Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nat Commun ; 15(1): 1330, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351066

RESUMO

Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.


Assuntos
Cidadania , Ecossistema , Humanos , Tamanho do Genoma , Espécies Introduzidas , Ecologia , Biodiversidade , Plantas/genética
2.
Sci Adv ; 9(40): eadi1897, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792943

RESUMO

Plant introductions outside their native ranges by humans have led to substantial ecological consequences. While we have gained considerable knowledge about intercontinental introductions, the distribution and determinants of intracontinental aliens remain poorly understood. Here, we studied naturalized (i.e., self-sustaining) intracontinental aliens using native and alien floras of 243 mainland regions in North America, South America, Europe, and Australia. We revealed that 4510 plant species had intracontinental origins, accounting for 3.9% of all plant species and 56.7% of all naturalized species in these continents. In North America and Europe, the numbers of intracontinental aliens peaked at mid-latitudes, while the proportion peaked at high latitudes in Europe. Notably, we found predominant poleward naturalization, primarily due to larger native species pools in low-latitudes. Geographic and climatic distances constrained the naturalization of intracontinental aliens in Australia, Europe, and North America, but not in South America. These findings suggest that poleward naturalizations will accelerate, as high latitudes become suitable for more plant species due to climate change.


Assuntos
Cidadania , Mudança Climática , Humanos , Europa (Continente) , Plantas , América do Norte , Ecossistema
3.
Ecol Evol ; 13(9): e10513, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701022

RESUMO

Biological invasions represent a growing threat to islands and their biodiversity across the world. The isolated sub-Antarctic island of South Georgia in the South Atlantic Ocean is a highly protected area that relies on effective biosecurity including prevention, surveillance and eradication to limit the risk of biological invasions. Based on an opportunistic field discovery, we provide the first report of an introduced ladybird beetle on South Georgia. All specimens discovered belong to the Eurasian species Coccinella undecimpunctata Linnaeus (1758) (Coleoptera: Coccinellidae). Tens of individuals of both sexes were discovered at a single location, indicating that the species may already be established on South Georgia. Transport connectivity with this site suggests that the species most likely arrived recently from the Falkland Islands as a stowaway on a ship. We discuss the implications of our discovery for the continued development of South Atlantic biosecurity.

4.
Nat Ecol Evol ; 7(10): 1633-1644, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652998

RESUMO

Human activities are causing global biotic redistribution, translocating species and providing them with opportunities to establish populations beyond their native ranges. Species originating from certain global regions, however, are disproportionately represented among naturalized aliens. The evolutionary imbalance hypothesis posits that differences in absolute fitness among biogeographic divisions determine outcomes when biotas mix. Here, we compile data from native and alien distributions for nearly the entire global seed plant flora and find that biogeographic conditions predicted to drive evolutionary imbalance act alongside climate and anthropogenic factors to shape flows of successful aliens among regional biotas. Successful aliens tend to originate from large, biodiverse regions that support abundant populations and where species evolve against a diverse backdrop of competitors and enemies. We also reveal that these same native distribution characteristics are shared among the plants that humans select for cultivation and economic use. In addition to influencing species' innate potentials as invaders, we therefore suggest that evolutionary imbalance shapes plants' relationships with humans, impacting which species are translocated beyond their native distributions.


Assuntos
Biodiversidade , Espécies Introduzidas , Humanos , Clima , Plantas , Sementes
5.
Proc Natl Acad Sci U S A ; 120(30): e2300981120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459510

RESUMO

Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Sementes , Geologia
6.
New Phytol ; 239(6): 2389-2403, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438886

RESUMO

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Assuntos
Ecossistema , Traqueófitas , Tamanho do Genoma , Cidadania , Ploidias , Espécies Introduzidas , DNA
8.
Sustain Sci ; 18(2): 771-789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37012996

