effect, which plays an essential role in facilitating catalytic reactions. However, due to the limited understanding of the formation mechanism of single atoms, achieving the modulation of the local atomic structure of SACs is still difficult and challenging. Herein, we have prepared a series of Ni SACs loaded on nitrogen-doped carbon substrates with different parameters using a dissolution-and-carbonization method to systematically investigate the effect of temperature on the structure of the SACs. The results of characterization and electrochemical measurements are analyzed to reveal the uniform law between temperature and the metal loading, bond length, coordination number, valence state and CO2 reduction performance, showing the feasibility of controlling the structure of SACs through temperature to regulate the catalytic performance. This is important for the understanding of catalytic reaction mechanisms and the design of efficient catalysts.

7.
Science ; 381(6660): 857-861, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616342

RESUMO

Methane pyrolysis (MP) is a potential technology for CO2-free hydrogen production that generates only solid carbon by-products. However, developing a highly efficient catalyst for stable methane pyrolysis at a moderate temperature has been challenging. We present a new and highly efficient catalyst created by modifying a Ni-Bi liquid alloy with the addition of Mo to produce a ternary NiMo-Bi liquid alloy catalyst (LAC). This catalyst exhibited a considerably low activation energy of 81.2 kilojoules per mole, which enabled MP at temperatures between 450 and 800 Celsius and a hydrogen generation efficiency of 4.05 ml per gram of nickel per minute. At 800 Celsius, the catalyst exhibited 100% H2 selectivity and 120 hours of stability.

8.
Chemosphere ; 337: 139357, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392801

RESUMO

The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BC) and 700 °C (700BC) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BC than 700BC, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BC showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BC, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BC via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.


Assuntos
Cádmio , Durapatita , Durapatita/química , Cádmio/química , Fósforo , Adsorção
9.
Small ; 19(44): e2303491, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381620

RESUMO

Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.

10.
Mikrochim Acta ; 190(6): 246, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256373

RESUMO

Two-dimensional metal-organic framework (MOF) composites were produced by incorporating Fe-MOFs into reduced graphene oxide (rGO) nanosheets to form Fe-MOF/rGO composites by hydrothermal synthesis. SEM, TEM, XRD, XPS, and measurements of contact angles were used to characterize the composites. TEM studies revealed that the rod-like-shaped Fe-MOFs were extensively dispersed on the rGO sheets. Incorporating Fe-MOF into rGO significantly improves performance due to the large surface area, chemical stability, and high electrical conductivity. The response signals for the electrochemical sensing performance of Fe-MOF/rGO-modified electrodes to nitrofurazone (NFZ) were significantly enhanced. Differential pulse voltammetry was used to detect the NFZ, and the MOF/rGO sensor possesses a lower detection limit (0.77µM) with two dynamic ranges from 0.6-60 to 128-499.3 µM and high sensitivity (1.909 µA·mM-1·cm-2). Moreover, the anti-interference properties of the sensor were quite reproducible and stable. To understand the mechanism responsible for the enhanced sensing performance of the composite, grand canonical Monte Carlo calculations were performed for Fe-MOF/rGO composites with five unit cells of Fe-MOF and four layers of rGO. We attributed the improvement to the fact that the interface between the Fe-MOF and rGO absorbed increased NFZ molecules. The findings reported herein confirm that such Fe-MOF/rGO composites have significantly improved electrochemical performance and practical applicability of sensing nitrofurazone.

11.
Adv Sci (Weinh) ; 10(21): e2301218, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37166034

RESUMO

The lithiation/delithiation properties of α-Si3 N4 and ß-Si3 N4 are compared and the carbon coating effects are examined. Then, ß-Si3 N4 at various fractions is used as the secondary phase in a Si anode to modify the electrode properties. The incorporated ß-Si3 N4 decreases the crystal size of Si and introduces a new NSiO species at the ß-Si3 N4 /Si interface. The nitrogen from the milled ß-Si3 N4 diffuses into the surface carbon coating during the carbonization heat treatment, forming pyrrolic nitrogen and CNO species. The synergistic effects of combining ß-Si3 N4 and Si phases on the specific capacity are confirmed. The operando X-ray diffraction and X-ray photoelectron spectroscopy data indicate that ß-Si3 N4 is partially consumed during lithiation to form a favorable Li3 N species at the electrode. However, the crystalline structure of the hexagonal ß-Si3 N4 is preserved after prolonged cycling, which prevents electrode agglomeration and performance deterioration. The carbon-coated ß-Si3 N4 /Si composite anode shows specific capacities of 1068 and 480 mAh g-1 at 0.2 and 5 A g-1 , respectively. A full cell consisting of the carbon-coated ß-Si3 N4 /Si anode and a LiNi0.8 Co0.1 Mn0.1 O2 cathode is constructed and its properties are evaluated. The potential of the proposed composite anodes for Li-ion battery applications is demonstrated.

13.
Inorg Chem ; 61(51): 21011-21015, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36517465

RESUMO

CdMnO3 had not been previously reported and was a missing piece in the A2+Mn4+O3 series. We succeeded in synthesizing this compound by a high-pressure method and confirmed that it is crystallized in a distorted perovskite structure with a Cd2+Mn4+O3 charge configuration. The obtained insulating CdMnO3 exhibits an antiferromagnetic transition at about 86 K. First-principles calculations revealed that the Mn4+ (t2g3) spins form a C-type antiferromagnetic structure, which is in sharp contrast to the G-type antiferromagnetism in the isostructural and isoelectronic CaMnO3. Significant overlap of the Mn-3d and O(2)-2p orbitals produces distorted octahedra with a large Mn-O(1)-Mn tilt and induces antiferromagnetic couplings in the ac plane and the ferromagnetic couplings along the b axis.

14.
Sci Rep ; 12(1): 14343, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995852

RESUMO

Definitive understanding of superconductivity and its interplay with structural symmetry in the hole-doped lanthanum cuprates remains elusive. The suppression of superconductivity around 1/8th doping maintains particular focus, often attributed to charge-density waves (CDWs) ordering in the low-temperature tetragonal (LTT) phase. Central to many investigations into this interplay is the thesis that La1.875Ba0.125CuO4 and particularly La1.675Eu0.2Sr0.125CuO4 present model systems of purely LTT structure at low temperature. However, combining single-crystal and high-resolution powder X-ray diffraction, we find these to exhibit significant, intrinsic coexistence of LTT and low-temperature orthorhombic domains, typically associated with superconductivity, even at 10 K. Our two-phase models reveal substantially greater tilting of CuO6 octahedra in the LTT phase, markedly buckling the CuO2 planes. This would couple significantly to band narrowing, potentially indicating a picture of electronically driven phase segregation, reminiscent of optimally doped manganites. These results call for reassessment of many experiments seeking to elucidate structural and electronic interplay at 1/8 doping.

15.
ACS Omega ; 7(16): 14089-14101, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559195

RESUMO

Two ligand ratio-dependent supramolecular networks, [Cd(2,2'-bpym)1.5(BDC)]·0.5(2,2'-bpym)·5H2O (1) and [Cd(2,2'-bpym)0.5(BDC)(H2O)3] (2), (BDC2- = dianion of terephthalic acid and 2,2'-bpym = 2,2'-bipyrimidine) have been synthesized and structurally characterized by the single-crystal X-ray diffraction method. Structural determination reveals that compound 1 is a two-dimensional (2D) layered metal-organic framework (MOF) constructed via the bridges of Cd(II) ions with 2,2'-bpym and BDC2- ligands, and compound 2 is a zero-dimensional (0D) 2,2'-bpym-bridged di-Cd(II) monomeric complex. When the thermally dehydrated powders of 1 (at 100 °C) were immersed into water solution, most of the dehydrated powders of 1 underwent structural transformation back to rehydrated 1, but very little amounts of the dehydrated powders of 1 were decomposed to light-brown crystals of 2 or colorless crystals of a new coordination polymer (CP), [Cd(2,2'-bpym)(BDC)(H2O)]·3H2O (3), with its one-dimensional (1D) zigzag chain-like framework being constructed via the bridges of Cd(II) ions with the BDC2- ligand. Structural analysis reveals that all 3D supramolecular networks of 1-3 are further constructed via strong intermolecular interactions, including hydrogen bonds and π-π stacking interactions. Compounds 1 and 2 both exhibit significant water vapor hysteresis isotherms, and their cyclic water de-/adsorption behavior accompanied with solid-state structural transformation has been verified by de-/rehydration TG analyses and powder X-ray diffraction (PXRD) measurements.

