Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442015

RESUMO

A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the Γ̅ point and canting of spins at the K̅ point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at K̅ is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the Γ̅ point and 8 meV K̅-K'¯ valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.

2.
Nano Lett ; 20(7): 4761-4767, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510961

RESUMO

We present laser-induced photothermal synthesis of atomically precise graphene nanoribbons (GNRs). The kinetics of photothermal bottom-up GNR growth are unravelled by in situ Raman spectroscopy carried out in ultrahigh vacuum. We photothermally drive the reaction steps by short periods of laser irradiation and subsequently analyze the Raman spectra of the reactants in the irradiated area. Growth kinetics of chevron GNRs (CGNRs) and seven atoms wide armchair GNRs (7-AGNRs) is investigated. The reaction rate constants for polymerization, cyclodehydrogenation, and interribbon fusion are experimentally determined. We find that the limiting rate constants for CGNR growth are several hundred times smaller than for 7-AGNR growth and that interribbon fusion is an important elementary reaction occurring during 7-AGNR growth. Our work highlights that photothermal synthesis and in situ Raman spectroscopy are a powerful tandem for the investigation of on-surface reactions.

3.
Nat Commun ; 11(1): 1340, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165617

RESUMO

We show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compared to bulk Cs. We investigate its electronic structure using angle-resolved photoemission spectroscopy and show the coexistence of massless Dirac and massive Schrödinger charge carriers in two dimensions. Analysis of the electronic self-energy of the massive charge carriers reveals the crystallographic direction in which a two-dimensional Fermi gas is realized. Our work introduces the growth of strained metal quantum wells on intercalated Dirac matter.

4.
ACS Nano ; 14(1): 1055-1069, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31825586

RESUMO

A flat energy dispersion of electrons at the Fermi level of a material leads to instabilities in the electronic system and can drive phase transitions. Here we show that the flat band in graphene can be achieved by sandwiching a graphene monolayer by two cesium (Cs) layers. We investigate the flat band by a combination of angle-resolved photoemission spectroscopy experiment and the calculations. Our work highlights that charge transfer, zone folding of graphene bands, and the covalent bonding between C and Cs atoms are the origin of the flat energy band formation. Analysis of the Stoner criterion for the flat band suggests the presence of a ferromagnetic instability. The presented approach is an alternative route for obtaining flat band materials to twisting bilayer graphene which yields thermodynamically stable flat band materials in large areas.

5.
ACS Nano ; 13(9): 10210-10220, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31442021

RESUMO

For quasi-freestanding 2H-TaS2 in monolayer thickness grown by in situ molecular beam epitaxy on graphene on Ir(111), we find unambiguous evidence for a charge density wave close to a 3 × 3 periodicity. Using scanning tunneling spectroscopy, we determine the magnitude of the partial charge density wave gap. Angle-resolved photoemission spectroscopy, complemented by scanning tunneling spectroscopy for the unoccupied states, makes a tight-binding fit for the band structure of the TaS2 monolayer possible. As hybridization with substrate bands is absent, the fit yields a precise value for the doping of the TaS2 layer. Additional Li doping shifts the charge density wave to a 2 × 2 periodicity. Unexpectedly, the bilayer of TaS2 also displays a disordered 2 × 2 charge density wave. Calculations of the phonon dispersions based on a combination of density-functional theory, density-functional perturbation theory, and many-body perturbation theory enable us to provide phase diagrams for the TaS2 charge density wave as functions of doping, hybridization, and interlayer potentials, and offer insight into how they affect lattice dynamics and stability. Our theoretical considerations are consistent with the experimental work presented and shed light on previous experimental and theoretical investigations of related systems.

6.
Nano Lett ; 18(9): 6045-6056, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157652

RESUMO

We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 1014 cm-2 is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by ∼60 cm-1. The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.

7.
ACS Nano ; 12(8): 7571-7582, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30004663

RESUMO

We investigate the electronic and vibrational properties of bottom-up synthesized aligned armchair graphene nanoribbons of N = 7 carbon atoms width periodically doped by substitutional boron atoms (B-7AGNRs). Using angle-resolved photoemission spectroscopy and density functional theory calculations, we find that the dopant-derived valence and conduction band states are notably hybridized with electronic states of Au substrate and spread in energy. The interaction with the substrate leaves the bands with pure carbon character rather unperturbed. This results in an identical effective mass of ≈0.2 m0 for the next-highest valence band compared with pristine 7AGNRs. We probe the phonons of B-7AGNRs by ultrahigh-vacuum (UHV) Raman spectroscopy and reveal the existence of characteristic splitting and red shifts in Raman modes due to the presence of substitutional boron atoms. Comparing the Raman spectra for three visible lasers (red, green, and blue), we find that interaction with gold suppresses the Raman signal from B-7AGNRs and the energy of the green laser (2.33 eV) is closer to the resonant E22 transition. The hybridized electronic structure of the B-7AGNR-Au interface is expected to improve electrical characteristics of contacts between graphene nanoribbon and Au. The Raman fingerprint allows the easy identification of B-7AGNRs, which is particularly useful for device fabrication.

8.
Dalton Trans ; 47(9): 2986-2991, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29215105

RESUMO

We report on the synthesis and spectroscopic characterization of alkali metal intercalated ZrSe2 single crystals. ZrSe2 is produced by chemical vapour transport and then Li is intercalated. Intercalation is performed from the liquid phase (via butyllithium) and from the vapour phase. Raman spectroscopy of intercalated ZrSe2 reveals phonon energy shifts of the Raman active A1g and Eg phonon modes, the disappearance of two-phonon modes and new low wavenumber Raman modes. Angle-resolved photoemission spectroscopy is used to perform a mapping of the Fermi surface revealing an electron concentration of 4.7 × 1014 cm-2. We also perform vapour phase intercalation of K and Cs into ZrSe2 and observe similar changes in the Raman modes as for the Li case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...