RESUMO

The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. Yet, a global analysis of how these factors vary across countries is currently lacking. Here, we investigate how five broad, country-specific socio-economic and environmental indices (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain country-level (1) established alien species (EAS) richness of eight taxonomic groups, and (2) proactive or reactive capacity to prevent and manage biological invasions and their impacts. These indices underpin many aspects of the invasion process, including the introduction, establishment, spread and management of alien species. They are also general enough to enable a global comparison across countries, and are therefore essential for defining future scenarios for biological invasions. Models including Trade, Governance, Lifestyle and Education, or a combination of these, best explained EAS richness across taxonomic groups and national proactive or reactive capacity. Historical (1996 or averaged over 1996-2015) levels of Governance and Trade better explained both EAS richness and the capacity of countries to manage invasions than more recent (2015) levels, revealing a historical legacy with important implications for the future of biological invasions. Using Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions, we identified four main clusters of countries in 2015. Most countries had an increase in Trade over the past 25 years, but trajectories were more geographically heterogeneous for Governance. Declines in levels of Governance are concerning as they may be responsible for larger levels of invasions in the future. By identifying the factors influencing EAS richness and the regions most susceptible to changes in these factors, our results provide novel insights to integrate biological invasions into scenarios of biodiversity change to better inform decision-making for policy and the management of biological invasions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-022-01166-3.

9.
Nat Commun ; 14(1): 2090, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045818

RESUMO

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Assuntos
Formigas , Ecossistema , Animais , Espécies Introduzidas , Incidência , Biodiversidade , Mamíferos
10.
Ecology ; 104(3): e3942, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477749

RESUMO

Occupancy models are a vital tool for ecologists studying the patterns and drivers of species occurrence, but their use often involves selecting among models with different sets of occupancy and detection covariates. The information-theoretic approach, which employs information criteria such as Akaike's information criterion (AIC) is arguably the most popular approach for model selection in ecology and is often used for selecting occupancy models. However, the information-theoretic approach risks selecting models that produce inaccurate parameter estimates due to a phenomenon called collider bias, a type of confounding that can arise when adding explanatory variables to a model. Using simulations, we investigated the consequences of collider bias (using an illustrative example called M-bias) in the occupancy and detection processes of an occupancy model, and explored the implications for model selection using AIC and a common alternative, the Schwarz criterion (or Bayesian information criterion, BIC). We found that when M-bias was present in the occupancy process, AIC and BIC selected models that inaccurately estimated the effect of the focal occupancy covariate, while simultaneously producing more accurate predictions of the site-level occupancy probability than other models in the candidate set. In contrast, M-bias in the detection process did not impact the focal estimate; all models made accurate inferences, while the site-level predictions of the AIC/BIC-best model were slightly more accurate. Our results show that information criteria can be used to select occupancy covariates if the sole purpose of the model is prediction, but must be treated with more caution if the purpose is to understand how environmental variables affect occupancy. By contrast, detection covariates can usually be selected using information criteria regardless of the model's purpose. These findings illustrate the importance of distinguishing between the tasks of parameter inference and prediction in ecological modeling. Furthermore, our results underline concerns about the use of information criteria to compare different biological hypotheses in observational studies.


Assuntos
Teorema de Bayes , Viés
11.
Nat Ecol Evol ; 6(11): 1723-1732, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253544

RESUMO

The redistribution of alien species across the globe accelerated with the start of European colonialism. European powers were responsible for the deliberate and accidental transportation, introduction and establishment of alien species throughout their occupied territories and the metropolitan state. Here, we show that these activities left a lasting imprint on the global distribution of alien plants. Specifically, we investigated how four European empires (British, Spanish, Portuguese and Dutch) structured current alien floras worldwide. We found that compositional similarity is higher than expected among regions that once were occupied by the same empire. Further, we provide strong evidence that floristic similarity between regions occupied by the same empire increases with the time a region was occupied. Network analysis suggests that historically more economically or strategically important regions have more similar alien floras across regions occupied by an empire. Overall, we find that European colonial history is still detectable in alien floras worldwide.


Assuntos
Colonialismo , Espécies Introduzidas , Plantas
12.
Methods Ecol Evol ; 13(5): 1073-1081, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35909503

RESUMO

Large-scale biodiversity data, for example, on species distribution and richness information, are being mobilized and becoming available at an increasing rate. Interactive web applications like atlases have been developed to visualize available datasets and make them accessible to a wider audience. Web mapping tools are changing rapidly, and different underlying concepts have been developed to visualize datasets at a high cartographic standard.Here, we introduce the Combined Atlas Framework for the development of interactive web atlases for ecological data visualization. We combine two existing approaches: the five stages of the user-centred design approach for web mapping applications and the three U approach for interface success.Subsequently, we illustrate the use of this framework by developing the Atlas of Plant Invasions based on the Global Naturalized Alien Flora (GloNAF) database. This case study illustrates how the newly developed Combined Atlas Framework with a user-centred design philosophy can generate measurable success through communication with the target user group, iterative prototyping and competitive analysis of other existing web mapping approaches.The framework is useful in creating an atlas that employs user feedback to determine usability and utility features within an interactive atlas system. Finally, this framework will enable a better-informed development process of future visualization and dissemination of biodiversity data through web mapping applications and interactive atlases.

13.
Nat Plants ; 8(8): 906-914, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953709

RESUMO

Darwin's naturalization hypothesis predicts successful alien invaders to be distantly related to native species, whereas his pre-adaptation hypothesis predicts the opposite. It has been suggested that depending on the invasion stage (that is, introduction, naturalization and invasiveness), both hypotheses, now known as Darwin's naturalization conundrum, could hold true. We tested this by analysing whether the likelihood of introduction for cultivation, as well as the subsequent stages of naturalization and spread (that is, becoming invasive) of species alien to Southern Africa are correlated with their phylogenetic distance to the native flora of this region. Although species are more likely to be introduced for cultivation if they are distantly related to the native flora, the probability of subsequent naturalization was higher for species closely related to the native flora. Furthermore, the probability of becoming invasive was higher for naturalized species distantly related to the native flora. These results were consistent across three different metrics of phylogenetic distance. Our study reveals that the relationship between phylogenetic distance to the native flora and the success of an alien species changes from one invasion stage to the other.


Assuntos
Ecossistema , Espécies Introduzidas , Adaptação Fisiológica , Filogenia , Plantas
14.
New Phytol ; 236(3): 1140-1153, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35637602

RESUMO

Invasive plants can change soil properties resulting in improved growth. Although invaders are known to alter soil chemistry, it remains unclear if chemicals secreted by roots facilitate invasive plant-soil mutualisms. With up to 19 confamilial pairs of invasive and native plants, and most of which were congeners, we explored the root exudate-induced changes in plant-arbuscular mycorrhizal (AM) fungal mutualisms. We found that, relative to natives, invaders had greater AM colonization, greater biomass and their root exudates contained higher concentrations of two common chemical signals - quercetin and strigolactones - which are known to stimulate AM fungal growth and root colonization. An exudate exchange experiment showed that root exudates from invaders increased AM colonization more than exudates from natives. However, application of activated carbon led to greater reduction in AM colonization and plant biomass for invaders than natives, suggesting stronger effects of chemical signals in root exudates from invaders. We show that nonnative plants promote interactions with soil mutualists via enhancing root exudate chemicals, which could have important implications for invasion success.


Assuntos
Micorrizas , Solo , Carvão Vegetal/farmacologia , Exsudatos e Transudatos , Raízes de Plantas/microbiologia , Plantas , Quercetina/farmacologia , Solo/química , Microbiologia do Solo
15.
Methods ; 203: 498-510, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167916

RESUMO

For the last two years, the COVID-19 pandemic has continued to bring consternation on most of the world. According to recent WHO estimates, there have been more than 5.6 million deaths worldwide. The virus continues to evolve all over the world, thus requiring both vigilance and the necessity to find and develop a variety of therapeutic treatments, including the identification of specific antiviral drugs. Multiple studies have confirmed that SARS-CoV-2 utilizes its membrane-bound spike protein to recognize human angiotensin-converting enzyme 2 (ACE2). Thus, preventing spike-ACE2 interactions is a potentially viable strategy for COVID-19 treatment as it would block the virus from binding and entering into a host cell. This work aims to identify potential drugs using an in silico approach. Molecular docking was carried out on both approved drugs and substances previously tested in vivo. This step was followed by a more detailed analysis of selected ligands by molecular dynamics simulations to identify the best molecules that thwart the ability of the virus to interact with the ACE2 receptor. Because the SARS-CoV-2 virus evolves rapidly due to a plethora of immunocompromised hosts, the compounds were tested against five different known lineages. As a result, we could identify substances that work well on individual lineages and those showing broader efficacy. The most promising candidates among the currently used drugs were zafirlukast and simeprevir with an average binding affinity of -22 kcal/mol for spike proteins originating from various lineages. The first compound is a leukotriene receptor antagonist that is used to treat asthma, while the latter is a protease inhibitor used for hepatitis C treatment. From among the in vivo tested substances that concurrently exhibit promising free energy of binding and ADME parameters (indicating a possible oral administration) we selected the compound BDBM50136234. In conclusion, these molecules are worth exploring further by in vitro and in vivo studies against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias
17.
Nat Commun ; 12(1): 7290, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911960

RESUMO

Regional species assemblages have been shaped by colonization, speciation and extinction over millions of years. Humans have altered biogeography by introducing species to new ranges. However, an analysis of how strongly naturalized plant species (i.e. alien plants that have established self-sustaining populations) affect the taxonomic and phylogenetic uniqueness of regional floras globally is still missing. Here, we present such an analysis with data from native and naturalized alien floras in 658 regions around the world. We find strong taxonomic and phylogenetic floristic homogenization overall, and that the natural decline in floristic similarity with increasing geographic distance is weakened by naturalized species. Floristic homogenization increases with climatic similarity, which emphasizes the importance of climate matching in plant naturalization. Moreover, floristic homogenization is greater between regions with current or past administrative relationships, indicating that being part of the same country as well as historical colonial ties facilitate floristic exchange, most likely due to more intensive trade and transport between such regions. Our findings show that naturalization of alien plants threatens taxonomic and phylogenetic uniqueness of regional floras globally. Unless more effective biosecurity measures are implemented, it is likely that with ongoing globalization, even the most distant regions will lose their floristic uniqueness.


Assuntos
Plantas/classificação , Biodiversidade , Clima , Ecossistema , Espécies Introduzidas/estatística & dados numéricos , Filogenia
18.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575896

RESUMO

For the last 20 years, it has been common lore that the free energy of RNA duplexes formed from canonical Watson-Crick base pairs (bps) can be largely approximated with dinucleotide bp parameters and a few simple corrective constants that are duplex independent. Additionally, the standard benchmark set of duplexes used to generate the parameters were GC-rich in the shorter duplexes and AU-rich in the longer duplexes, and the length of the majority of the duplexes ranged between 6 and 8 bps. We were curious if other models would generate similar results and whether adding longer duplexes of 17 bps would affect the conclusions. We developed a gradient-descent fitting program for obtaining free-energy parameters-the changes in Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), and the melting temperature (Tm)-directly from the experimental melting curves. Using gradient descent and a genetic algorithm, the duplex melting results were combined with the standard benchmark data to obtain bp parameters. Both the standard (Turner) model and a new model that includes length-dependent terms were tested. Both models could fit the standard benchmark data; however, the new model could handle longer sequences better. We developed an updated strategy for fitting the duplex melting data.


Assuntos
RNA de Cadeia Dupla/química , Algoritmos , Pareamento de Bases , Entropia , Modelos Lineares , Modelos Genéticos , Modelos Estatísticos , Modelos Teóricos , Distribuição Normal , Conformação de Ácido Nucleico , Temperatura , Termodinâmica
19.
Commun Biol ; 4(1): 1128, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561537

RESUMO

Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.


Assuntos
Biodiversidade , Micorrizas/fisiologia , Dispersão Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Simbiose
20.
Biodivers Data J ; 9: e67318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385884

RESUMO

BACKGROUND: The Pacific Region has the highest density of naturalised plant species worldwide, which makes it an important area for research on the ecology, evolution and biogeography of biological invasions. While different data sources on naturalised plant species exist for the Pacific, there is no taxonomically and spatially harmonised database available for different subsets of species and islands. A comprehensive, accessible database containing the distribution of naturalised vascular plant species in the Pacific will enable new basic and applied research for researchers and will be an important information source for practitioners working in the Region. NEW INFORMATION: Here, we present PacIFlora, an updated and taxonomically standardised list of naturalised species, their unified nativeness, cultivation and invasive status and their distribution across the Pacific Ocean, including harmonised location denoination. This list is based on the two largest databases on naturalised plants for the Region, specifically the Pacific Island Ecosystems at Risk (PIER) and the Global Naturalised Alien Flora (GloNAF) databases. We provide an outlook for how this database can contribute to numerous research questions and conservation efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...