16.
ACS Appl Mater Interfaces ; 14(5): 6343-6357, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080366

RESUMO

Nitric oxide (NO) is an essential endogenous signaling molecule regulating multifaceted physiological functions in the (cardio)vascular, neuronal, and immune systems. Due to the short half-life and location-/concentration-dependent physiological function of NO, translational application of NO as a novel therapeutic approach, however, awaits a strategy for spatiotemporal control on the delivery of NO. Inspired by the magnetic hyperthermia and magneto-triggered drug release featured by Fe3O4 conjugates, in this study, we aim to develop a magnetic responsive NO-release material (MagNORM) featuring dual NO-release phases, namely, burst and steady release, for the selective activation of NO-related physiology and treatment of bacteria-infected cutaneous wound. After conjugation of NO-delivery [Fe(µ-S-thioglycerol)(NO)2]2 with a metal-organic framework (MOF)-derived porous Fe3O4@C, encapsulation of obtained conjugates within the thermo-responsive poly(lactic-co-glycolic acid) (PLGA) microsphere completes the assembly of MagNORM. Through continuous/pulsatile/no application of the alternating magnetic field (AMF) to MagNORM, moreover, burst/intermittent/slow release of NO from MagNORM demonstrates the AMF as an ON/OFF switch for temporal control on the delivery of NO. Under continuous application of the AMF, in particular, burst release of NO from MagNORM triggers an effective anti-bacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). In addition to the magneto-triggered bactericidal effect of MagNORM against E. coli-infected cutaneous wound in mice, of importance, steady release of NO from MagNORM without the AMF promotes the subsequent collagen formation and wound healing in mice.


Assuntos
Óxido Ferroso-Férrico/química , Campos Magnéticos , Estruturas Metalorgânicas/química , Microesferas , Óxido Nítrico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
17.
Nat Commun ; 12(1): 6319, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732739

RESUMO

The phase diagrams of LaMnO3 perovskites have been intensely studied due to the colossal magnetoresistance (CMR) exhibited by compositions around the [Formula: see text] doping level. However, phase segregation between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating states, which itself is believed to be responsible for the colossal change in resistance under applied magnetic field, has prevented an atomistic-level understanding of the orbital ordered (OO) state at this doping level. Here, through the detailed crystallographic analysis of the phase diagram of a prototype system (AMn[Formula: see text]Mn[Formula: see text]O12), we show that the superposition of two distinct lattice modes gives rise to a striping of OO Jahn-Teller active Mn3+ and charge disordered (CD) Mn3.5+ layers in a 1:3 ratio. This superposition only gives a cancellation of the Jahn-Teller-like displacements at the critical doping level. This striping of CD Mn3.5+ with Mn3+ provides a natural mechanism though which long range OO can melt, giving way to a conducting state.

18.
ACS Appl Mater Interfaces ; 13(40): 47465-47477, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34592812

RESUMO

Regarding dihydrogen as a clean and renewable energy source, ammonia borane (NH3BH3, AB) was considered as a chemical H2-storage and H2-delivery material due to its high storage capacity of dihydrogen (19.6 wt %) and stability at room temperature. To advance the development of efficient and recyclable catalysts for hydrolytic dehydrogenation of AB with parallel insight into the reaction mechanism, herein, ZIF-67-derived fcc-Co@porous carbon nano/microparticles (cZIF-67_nm/cZIF-67_µm) were explored to promote catalytic dehydrogenation of AB and generation of H2(g). According to kinetic and computational studies, zero-order dependence on the concentration of AB, first-order dependence on the concentration of cZIF-67_nm (or cZIF-67_µm), and a kinetic isotope effect value of 2.45 (or 2.64) for H2O/D2O identify the Co-catalyzed cleavage of the H-OH bond, instead of the H-BH2NH3 bond, as the rate-determining step in the hydrolytic dehydrogenation of AB. Despite the absent evolution of H2(g) in the reaction of cZIF-67 and AB in the organic solvents (i.e., THF or CH3OH) or in the reaction of cZIF-67 and water, Co-mediated activation of AB and formation of a Co-H intermediate were evidenced by theoretical calculation, infrared spectroscopy in combination with an isotope-labeling experiment, and reactivity study toward CO2-to-formate/H2O-to-H2 conversion. Moreover, the computational study discovers a synergistic interaction between AB and the water cluster (H2O)9 on fcc-Co, which shifts the splitting of water into an exergonic process and lowers the thermodynamic barrier for the generation and desorption of H2(g) from the Co-H intermediates. With the kinetic and mechanistic study of ZIF-67-derived Co@porous carbon for catalytic hydrolysis of AB, the spatiotemporal control on the generation of H2(g) for the treatment of inflammatory diseases will be further investigated in the near future.

19.
BMC Musculoskelet Disord ; 22(1): 548, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134676

RESUMO

BACKGROUND: To determine how perforated peptic ulcers be diagnosed earlier after patients undergoing an elective spine surgery. METHODS: Patients who underwent elective spine surgeries at our hospital between January 2000 and April 2018 and experienced an acute perforated peptic ulcer were included. An age-and gender-matched control group was comprised of 26 patients without a postoperative acute perforated peptic ulcer who received spine surgery during the same period. Medical records and imaging studies were thoroughly reviewed. RESULTS: Thirteen patients were enrolled in the study group, including eight females and five males. Three patients, two females and one male, died of uncontrolled peritonitis during the hospital stay. All patients in the study group experienced the sudden onset of abdominal pain, which was continuous and progressively worsening. Patients with elevated serum amylase, a peptic ulcer history and increased intraoperative blood loss had a tendency to develop a postoperative perforated peptic ulcer. CONCLUSION: Spine surgeons should be highly alert to these risk factors of postoperative perforated peptic ulcers inpatients who has history of peptic ulcer, large amount ofintraoperative blood loss and abnormal high serum amylase level after elective spine surgery. Early diagnosis and emergent surgical intervention promote better outcomes.


Assuntos
Úlcera Péptica Perfurada , Úlcera Péptica , Doença Aguda , Diagnóstico Precoce , Feminino , Humanos , Tempo de Internação , Masculino , Úlcera Péptica Perfurada/diagnóstico , Úlcera Péptica Perfurada/epidemiologia , Úlcera Péptica Perfurada/etiologia
20.
ACS Appl Mater Interfaces ; 13(44): 51839-51848, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33845573

RESUMO

The global ammonia yield is critical to the fertilizer industry as the global food demand is highly dependent on it, whereas, NH3 is also a key chemical for pharmaceutical, textile, plastic, explosive, and dye-making industries. At present, the demand for NH3 is fulfilled by the Haber-Bosch method, which consumes 1-3% of global energy and causes 0.5-1% CO2 emission every year. To reduce emissions and improve energy efficiency, the electrochemical nitrogen gas reduction reaction (N2RR) has received much attention and support after the funding announcement by the U.S. Department of Energy. In this work, we have created hollow CuAu nanoboxes with Cu-rich inner walls to improve the NH3 Faradaic efficiency in N2RR. These beveled nanoboxes are produced in different degrees of corner and edge etching, which produces both polyhedral and concave structures. In N2RR, the binary CuAu nanoboxes enhanced NH3 production compared to individual Au and Cu nanocubes. The results of DFT calculations suggest the Cu-rich inner walls in the hollow beveled CuAu nanoboxes play a major role in their performance by reducing the free energy ΔG*NNH for the potential-determining step to form *NNH (* + N2(g) + H+ + e- → *NNH). Meanwhile, the results in 10-cycle and solar-illuminated N2RR indicate the beveled CuAu nanoboxes are not only robust electrocatalysts but show promise in photocatalysis as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...