Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832421

RESUMO

The common approach to modify the thermoelectric activity of oxides is based on the concept of selective metal substitution. Herein, we demonstrate an alternative approach based on the formation of multiphase composites, at which the individual components have distinctions in the electric and thermal conductivities. The proof-of-concept includes the formation of multiphase composites between well-defined thermoelectric Co-based oxides: Ni, Fe co-substituted perovskite, LaCo0.8Ni0.1Fe0.1O3 (LCO), and misfit layered Ca3Co4O9. The interfacial chemical and electrical properties of composites are probed with the means of SEM, PEEM/XAS, and XPS tools, as well as the magnetic susceptibility measurements. The thermoelectric power of the multiphase composites is evaluated by the dimensionless figure of merit, ZT, calculated from the independently measured electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (λ). It has been demonstrated that the magnitude's electric and thermal conductivities depend more significantly on the composite interfaces than the Seebeck coefficient values. As a result, the highest thermoelectric activity is observed at the composite richer on the perovskite (i.e., ZT = 0.34 at 298 K).

2.
Dalton Trans ; 50(36): 12419-12423, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545879

RESUMO

Intercalation of Cu into layered polychalcogenide La2O2S2 was demonstrated to be viable both under solvothermal conditions at 200 °C and mechanical ball milling at ambient temperature. This result evidences the soft-chemical nature of metal intercalation into layered polychalcogenides driven by the redox reactivity of anion-anion bonds.

3.
Nat Commun ; 12(1): 3605, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127660

RESUMO

Designing and synthesising new metastable compounds is a major challenge of today's material science. While exploration of metastable oxides has seen decades-long advancement thanks to the topochemical deintercalation of oxygen as recently spotlighted with the discovery of nickelate superconductor, such unique synthetic pathway has not yet been found for chalcogenide compounds. Here we combine an original soft chemistry approach, structure prediction calculations and advanced electron microscopy techniques to demonstrate the topochemical deintercalation/reintercalation of sulfur in a layered oxychalcogenide leading to the design of novel metastable phases. We demonstrate that La2O2S2 may react with monovalent metals to produce sulfur-deintercalated metastable phases La2O2S1.5 and oA-La2O2S whose lamellar structures were predicted thanks to an evolutionary structure-prediction algorithm. This study paves the way to unexplored topochemistry of mobile chalcogen anions.

4.
Chem Commun (Camb) ; 55(44): 6189-6192, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31049515

RESUMO

We demonstrate here the low temperature topochemical insertion of transition elements (Fe, Ni, and Cu) in precursors containing pre-formed (Sn)2- (n = 2 and 3) oligomers. Indeed, this soft chemistry route opens the door to the easy, orientated synthesis of low dimensional transition metal compounds provided that the elemental metal can retrocede electron(s) to empty antibonding sulfur σ* levels.

5.
Angew Chem Int Ed Engl ; 57(41): 13618-13623, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30133113

RESUMO

Layered transition metal compounds represent a major playground to explore unconventional electric or magnetic properties. In that framework, topochemical approaches that mostly preserve the topology of layered reactants have been intensively investigated to tune properties and/or design new materials. Topochemical reactions often involve the insertion or deinsertion of a chemical element accompanied by a change of oxidation state of the cations only. Conversely, cases where anions play the role of redox centers are very scarce. Here we show that the insertion of copper into two dimensional precursors containing chalcogen dimers (Q2 )2- (Q=S, Se) can produce layered materials with extended (CuQ) sheets. The reality of this topochemical reaction is demonstrated here for different pristine materials, namely La2 O2 S2 , Ba2 F2 S2 , and LaSe2 . Therefore, this work opens up a new synthetic strategy to design layered transition metal compounds from precursors containing polyanionic redox centers.

6.
Inorg Chem ; 55(6): 2923-8, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26942451

RESUMO

The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

7.
Phys Rev Lett ; 113(13): 137602, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302917

RESUMO

We report here the discovery of multiferroicity and large magnetoelectric coupling in the type I orbital order system GeV4S8. Our study demonstrates that this clustered compound displays a para-ferroelectric transition at 32 K. This transition originates from an orbital ordering which reorganizes the charge within the transition metal clusters. Below the antiferromagnetic transition at 17 K, the application of a magnetic field significantly affects the ferroelectric polarization, revealing thus a large magnetoelectric coupling. Our study suggests that the application of a magnetic field induces a metamagnetic transition which significantly affects the ferroelectric polarization thanks to an exchange striction phenomenon.

8.
Nano Lett ; 13(8): 3648-53, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23826620

RESUMO

We study the Mott insulator compound GaTa4Se8 in which we previously discovered an electric-field-induced resistive transition. We show that the resistive switching is associated to the appearance of metallic and super-insulating nanodomains by means of scanning tunneling microscopy/spectroscopy (STM/STS). Moreover, we show that local electronic transitions can be controlled at the nanoscale at room temperature using the electric field of the STM tip. This opens the way for possible applications in resistive random access memories (RRAM) devices.

9.
Adv Mater ; 25(23): 3222-6, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23649904

RESUMO

A striking universality in the electric-field-driven resistive switching is shown in three prototypical narrow-gap Mott systems. This model, based on key theoretical features of the Mott phenomenon, reproduces the general behavior of this resistive switching and demonstrates that it can be associated with a dynamically directed avalanche. This model predicts non-trivial accumulation and relaxation times that are verified experimentally.

11.
J Am Chem Soc ; 132(16): 5704-10, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20356073

RESUMO

The lacunar spinel compounds GaTi(4-x)V(x)S(8) (0 < x < 4), consisting of Ti(4-x)V(x) tetrahedral clusters, were prepared and their structures were determined by powder X-ray diffraction. The electronic structures of GaTi(4-x)V(x)S(8) (x = 0, 1, 2, 3) were examined by density functional calculations, and the electrical resistivity and magnetic susceptibility of these compounds were measured. Our calculations predict that GaTi(3)VS(8) is a ferromagnetic half-metal, and this prediction was confirmed by magnetotransport experiments performed on polycrystalline samples of GaTi(3)VS(8). The latter reveal a large negative magnetoresistance (up to 22% at 2 K), which is consistent with the intergrain tunnelling magnetoresistance expected for powder samples of a ferromagnetic half-metal and indicates the presence of high spin polarization greater than 53% in GaTi(3)VS(8).

12.
J Am Chem Soc ; 130(26): 8261-70, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18533720

RESUMO

The oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se), which contain Fe2O square planar layers of the anti-CuO2 type, were predicted using a modular assembly of layered secondary building units and subsequently synthesized. The physical properties of these compounds were characterized using magnetic susceptibility, electrical resistivity, specific heat, (57)Fe Mossbauer, and powder neutron diffraction measurements and also by estimating their exchange interactions on the basis of first-principles density functional theory electronic structure calculations. These compounds are magnetic semiconductors that undergo a long-range antiferromagnetic ordering below 83.6-106.2 K, and their magnetic properties are well-described by a two-dimensional Ising model. The dominant antiferromagnetic spin exchange interaction between S = 2 Fe(2+) ions occurs through corner-sharing Fe-O-Fe bridges. Moreover, the calculated spin exchange interactions show that the A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) compounds represent a rare example of a frustrated antiferromagnetic checkerboard lattice.

13.
Adv Mater ; 20(14): 2760-5, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25213903

RESUMO

Experimental evidence of a nonvolatile electric-pulse-induced insulator-to-metal transition and possible superconductivity in the Mott insulator GaTa4 Se8 is reported. Scanning tunneling microscopy experiments show that this unconventional response of the system to short electric pulses arises from a nanometer-scale electronic phase separation generated in the bulk material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...