Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.440
Filtrar
1.
Meat Sci ; 171: 108282, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32858421

RESUMO

Pseudomonas have a faster growth rate over other bacteria in chilled meat under aerobic conditions. A non-destructive method for modelling the dynamic growth of Pseudomonas in pork stored at different temperatures using gas sensors was presented in our work. Based on selected gas sensor data, the first-order kinetic equations (Gompertz and Logistic Functions) combined with the secondary model (Square-root Function) effectively simulated Pseudomonas growth in pork at different temperatures with R2 and RMSE values of 0.71-0.97 and 0.27-0.84, respectively. Additionally, these models showed high accuracy with correlation coefficients greater than 0.90, in addition to several individual accuracy values. Furthermore, HS-SPME/GC-MS results demonstrated the presence of identified key volatiles in samples inoculated with Pseudomonas, including three amine compounds (mercaptamine, 1-octanamine and 1-heptadecanamine), phenol and indole. Our work showed that gas sensors are a rapid, easy and non-destructive method with acceptable feasibility in modelling the dynamic growth of spoilage microorganisms in meat.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33131783

RESUMO

Hyperbranched molecules are a kind of promising materials due to their unique structures. In this work, two hyperbranched molecules (GON and GOH) are used as effective inhibitors for Al alloys in NaCl solution. Their inhibitive performances are evaluated by electrochemical measurements and surface characterization. The results indicate that inhibition performances of GON and GOH are closely related to the concentrations, influenced by the combination of steric hindrance and bonding effects. At relatively low concentrations (0.03-0.10 mM), GON displays a more pronounced ability to inhibit corrosion than GOH, owing to more anchoring functional groups. Oppositely, GOH has good inhibition performance at higher concentrations (0.50-1.00 mM). The interaction between the Al electrode and GOH results in the formation of a more condenser protective film than GON at high concentrations. In addition, the adsorption mechanism of two hyperbranched molecules is revealed by theoretical calculations.

3.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182574

RESUMO

A pyrimidine moiety exhibiting a wide range of pharmacological activities has been employed in the design of privileged structures in medicinal chemistry. To prepare libraries of novel heterocyclic compounds with potential biological activities, a series of novel 2-(pyridin-2-yl) pyrimidine derivatives were designed, synthesized and their biological activities were evaluated against immortalized rat hepatic stellate cells (HSC-T6). Fourteen compounds were found to present better anti-fibrotic activities than Pirfenidone and Bipy55'DC. Among them, compounds ethyl 6-(5-(p-tolylcarbamoyl)pyrimidin-2-yl)nicotinate (12m) and ethyl 6-(5-((3,4-difluorophenyl)carbamoyl)pyrimidin-2-yl)nicotinate (12q) show the best activities with IC50 values of 45.69 µM and 45.81 µM, respectively. Furthermore, the study of anti-fibrosis activity was evaluated by Picro-Sirius red staining, hydroxyproline assay and ELISA detection of Collagen type I alpha 1 (COL1A1) protein expression. Our study showed that compounds 12m and 12q effectively inhibited the expression of collagen, and the content of hydroxyproline in cell culture medium in vitro, indicating that compounds 12m and 12q might be developed the novel anti-fibrotic drugs.

4.
BMC Urol ; 20(1): 182, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172469

RESUMO

BACKGROUND: Aggressive angiomyxoma (AA) is a rare tumor that typically occurs in the pelvis and perineum, most commonly in women of reproductive age. However, no para-ureteral AA has been reported according to the literature. Case presentation We herein describe the first case of para-ureteral AA. A 62-year-old male presented to our institute in March 2017 with a para-ureteral mass that was 15 mm in diameter incidentally. No symptom was observed and laboratory analysis was unremarkable. Magnetic resonance and computed tomography imaging showed a non-enhancing mass abutting the left ureter without causing obstruction. Laparoscopic resection of the mass was performed without injury to the ureter. Pathologic and immunohistochemical results were consistent with AA. Till now, no recurrence was noticed. CONCLUSIONS: We reported a rare case of para-ureteral AA, along with a literature review. Early diagnosis, proper surgical plan and long-term close follow-up is recommended for its high risk of recurrence and malignant potential.

5.
Exp Biol Med (Maywood) ; : 1535370220964394, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172301

RESUMO

Previous studies demonstrated that mitochondrial fission arguments the stemness of bone marrow-derived mesenchymal stem cells (BMSCs). Because mitophagy is critical in removing damaged or surplus mitochondrial fragments and maintaining mitochondrial integrity, the present study was undertaken to test the hypothesis that mitophagy is involved in mitochondrial fission-enhanced stemness of BMSCs. Primary cultures of rat BMSCs were treated with tyrphostin A9 (TA9, a potent inducer of mitochondrial fission) to increase mitochondrial fission, which was accompanied by enhanced mitophagy as defined by increased co-staining of MitoTracker Green for mitochondria and LysoTracker Deep Red for lysosomes, as well as the increased co-localization of autophagy markers (LC3B, P62) and mitochondrial marker (Tom20). A mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) was used to promote mitophagy, which was confirmed by an increased co-localization of mitochondrial and lysosome biomarkers. The argumentation of mitophagy was associated with enhanced stemness of BMSCs as defined by increased expression of stemness markers Oct4 and Sox2, and enhanced induction of BMSCs to adipocytes or osteocytes. Conversely, transfection of BMSCs with siRNA targeting mitophagy-essential genes Pink1/Prkn led to diminished stemness of the stem cells, as defined by depressed stemness markers. Importantly, concomitant promotion of mitochondrial fission and inhibition of mitophagy suppressed the stemness of BMSCs. These results thus demonstrate that mitophagy is critically involved in mitochondrial fission promotion of the stemness of BMSCs.

6.
Food Funct ; 11(11): 10170-10181, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164019

RESUMO

This study aimed at investigating the anticancer activity of an exopolysaccharide (EPS) isolated from Lactobacillus helveticus MB2-1. The crude EPS from L. helveticus MB2-1 (LHEPS) was fractionated into three fractions, namely LHEPS-1, LHEPS-2 and LHEPS-3. LHEPS-1 exhibited the most effective anti-proliferative activity, which was associated with a stronger inhibition rate and increased lactate dehydrogenase leakage of human colon cancer HT-29 cells. Flow cytometry analysis and colorimetric assay revealed that LHEPS-1 induced cell cycle arrest by preventing G1 to S transition and increased the apoptosis rate. Furthermore, LHEPS-1 enhanced the production of intracellular reactive oxygen species (ROS) and the activity of caspases-8/9/3, increased the levels of pro-apoptotic Bax and mitochondrial cytochrome c, while decreased the anti-apoptotic Bcl-2 level, indicating that LHEPS-1 might induce the apoptosis of HT-29 cells through a ROS-dependent pathway and a mitochondria-dependent pathway. These findings suggest that LHEPS-1 may be developed as an effective food and/or drug for the prevention and therapeutics of cancer, especially human colon cancer.

7.
Vet Microbiol ; 251: 108917, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181437

RESUMO

Porcine epidemic diarrhea virus (PEDV) has been prevalent for many years. The viral spike (S) protein is the major target of neutralizing antibodies. However, there is little understanding of the locations of the neutralizing antibody epitopes in the spike structure. Here, we used a polyclonal antibody (pAb) against PEDV and a neutralizing monoclonal antibody (mAb) to isolate escape mutants of PEDV strain LNCT2. Finally, we isolated an escape mutant strain of PEDV, mutant-1B9, but still neutralized by the pAb. Analysis showed two regions deleted in the S protein which allowed mutant-1B9 to escape neutralization by mAb 1B9. These results suggest the deleted amino acids participate in the formation of conformational epitope and provides valuable information for mapping conformational epitopes. Importantly, no PEDV escape mutants were generated by treatment with pAbs, which suggests the potential utility of pAbs or combination therapies based on several mAbs in controlling PEDV infections.

8.
Polymers (Basel) ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218149

RESUMO

In the present study, a novel graft modified flocculant CTS-g-PAMD was synthesized and applied to conduct sludge conditioning and dewatering. CTS-g-PAMD was copolymerized with AM, DMC and chitosan (CTS) under UV-H2O2 initiation. In addition, the effects of single factor experiments on the molecular weight (MW) CTS grafting efficiency (GE) of CTS-g-PAMD were determined and the optimal copolymerization conditions were achieved. The GE of CTS-g-PAMD reached 91.1% and the MW was 4.82 × 106 Da. As revealed from the characterized results of Fourier-transform infrared spectra (FT-IR), 1H/ NMR, X-ray diffraction (XRD), scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS), the successful synthesis of CTS-g-PAMD was confirmed, which is considered to be conducive to explaining sludge dewatering performance. Under the optimal conditions (pH = 7.0, flocculant dosage = 35 mg/L), the best flocculating performance (FCMC: 73.7%; SRF: 4.7 × 1012 m·kg-1, turbidity: 9.4 NTU) and large and dense sludge flocs (floc size d50 = 379.142 µm, floc fractal dimension Df = 1.58) were formed. The DMC and CTS chain segments exhibiting cationic properties significantly improved the positive charge density and enhanced the electrical patching effect of CTS-g-PAMD. The long molecular chain of CTS-g-PAMD exhibited superior extensibility, which enhanced bridging effect on adsorption. Moreover, the sludge floc after undergoing CTS-g-PAMD conditioning exhibited robust shear resistance and regeneration ability. After the sludge floc was crushed and broken, a large and dense sludge floc was formed, helping significantly reduce the sludge specific resistance (SRF), turbidity and cake moisture content (FCMC) and enhance the sludge dewatering effect. The novel CTS-g-PAMD flocculant shows promising practical applications and high market value.

9.
Chemosphere ; : 128869, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33218724

RESUMO

Problems caused by harmful algal blooms have attracted worldwide attention due to their severe harm to aquatic ecosystems, prompting researchers to study applicable measures to inhibit the growth of algae. Allelochemicals, as secondary metabolites secreted by plants, have excellent biocompatibility, biodegradability, obvious algal inhibiting effect and little ecological harm, and have promising application prospect in the field of water ecological restoration. This review summarized the research progress of allelochemicals, including (i) definition, development, and classification, (ii) influencing factors and mechanism of algal inhibition, (iii) the preparation methods of algal inhibitors based on allelochemicals. The future research directions of allelochemicals sustained-released microspheres (SRMs) were also prospected. In the future, it is urgent to explore more efficient allelochemicals, to study the regulation mechanism of allelochemicals in natural water bodies, and to improve the preparation method of allelopathic algal suppressant. This paper proposed a feasible direction for the development of allelochemicals SRMs which exhibited certain guiding significance for their application in water ecological restoration.

10.
Epilepsia ; 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33165921

RESUMO

Focal limbic seizures can cause loss of consciousness. Previous work suggests that hippocampal seizures can increase activity in the lateral septum (LS) and decrease cholinergic output from the basal forebrain (BF), leading to deficits in conscious arousal. The mechanism by which LS and BF interact is unclear. In this study, we used anterograde and retrograde tracing to investigate anatomical pathways connecting LS and BF. We found that LS projects directly to BF and indirectly to BF via the thalamic paratenial nucleus (PT). Acute electrophysiology experiments during electrically induced focal limbic seizures showed that multiunit activity decreased in PT during the ictal period and was associated with increased cortical slow wave activity. These results suggest that LS could functionally inhibit BF during a seizure directly, or could indirectly decrease excitatory output to BF through PT. Further work investigating such parallel inhibitory and excitatory pathways to subcortical arousal may ultimately lead to new treatment targets for consciousness-impairing limbic seizures.

11.
NMR Biomed ; : e4416, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33063400

RESUMO

Quantitative mapping of MR tissue parameters such as the spin-lattice relaxation time (T1 ), the spin-spin relaxation time (T2 ), and the spin-lattice relaxation in the rotating frame (T1ρ ), referred to as MR relaxometry in general, has demonstrated improved assessment in a wide range of clinical applications. Compared with conventional contrast-weighted (eg T1 -, T2 -, or T1ρ -weighted) MRI, MR relaxometry provides increased sensitivity to pathologies and delivers important information that can be more specific to tissue composition and microenvironment. The rise of deep learning in the past several years has been revolutionizing many aspects of MRI research, including image reconstruction, image analysis, and disease diagnosis and prognosis. Although deep learning has also shown great potential for MR relaxometry and quantitative MRI in general, this research direction has been much less explored to date. The goal of this paper is to discuss the applications of deep learning for rapid MR relaxometry and to review emerging deep-learning-based techniques that can be applied to improve MR relaxometry in terms of imaging speed, image quality, and quantification robustness. The paper is comprised of an introduction and four more sections. Section 2 describes a summary of the imaging models of quantitative MR relaxometry. In Section 3, we review existing "classical" methods for accelerating MR relaxometry, including state-of-the-art spatiotemporal acceleration techniques, model-based reconstruction methods, and efficient parameter generation approaches. Section 4 then presents how deep learning can be used to improve MR relaxometry and how it is linked to conventional techniques. The final section concludes the review by discussing the promise and existing challenges of deep learning for rapid MR relaxometry and potential solutions to address these challenges.

12.
J Ethnopharmacol ; 266: 113438, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33017635

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The roots of Rubia yunnanensis Diels (Chinese name 'Xiao-Hong-Shen'), a traditional Chinese medicine native to Yunnan province (China), have a long history of use for treating several diseases, such as tuberculosis, rheumatism and cancers. A bicyclic hexapeptidic glucoside named RA-XII was isolated from R. yunnanensis, which has been reported to exert anti-inflammatory and antitumor activities. AIM OF THE STUDY: This study was designed to investigate the antitumor activity and potential mechanism of RA-XII on colorectal cancer (CRC) cell lines. MATERIALS AND METHODS: Sulforhodamine B assay, clonogenic assay and cell cycle analysis were conducted to assess the anti-proliferative activity of RA-XII on CRC cells. GFP-LC3B plasmid transfection, MDC and AO staining assays, cathepsin activity assay, and siRNAs against several genes were used to investigate the effect of RA-XII on autophagy. Western blotting was used to examine the expression levels of proteins associated with cell cycle arrest, apoptosis and autophagy. Human CRC xenograft-bearing BALB/c nude mice were used to evaluate the antitumor effect of RA-XII in vivo. RESULTS: RA-XII showed favorable antineoplastic activity in SW620 and HT29 cells in vitro and in vivo. RA-XII did not induce apoptosis indicated by no obvious changes on mitochondrial membrane potential and apoptosis-related marker proteins in SW620 or HT29 cells. Treatment of RA-XII inhibited the formation of autophagosomes, which is implied by the GFP-LC3 fluorescent dots, MDC-stained autophagic vesicles and LC3 protein expression. It was indicated that RA-XII suppressed autophagy by regulating several signaling pathways including mTOR and NF-κB pathways. Pharmacological or genetic inhibition of autophagy could enhance the cytotoxicity of RA-XII while autophagy inducer could rescue RA-XII-induced cell death. Besides, RA-XII could increase the susceptibility of CRC cells to bortezomib. CONCLUSION: Our study demonstrated that RA-XII exerted antitumor activity independent of apoptosis, and suppressed protective autophagy by regulating mTOR and NF-κB pathways in SW620 and HT29 cell lines, which suggested that RA-XII is a key active ingredient for the cancer treatment of Rubia yunnanensis and possesses a promising prospect as an autophagy inhibitor for CRC therapy.

13.
Sci Rep ; 10(1): 17881, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087758

RESUMO

The prognostic role of marital status on colorectal signet ring cell carcinoma (SRCC) has not been studied. In this study, the correlation of marital status with prognosis of colorectal SRCC was analyzed. Eligible subjects were extracted from the Surveillance, Epidemiology, and End Results (SEER) dataset from 2004 to 2015, followed by comparison of cancer-specific survival (CSS) and overall survival (OS) between married and unmarried group. 3152 patients were identified including 1777 married patients (56.38%). Married populations tended to be more patients aged < 65, male, receiving chemotherapy, and less black race and large tumor size compared to unmarried group (all P < 0.05).Moreover, 5-year CSS (30.04% vs. 28.19%, P = 0.0013) and OS rates (26.68% vs. 22.94%, P < 0.0001) were superior in married population. Multivariate analysis revealed that marital status was an independent favorable prognostic indicator, and married population had better CSS (HR: 0.898; 95% CI: 0.822-0.980; P = 0.016) and OS (HR: 0.898; 95%CI: 0.827-0.975; P = 0.011).In addition, CSS as well as OS were superior in married populations than unmarried ones in most subgroups. Marital status was an independent prognostic factor for survival in patients with colorectal SRCC. Additionally, married patients obtained better survival advantages.

14.
Chemosphere ; 264(Pt 2): 128525, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33038737

RESUMO

The fine molecular structure of a flocculant fundamentally determines the internal flocculation mechanism and the final application property. In this work, three series of chitosan-based polymers (CTS-g-PAMD) with divergent charge densities and graft chain distribution were synthesized by graft copolymerization using acrylamide (AM) and acryloyloxyethyltrimethylammonium chloride (DAC). Meanwhile, flocculant with linear chain structure (CTS-CTA) was prepared by etherification using 3-chloro-2-hydroxypropyltrimethylammonium chloride (CTA). The characterization results confirmed that various monomers had been successfully introduced into chitosan. The reaction basically happened on -NH2 at C2 of chitosan, and the ring structure of chitosan was destroyed by free radical reaction. The obtained flocculants were used to flocculate bentonite and humic acid solution. Besides dose, the effects of chain structure, charge density and chain distribution on flocculation performance were systematically studied. Based on the fractal theory and flocculation kinetics, the effects of structural factors on floc characteristics were also investigated. The results showed that, flocculant with abundant graft chains exerts better flocculation performance and floc characteristic due to enhanced adsorption electrical neutralization and adsorption bridging effect. The effects of charge density and chain distribution on the flocculation performance were disparate in the range of insufficient and excessive doses. Furthermore, on the basis of the quadratic polynomial model, quantitative structure-effect relationships were established, which has guiding significance for the development and utilization of flocculants.

15.
Chemosphere ; 264(Pt 2): 128515, 2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33070061

RESUMO

With the widespread use, chlorinated organophosphorus flame retardants (Cl-OPFRs) as a new emerging contaminant have been widely detected in water environments over the last few years. In this study, the degradation of a typical Cl-OPFR, TCEP (tris (2-chloroethyl) phosphate), by electrochemical reduction was investigated. It was found that copper (Cu) foam as the cathode showed more rapid and effective degradation for TCEP, compared to other cathodes. When TCEP was at the low concentrations (0.1 and 1 mg L-1), its degradation by Cu foam could reach above 95% within 20 min, and the maximum rate constant was 0.127 min-1. TCEP reduction was little influenced by the co-existing humic substance and anions, except Cl-. Compared with the reported oxidation methods, electrochemical reduction showed fast and stable degradation for TCEP. For other types of Cl-OPFRs, electrochemical reduction displayed a fast and effective removal for tris (1,3-dichloro-2-propyl) phosphate but lower removal for tris (2-cholroisopropyl) phosphate who possessed methyl units in the branched chains, influencing its reducibility. Based on the product analysis and Fukui function calculation, the bonds of TCEP molecule were found to be gradually broken, and the three oxygen-ethyl-chlorine arms were cleaved one by one. The products including C6H13Cl2O4P (MW = 249.99278 Da), C4H9Cl2O4P (MW = 221.96105 Da) and C4H10ClO4P (MW = 188.0002 Da) were detected at 60 min reaction, and those intermediates showed much lower toxicities than TCEP according to the previous report. The findings may provide a promising treatment for Cl-OPFRs removal from aqueous environments and help understand their reductive fate.

16.
J Colloid Interface Sci ; 583: 243-254, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002696

RESUMO

Metal metaphosphates, particularly those with core-shell structure, have showed extraordinary potential in energy storage field due to their superior chemical and physical properties. However, the core-shell metal metaphosphates with high energy density in supercapacitor application is rarely reported. Here, the core-shell structured Ni(OH)2/Ni(PO3)2 (NNP) hybrid electrode were prepared by one-step electrodeposition, which exhibits a superior specific capacitance of 1477 F g-1 at a current density of 1 A g-1. Furthermore, an aqueous asymmetric supercapacitor (ASC) based on NNP hybrid composite as cathode and reduced graphene oxide (rGO) as anode is assembled successfully to deliver a prominent energy density of 67 Wh kg-1 at 775 W kg-1 and splendid stability with capacitance retention of 81% after 8000 cycles. The outstanding electrochemical capabilities are attributed to the porous nanoflake and hierarchical core-shell structure of NNP hybrid composite, which can accelerate ion diffusion and charge transfer in redox reaction. These results indicate that nanohybrid NNP material has promise to be an advanced energy storage material.

18.
Plant Cell ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077493

RESUMO

In plants, small RNAs (sRNAs) that are 22 nucleotides (nt) in length have the unique capacity to trigger the production of secondary small interfering RNAs (siRNAs) and further enhance silencing. While DCL2-dependent 22-nt siRNAs are rare in Arabidopsis and thought to have few functions except during viral infection, they are abundant in many major crops such as soybean and maize. Here, we studied the endogenous 22-nt siRNAs in Glycine max by applying CRISPR-Cas9 genome editing technology to simultaneously knock out the two copies of soybean DCL2, GmDCL2a and GmDCL2b, in the Tianlong1 cultivar. sRNA sequencing revealed that the majority of 22-nt siRNAs are derived from long inverted repeats (LIRs) and disappeared in Gmdcl2a/2b double mutant. By de novo assembly of a Tianlong1 reference genome and transcriptome profiling, we found an intron-located LIR formed by chalcone synthase (CHS) genes CHS1 and CHS3. This LIR is the source of the primary 22-nt siRNAs that target other CHS family genes and trigger the production of secondary 21-nt siRNAs. Disruption of this process in Gmdcl2a/2b substantially increased the level of CHS mRNAs in the seed coat, and changed the color from yellow to brown. Our results demonstrated that endogenous LIR-derived transcripts in soybean are predominately processed by GmDCL2 into 22-nt siRNAs, and uncovered a previously overlooked role of DCL2 in regulating natural traits.

19.
Macromol Biosci ; : e2000226, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33094556

RESUMO

Biodegradable poly(ε-caprolactone) (PCL) scaffolds with adipose-derived mesenchymal stem cells (ADSCs) have been used in vascular regeneration studies. An evaluation method of the effect of PCL degradation products (DP) on the viability, stemness, and differentiation capacities of ADSCs is established. ADSCs are cultured in medium containing different concentrations of PCL DP before evaluating the effect of PCL DP on the cell apoptosis and proliferation, cell surface antigens, adipogenic and osteogenic differentiation capacities, and capacities to differentiate into endothelial cells and smooth muscle cells. The results demonstrate that PCL DP exceed 0.05 mg mL-1 may change the stemness and differentiation capacities of ADSCs. Therefore, to control the proper concentration of PCL DP is essential for ADSCs in vascular regeneration application.

20.
Dalton Trans ; 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33094765

RESUMO

The eCO2RR activity is correlated to the internal structural character of the catalyst. We employed two types of structural models of porphyrin-based MOFs of PCN-222(Cu) and PCN-224(Cu) into heterogeneous catalysis to illustrate the effect of structural factors on the eCO2RR performance. The composite catalyst PCN-222(Cu)/C displays better activity and selectivity (η = 450 mV, FEHCOOH = 44.3%, j = 3.2 mA cm-2) than PCN-224(Cu)/C (η = 450 mV, FEHCOOH = 34.1%, j = 2.4 mA cm-2) for the CO2 reduction to HCOOH in the range of -0.7--0.9 V (vs. RHE) due to its higher BET surface area, CO2 uptake, and a larger pore diameter. It is interesting that PCN-224(Cu)/C displays better performance in the range of -0.4--0.6 V (vs. RHE) due to its greater heat of adsorption, Qst and a higher affinity for CO2 molecule, which could promote the capture of CO2 onto the exposed active sites. As a result, PCN-224(Cu)/C exhibits better stability for the long-term electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA