Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.118
Filtrar
1.
Med Image Anal ; 97: 103252, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38963973

RESUMO

Histopathology image-based survival prediction aims to provide a precise assessment of cancer prognosis and can inform personalized treatment decision-making in order to improve patient outcomes. However, existing methods cannot automatically model the complex correlations between numerous morphologically diverse patches in each whole slide image (WSI), thereby preventing them from achieving a more profound understanding and inference of the patient status. To address this, here we propose a novel deep learning framework, termed dual-stream multi-dependency graph neural network (DM-GNN), to enable precise cancer patient survival analysis. Specifically, DM-GNN is structured with the feature updating and global analysis branches to better model each WSI as two graphs based on morphological affinity and global co-activating dependencies. As these two dependencies depict each WSI from distinct but complementary perspectives, the two designed branches of DM-GNN can jointly achieve the multi-view modeling of complex correlations between the patches. Moreover, DM-GNN is also capable of boosting the utilization of dependency information during graph construction by introducing the affinity-guided attention recalibration module as the readout function. This novel module offers increased robustness against feature perturbation, thereby ensuring more reliable and stable predictions. Extensive benchmarking experiments on five TCGA datasets demonstrate that DM-GNN outperforms other state-of-the-art methods and offers interpretable prediction insights based on the morphological depiction of high-attention patches. Overall, DM-GNN represents a powerful and auxiliary tool for personalized cancer prognosis from histopathology images and has great potential to assist clinicians in making personalized treatment decisions and improving patient outcomes.

2.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949843

RESUMO

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and - according to a structural model - active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

4.
Int J Biol Macromol ; 275(Pt 2): 133741, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986985

RESUMO

BACKGROUND: Sarcopenia, characterized by progressive muscle dysfunction, is a common complication of chronic obstructive pulmonary disease (COPD). Our previous study revealed serum Lipoprotein-associated phospholipaseA2 (Lp-PLA2) level significantly increased in COPD and associated with exercise tolerance. This study further investigated the functions and target potential of Lp-PLA2 for sarcopenia in COPD. METHODS: The circulating Lp-PLA2 level/enzyme activity in COPD patients and age-matched healthy volunteers were measured. Clinical parameters on skeletal muscle were measured and their correlations with Lp-PLA2 were analyzed. We explored the involvement of Lp-PLA2 in vivo and treatment effectiveness of darapladib (a specific Lp-PLA2 inhibitor) in CS-induced muscle dysfunction models. RESULTS: Circulating Lp-PLA2 level/enzyme activity was elevated in COPD patients compared with healthy controls, negatively associated with skeletal muscle mass and function. In CS-induced muscle dysfunction murine models, up-regulated serum Lp-PLA2 level/enzyme activity was verified again. In CS-exposed mouse models, darapladib treatment reversed muscle mass loss and muscle dysfunction, meanwhile rescued upregulation of MuRF1 and atrogin-1, and activation of inflammatory factors, oxidant enzymes and NF-κB signaling. CONCLUSIONS: Lp-PLA2 could be a potential indicator for sarcopenia in COPD. Darapladib, a Lp-PLA2 inhibitor, can alleviate CS-induced skeletal muscle dysfunction and represents a potential therapeutic for sarcopenia in COPD.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39020510

RESUMO

Artificial solid electrolyte interphase (SEI) layers have been widely regarded as an effective protection for lithium (Li) metal anodes. In this work, an artificial SEI film consisting of dense Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and polymerized styrene butadiene rubber is designed, which has good mechanical and chemical stability to effectively prevent Li anode corrosion by the electrolyte. The LLZTO-based SEI film can not only guide Li to uniformly deposit at the interface but also accelerate the electrochemical reaction kinetics due to its high Li+ conductivity. In particular, the high Young's modulus of the LLZTO-based SEI will regulate e- distribution in the continuous Li plating/stripping process and achieve uniform deposition of Li. As a consequence, the Li anode with LLZTO-based SEI (Li@LLZTO) enables symmetric cells to demonstrate a stable overpotential of 25 mV for 600 h at a current density of 1 mA cm-2 for 1 mA h cm-2. The Li@LLZTO||LFP (LiFePO4) full cell exhibits a capacity of 106 mA h g-1 after 800 cycles at 5 C with retention as high as 90%. Our strategy here suggests that the artificial SEI with high Young's modulus effectively inhibits the formation of Li dendrites and provides some guidance for the design of higher performance Li metal batteries.

6.
Biochem Biophys Res Commun ; 731: 150383, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39024977

RESUMO

(R)-selective transaminases have the potential to act as efficient biocatalysts for the synthesis of important pharmaceutical intermediates. However, their low catalytic efficiency and unfavorable equilibrium limit their industrial application. Seven (R)-selective transaminases were identified using homologous sequence mining. Beginning with the optimal candidate from Mycolicibacterium hippocampi, virtual mutagenesis and substrate tunnel engineering were performed to improve catalytic efficiency. The obtained variant, T282S/Q137E, exhibited 3.68-fold greater catalytic efficiency (kcat/Km) than the wild-type enzyme. Using substrate fed-batch and air sweeping processes, effective conversion of 100 mM 4-hydroxy-2-butanone was achieved with a conversion rate of 93 % and an ee value > 99.9 %. This study provides a basis for mutation of (R)-selective transaminases and offers an efficient biocatalytic process for the asymmetric synthesis of (R)-3-aminobutanol.

7.
J Affect Disord ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009310

RESUMO

BACKGROUND: The issue of problematic Internet use (PIU) amongst college students is emerging as a major concern for mental health. Factors such as health literacy, subjective well-being and the extent of social support may be critical in preventing PIU. However, the complex relationship between these factors has not been extensively explored in research. METHODS: A national cross-sectional study based on multistage random sampling was conducted in China in 2022. The subjects for this study were 7669 college students who completed a set of questionnaires assessing their health literacy, subjective well-being, PIU and social support. A structural equation model (SEM) was utilised for exploring the mediating effect of subjective well-being, and the PROCESS macro was used to test the moderating effect of social support. RESULTS: After controlling for demographic factors, a significantly negative correlation was found between health literacy and PIU, and subjective well-being partially mediated this relationship. In addition, social support was negatively related to PIU and could moderate the relationship between health literacy and subjective well-being and between subjective well-being and PIU. LIMITATIONS: This is a cross-sectional study, and the results cannot inform the causality between these variables. CONCLUSION: Results revealed that the relationship between health literacy and PIU was partially mediated by subjective well-being in college students. The correlation between health literacy and subjective well-being and between subjective well-being and PIU were moderated by social support. Thus, future interventions for college students' PIU should be facilitated by improving health literacy, subjective well-being and social support.

9.
Anal Biochem ; 693: 115597, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969155

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.


Assuntos
Técnicas Eletroquímicas , Irídio , Vibrio parahaemolyticus , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/genética , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas/métodos , Irídio/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção , Eletrodos
10.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892413

RESUMO

The stem base of alfalfa is a critical part for its overwintering, regeneration, and yield. To better understand the specificity and importance of the stem base, we analyzed the structure, metabolic substances, and transcriptome of the stem base using anatomical techniques, ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and RNA sequencing (RNA-seq), and compared it with stems and roots. The anatomical structure shows that the ratio of xylem to phloem changes at the base of the stem. A total of 801 compounds involved in 91 metabolic pathways were identified from the broadly targeted metabolome. Transcriptome analysis revealed 4974 differentially expressed genes (DEGs) at the stem base compared to the stem, and 5503 DEGs compared to the root. Comprehensive analyses of differentially accumulated compounds (DACs) and DEGs, in the stem base vs. stem, identified 10 valuable pathways, including plant hormone signal transduction, zeatin biosynthesis, α-Linolenic acid metabolism, histidine metabolism, carbon metabolism, carbon fixation in photosynthetic organisms, pentose phosphate pathway, galactose metabolism, and fructose and mannose metabolism. The pathways of plant hormone signal transduction and carbon metabolism were also identified by comparing the stem base with the roots. Taken together, the stem base of alfalfa is the transition region between the stem and root in morphology; in terms of material metabolism, its growth, development, and function are regulated through hormones and sugars.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa , Caules de Planta , Medicago sativa/metabolismo , Medicago sativa/genética , Caules de Planta/metabolismo , Redes e Vias Metabólicas , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Transcriptoma , Perfilação da Expressão Gênica , Metaboloma , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Reguladores de Crescimento de Plantas/metabolismo
11.
Gene ; 927: 148622, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878988

RESUMO

MYC2 is a class of bHLH family transcription factors and a major regulatory factor in the JA signaling pathway, and its molecular function in tobacco has not been reported. In this study, CRISPR/Cas9-mediated MYC2 gene NtMYC2a knockout mutants at tobacco was obtained and its agronomic traits, disease resistance, and chemical composition were identified. Comparing with the WT, the leaf width of the KO-NtMYC2a was narrowed, the nornicotine content and mecamylamine content increased significantly and the resistance to Ralstonia solanacearum significantly decreased. The transcriptome sequencing results showed that DEGs related to immunity, signal transduction and growth and development were enriched between KO-NtMYC2a and WT. NtJAR1 and NtCOI1 in KO-NtMYC2a were down-regulated to regulating the JA signaling pathway, result in a significant decrease in tobacco's resistance to R. solanacearum. Our research provides theoretical support for the functional research of MYC2 and the study of the mechanism of tobacco bacterial wilt resistance.

12.
Animals (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929400

RESUMO

A 60 day feeding trial was conducted to evaluate the impacts of dietary carbohydrates with different complexities and configurations on the growth, plasma parameters, apparent digestibility, intestinal microbiota, glucose, and lipid metabolism of soft-shelled turtles (Pelodiscus sinensis). Four experimental diets were formulated by adding 170 g/kg glucose, fructose, α-starch, or cellulose, respectively. A total of 280 turtles (initial body weight 5.11 ± 0.21 g) were distributed into 28 tanks and were fed twice daily. The results showed that the best growth performance and apparent digestibility was observed in the α-starch group, followed by the glucose, fructose, and cellulose groups (p < 0.05). Monosaccharides (glucose and fructose) significantly enhanced the postprandial plasma glucose levels and hepatosomatic index compared to polysaccharides, due to the un-inhibited gluconeogenesis (p < 0.05). Starch significantly up-regulated the expression of the genes involved in glycolysis, pentose phosphate pathway, lipid anabolism and catabolism, and the transcriptional regulation factors of glycolipid metabolism (srebp and chrebp) (p < 0.05), resulting in higher plasma triglyceride levels and lipid contents in the liver and the whole body. The fructose group exhibited a lower lipid deposition compared with the glucose group, mainly by inhibiting the expression of srebp and chrebp. Cellulose enhanced the proportion of opportunistic pathogenic bacteria. In conclusion, P. sinensis utilized α-starch better than glucose, fructose, and cellulose.

13.
Micromachines (Basel) ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930701

RESUMO

Magnetic soft microrobots have a wide range of applications in targeted drug therapy, cell manipulation, and other aspects. Currently, the research on magnetic soft microrobots is still in the exploratory stage, and most of the research focuses on a single helical structure, which has limited space to perform drug-carrying tasks efficiently and cannot satisfy specific medical goals in terms of propulsion speed. Therefore, balancing the motion speed and drug-carrying performance is a current challenge to overcome. In this paper, a magnetically controlled cone-helix soft microrobot structure with a drug-carrying function is proposed, its helical propulsion mechanism is deduced, a dynamical model is constructed, and the microrobot structure is prepared using femtosecond laser two-photon polymerization three-dimensional printing technology for magnetic drive control experiments. The results show that under the premise of ensuring sufficient drug-carrying space, the microrobot structure proposed in this paper can realize helical propulsion quickly and stably, and the speed of motion increases with increases in the frequency of the rotating magnetic field. The microrobot with a larger cavity diameter and a larger helical pitch exhibits faster rotary advancement speed, while the microrobot with a smaller helical height and a smaller helical cone angle outperforms other structures with the same feature sizes. The microrobot with a cone angle of 0.2 rad, a helical pitch of 100 µm, a helical height of 220 µm, and a cavity diameter of 80 µm achieves a maximum longitudinal motion speed of 390 µm/s.

14.
Free Radic Biol Med ; 222: 275-287, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925315

RESUMO

As a prevalent neurodegenerative disorder, Parkinson's disease is associated with oxidative stress. Our recent investigations revealed that reactive oxygen species (ROS) and PD-toxins like 6-hydroxydopamine (6-OHDA) can induce neuronal apoptosis through over-activation of Akt signaling. Chlorogenic acid (CGA), a natural acid phenol abundant in the human diet, is well-documented for its ability to mitigate intracellular ROS. In this study, we utilized CGA to treat experimental models of PD both in vitro and in vivo. Our study results demonstrated that SH-SY5Y and primary neurons exhibited cell apoptosis in response to 6-OHDA. Pretreatment with CGA significantly attenuated PD toxins-induced large amount of ROS, inhibiting Erk1/2 activation, preventing Akt inhibition, and hindering neuronal cell death. Combining the Erk1/2 inhibitor U0126 with CGA could reverse 6-OHDA-induced Akt inhibition, ROS, and apoptosis in the cells. Crucially, the Akt activator SC79 and ROS scavenger NAC both could eliminate excessive ROS via Akt and Erk1/2 signaling pathways, and CGA further potentiated these effects in PD models. Behavioral experiments revealed that CGA could alleviate gait abnormalities in PD model mice. The neuroprotective effects have been demonstrated in several endocrine regions and in the substantia nigra tissue, which shows the positive tyrosine hydroxylase (TH). Overall, our results suggest that CGA prevents the activation of Erk1/2 and inactivation of Akt by removing excess ROS in PD models. These findings propose a potential strategy for mitigating neuronal degeneration in Parkinson's disease by modulating the Akt/Erk1/2 signaling pathway through the administration of CGA and/or the use of antioxidants to alleviate oxidative stress.

15.
Front Endocrinol (Lausanne) ; 15: 1344795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899008

RESUMO

Objective: While bone metastases (BMs) are present in a minority of thyroid cancer (TC) patients at the time of initial diagnosis, there has been growing concern regarding their impact on life expectancy and quality of life. The aim of this study was to identify prognostic factors associated with overall survival (OS) and cancer-specific survival (CSS) in these patients and provide therapeutic recommendations based on the findings. Methods: In this retrospective cohort study, we included 82 patients diagnosed as TC with BM received treatment in our department from 2011.03 to 2023.03 (average follow-up duration was 3.02 years). The retrospective study was performed according to the inclusion and exclusion criteria. Kaplan-Meier analysis was used to estimate the OS and CSS, while the univariate and multivariate Cox proportional hazard models were employed to determine prognostic factors associated with OS and CSS. Also, 287 patients' data were collected from the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015 to confirm the prognostic factors identified in the retrospective study. Results: The average survival time of the 82 patients was estimated to be 5.818 years (with a 95% confidence interval (CI) of 4.767 to 6.868 years). The cox regression analysis showed that older age (hazard ratio (HR) = 1.045, 95% CI: 1.001-1.092, P = 0.047), larger tumor size (>5cm, HR = 11.087, 95% CI: 3.728 - 32.976, P = 0.000), and the presence of extraosseous metastasis (HR = 3.247, 95% CI: 1.376 - 7.665, P = 0.007) were statistically significant factors associated with worse CSS. The results were furtherly confirmed in 287 SEER-sourced patients (age (HR = 1.020, 95% CI: 1.006 - 1.034, P = 0.006), tumor size (HR = 2.917, 95% CI: 2.044 - 4.161, P = 0.000), and extraosseous metastasis (HR = 3.726, 95% CI: 2.571 - 5.398, P = 0.000)). Conclusions: These results offer a population-based assessment of prognostic factors for patients with TC and BMs, revealing that age, primary tumor size (>5cm), and presence of extraosseous metastases are independent prognostic factors that correlate with worse survival. Accordingly, treatment for such patients ought to concentrate on systemic integrative therapy instead of surgical intervention.


Assuntos
Neoplasias Ósseas , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/terapia , Masculino , Neoplasias Ósseas/secundário , Neoplasias Ósseas/mortalidade , Feminino , Estudos Retrospectivos , Prognóstico , Pessoa de Meia-Idade , Adulto , Idoso , Taxa de Sobrevida , Seguimentos , Estimativa de Kaplan-Meier , Programa de SEER , Adulto Jovem
16.
Biol Trace Elem Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910164

RESUMO

Humans are exposed to various chemical elements that have been associated with the development and progression of diseases such as coronary artery disease (CAD). Unlike previous research, we employed a multi-element approach to investigate CAD patients and those with comorbid conditions such as diabetes (CAD-DM2), high blood pressure (CAD-HBP), or high blood lipids (CAD-HBL). Plasma concentrations of 21 elements, including lithium (Li), boron (B), aluminum (Al), calcium (Ca), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), strontium (Sr), cadmium (Cd), tin (Sn), stibium (Sb), barium (Ba), and lead (Pb), were measured in CAD patients (n = 201) and healthy subjects (n = 110) using inductively coupled plasma-mass spectrometry (ICP-MS). Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) models were utilized to analyze the ionomic profiles. Spearman correlation analysis was employed to identify the interaction patterns among individual elements. We found that levels of Ba, Li, Ni, Zn and Pb were elevated in the CAD group compared to the healthy group, while Sb, Ca, Cu, Ti, Fe, and Se were lower. Furthermore, the CAD-DM2 group exhibited higher levels of Ni and Cd, while the CAD-HBP group showed lower levels of Co and Mn. In the CAD-HBL group, Ti was increased, whereas Ba, Cr, Cu, Co, Mn, and Ni were reduced. In conclusion, ionomic profiles can be utilized to differentiate CAD patients from healthy individuals, potentially providing insights for future treatment or dietary interventions.

17.
Lung ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910197

RESUMO

INTRODUCTION: Transbronchial lung cryobiopsy (TBLC) is increasingly used to diagnose interstitial lung disease (ILD). The 1.1-mm cryoprobe has recently been available in clinical practice. The diagnostic yield and safety of TBLC using a 1.1-mm cryoprobe need to be confirmed. METHODS: A prospective, randomized controlled trial was conducted in patients with suspected ILD and randomly assigned to 1.1-mm and 1.9-mm cryoprobe groups. The primary outcome was the diagnostic yield of multidisciplinary discussion. Secondary outcomes were sample quality and incidence of complications. The tension and stress effects during TBLC onto the target lobe caused by 1.1-mm and 1.9-mm cryoprobes were also evaluated using finite element analysis. RESULTS: A total of 224 patients were enrolled. No significant differences were observed in the diagnostic yield (80.4% vs. 79.5%, p = 0.845) and sample quality scores (5.73 ± 0.64 vs. 5.66 ± 0.77; p = 0.324) between the 1.9-mm cryoprobe group and 1.1-mm cryoprobe group. The average surface areas of samples in 1.1-mm cryoprobe group were smaller, while no difference in sample weights was observed. A decreased incidence of moderate bleeding was found in the 1.1-mm cryoprobe group (17.0% vs. 6.2%, p = 0.027), while there was no difference in the incidence of the pneumothorax, there was a trend to higher rate of pneumothorax in 1.1-mm group. In finite element analysis, the 1.1-mm cryoprobe required the largest tension and produced the largest stress. CONCLUSION: Compared with a 1.9-mm cryoprobe, there was no difference in specimen quality or diagnostic rate but smaller sample size with a 1.1-mm cryoprobe. There was a decreased risk of moderate bleeding, but a trend towards increased risk for pneumothorax with 1.1-mm cryoprobe. TRAIL REGISTRATION: Clinicaltrials.gov identifier NCT04047667; registered August 4, 2019.

19.
Int J Clin Pharm ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861047

RESUMO

BACKGROUND: Vancomycin trough concentration is closely associated with clinical efficacy and toxicity. Predicting vancomycin trough concentrations in pediatric patients is challenging due to significant inter-individual variability and rapid physiological changes during maturation. AIM: This study aimed to develop a machine learning model to predict vancomycin trough concentrations and determine optimal dosing regimens for pediatric patients < 4 years of age using ML algorithms. METHOD: A single-center retrospective observational study was conducted from January 2017 to March 2020. Pediatric patients who received intravenous vancomycin and underwent therapeutic drug monitoring were enrolled. Seven ML models [linear regression, gradient boosted decision trees, support vector machine, decision tree, random forest, Bagging, and extreme gradient boosting (XGBoost)] were developed using 31 variables. Performance metrics including R-squared (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) were compared, and important features were ranked. RESULTS: The study included 120 eligible trough concentration measurements from 112 patients. Of these, 84 measurements were used for training and 36 for testing. Among the seven algorithms tested, XGBoost showed the best performance, with a low prediction error and high goodness of fit (MAE = 2.55, RMSE = 4.13, MSE = 17.12, and R2 = 0.59). Blood urea nitrogen, serum creatinine, and creatinine clearance rate were identified as the most important predictors of vancomycin trough concentration. CONCLUSION: An XGBoost ML model was developed to predict vancomycin trough concentrations and aid in drug treatment predictions as a decision-support technology.

20.
BMC Pulm Med ; 24(1): 265, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825688

RESUMO

BACKGROUND: Chronic thromboembolic pulmonary hypertension (CTEPH) is a progressive pulmonary vascular disorder with substantial morbidity and mortality, also a disease underdiagnosed and undertreated. It is potentially curable by pulmonary endarterectomy (PEA) in patients with surgically accessible thrombi. Balloon pulmonary angioplasty (BPA) and targeted medical therapy are options for patients with distal lesions or persistent/recurrent pulmonary hypertension after PEA. There is an urgent need to increase the awareness of CTEPH. Qualified CTEPH centers are still quite limited. Baseline characteristics, management pattern and clinical outcome of CTEPH in China needs to be reported. METHODS AND DESIGN: The CHinese reAl-world study to iNvestigate the manaGEment pattern and outcomes of chronic thromboembolic pulmonary hypertension (CHANGE) study is designed to provide the multimodality treatment pattern and clinical outcomes of CTEPH in China. Consecutive patients who are ≥ 14 year-old and diagnosed with CTEPH are enrolled. The diagnosis of CTEPH is confirmed in right heart catheterization and imaging examinations. The multimodality therapeutic strategy, which consists of PEA, BPA and targeted medical therapy, is made by a multidisciplinary team. The blood sample and tissue from PEA are stored in the central biobank for further research. The patients receive regular follow-up every 3 or 6 months for at least 3 years. The primary outcomes include all-cause mortality and changes in functional and hemodynamic parameters from baseline. The secondary outcomes include the proportion of patients experiencing lung transplantation, the proportion of patients experiencing heart and lung transplantation, and changes in health-related quality of life. Up to 31 December 2023, the study has enrolled 1500 eligible patients from 18 expert centers. CONCLUSIONS: As a real-world study, the CHANGE study is expected to increase our understanding of CTEPH, and to fill the gap between guidelines and the clinical practice in the diagnosis, assessment and treatment of patients with CTEPH. REGISTRATION NUMBER IN CLINICALTRIALS.GOV: NCT05311072.


Assuntos
Angioplastia com Balão , Endarterectomia , Hipertensão Pulmonar , Embolia Pulmonar , Humanos , Hipertensão Pulmonar/terapia , China , Embolia Pulmonar/complicações , Embolia Pulmonar/terapia , Doença Crônica , Qualidade de Vida , Resultado do Tratamento , Feminino , Terapia Combinada , Masculino , População do Leste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA