Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neurochem ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661637

RESUMO

The receptor for advanced glycation end products (RAGE) is a protein of the immunoglobulin superfamily capable of regulating inflammation. Considering the role of this receptor in the initiation and establishment of neuroinflammation, and the limited understanding of the function of RAGE in the maintenance of this condition, this study describes the effects of RAGE inhibition in the brain, through an intranasal treatment with the antagonist FPS-ZM1, in an animal model of chronic neuroinflammation induced by acute intraperitoneal injection of lipopolysaccharide (LPS). Seventy days after LPS administration (2 mg/kg, i.p.), Wistar rats received, intranasally, 1.2 mg of FPS-ZM1 over 14 days. On days 88 and 89, the animals were submitted to the open-field test and were killed on day 90 after the intraperitoneal injection of LPS. Our results indicate that blockade of encephalic RAGE attenuates LPS-induced chronic neuroinflammation in different brain regions. Furthermore, we found that intranasal FPS-ZM1 administration reduced levels of gliosis markers, RAGE ligands, and α-synuclein in the substantia nigra pars compacta. Additionally, the treatment also reversed the increase in S100 calcium-binding protein B (RAGE ligand) in the cerebrospinal fluid and the cognitive-behavioral deficits promoted by LPS-less time spent in the central zone of the open-field arena (more time in the lateral zones), decreased total distance traveled, and increased number of freezing episodes. In summary, our study demonstrates the prominent role of RAGE in the maintenance of a chronic neuroinflammatory state triggered by a single episode of systemic inflammation and also points to possible future RAGE-based therapeutic approaches to treat conditions in which chronic neuroinflammation and increased α-synuclein levels could play a relevant role, such as in Parkinson's disease.

2.
Life Sci ; 331: 122076, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683723

RESUMO

The intracellular production of reactive oxygen species (ROS), composed of oxygen-reduced molecules, is important not only because of their lethal effects on microorganisms but also due to their potential inflammatory and metabolic regulation properties. The ROS pro-inflammatory properties are associated with the second signal to inflammasome activation, leading to cleaving pro-IL-1ß and pro-IL18 before their secretion, as well as gasdermin-D, leading to pyroptosis. Some microorganisms can modulate NLRP3 and AIM-2 inflammasomes through ROS production: whilst Mycobacterium bovis, Mycobacterium kansasii, Francisella novicida, Brucella abortus, Listeria monocytogenes, Influenza virus, Syncytial respiratory virus, Porcine reproductive and respiratory syndrome virus, SARS-CoV, Mayaro virus, Leishmania amazonensis and Plasmodium sp. enhance inflammasome assembly, Hepatitis B virus, Mycobacterium marinum, Mycobacterium tuberculosis, Francisella tularensis and Leishmania sp. disrupt it. This process represents a recent cornerstone in our knowledge of the immunology of intracellular pathogens, which is reviewed in this mini-review.


Assuntos
Inflamassomos , Oxigênio , Suínos , Animais , Espécies Reativas de Oxigênio , Vírus da Hepatite B , Interações Microbianas
3.
J Neuroimmunol ; 382: 578171, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562163

RESUMO

Recent research has focused on the link between diet, intestinal microbiota, and the impact of excessive consumption of saturated fatty acids. Saturated fatty acids, found in animal fats, dairy, and processed foods, contribute to dysbiosis, increase intestinal barrier permeability, chronic low-grade inflammation, oxidative stress, and dysfunction of the blood-brain barrier, affecting the central nervous system. High intake of saturated fatty acids is associated with an increased risk of developing Parkinson's disease (PD). Diets low in saturated fats, rich in fibers, promote microbial diversity, improve gut health, and potentially reduce the risk of neurodegenerative diseases like PD.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Doença de Parkinson/etiologia , Microbioma Gastrointestinal/fisiologia , Inflamação , Dieta , Ácidos Graxos
4.
J Neurochem ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381043

RESUMO

The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-ß peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.

5.
J Nutr Biochem ; 114: 109272, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681309

RESUMO

This study was designed to evaluate the long-term effects of Fructose (20%) feeding in rats, simulating metabolic syndrome (MetS), and the effects of coconut oil (C.O.) supplementation when administered in a MetS context. MetS is a cluster of systemic conditions that represent an increased chance of developing cardiovascular diseases and type 2 diabetes in the future. C.O. has been the target of media speculation, and recent studies report inconsistent results. C.O. improved glucose homeostasis and reduced fat accumulation in Fructose-fed rats while decreasing the levels of triglycerides (TGs) in the liver. C.O. supplementation also increased TGs levels and fructosamine in serum during MetS, possibly due to white adipose tissue breakdown and high fructose feeding. Pro-inflammatory cytokines IL-1ß and TNF-α were also increased in rats treated with Fructose and C.O. Oxidative stress marker nitrotyrosine is increased in fructose-fed animals, and C.O. treatment did not prevent this damage. No significant changes were observed in lipoperoxidation marker 4-Hydroxynonenal; however, fructose feeding increased total conjugated dienes and caused conjugated dienes to switch their conformation from cis-trans to trans-trans, which was not prevented by C.O. treatment. Potential benefits of C.O. have been reported with inconsistent results, and indeed we observed some benefits of C.O. supplementation in aiding weight loss, fat accumulation, and improving glucose homeostasis. Nonetheless, we also demonstrated that long-term C.O. supplementation could present some problematic effects with higher risk for individuals suffering MetS, including increased TGs and fructosamine levels and conformational changes in dienes.


Assuntos
Óleo de Coco , Suplementos Nutricionais , Síndrome Metabólica , Animais , Ratos , Glicemia/metabolismo , Óleo de Coco/farmacologia , Óleo de Coco/uso terapêutico , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Frutosamina/metabolismo , Frutosamina/farmacologia , Frutose/metabolismo , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/metabolismo , Estresse Oxidativo , Ratos Wistar , Inflamação/dietoterapia , Inflamação/metabolismo
6.
Mol Psychiatry ; 28(2): 871-882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280751

RESUMO

Molecular and functional abnormalities of astrocytes have been implicated in the etiology and pathogenesis of schizophrenia (SCZ). In this study, we examined the proteome, inflammatory responses, and secretome effects on vascularization of human induced pluripotent stem cell (hiPSC)-derived astrocytes from patients with SCZ. Proteomic analysis revealed alterations in proteins related to immune function and vascularization. Reduced expression of the nuclear factor kappa B (NF-κB) p65 subunit was observed in these astrocytes, with no incremental secretion of cytokines after tumor necrosis factor alpha (TNF-α) stimulation. Among inflammatory cytokines, secretion of interleukin (IL)-8 was particularly elevated in SCZ-patient-derived-astrocyte-conditioned medium (ASCZCM). In a chicken chorioallantoic membrane (CAM) assay, ASCZCM reduced the diameter of newly grown vessels. This effect could be mimicked with exogenous addition of IL-8. Taken together, our results suggest that SCZ astrocytes are immunologically dysfunctional and may consequently affect vascularization through secreted factors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Astrócitos/metabolismo , Proteômica , Esquizofrenia/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fenótipo
7.
Gastroenterol Rep (Oxf) ; 10: goac017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35582476

RESUMO

Recent research has been uncovering the role of the gut microbiota for brain health and disease. These studies highlight the role of gut microbiota on regulating brain function and behavior through immune, metabolic, and neuronal pathways. In this review we provide an overview of the gut microbiota axis pathways to lay the groundwork for upcoming sessions on the links between the gut microbiota and neurogenerative disorders. We also discuss how the gut microbiota may act as an intermediate factor between the host and the environment to mediate disease onset and neuropathology. Based on the current literature, we further examine the potential for different microbiota-based therapeutic strategies to prevent, to modify, or to halt the progress of neurodegeneration.

8.
Chemosphere ; 286(Pt 1): 131513, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34284899

RESUMO

Many industrial by-products have been disposed along coastlines, generating profound marine changes. Phosphogypsum (PG) is a solid by-product generated in the production of phosphoric acid (PA) using conventional synthesis methods. The raw material, about 50 times more radioactive as compared to unperturbed soils, is dissolved in diluted sulfuric acid (70%) forming PG and PA. The majority of both, reactive hazardous elements and natural radionuclides, remain bound to the PG. A nonnegligible fraction of PG occurs as nanoparticles (<0.1 µm). When PG are used for e.g., agriculture or construction purposes, nanoparticles (NPs) can be re-suspended by Aeolian and fluvial processes. Here we provide an overview and evaluation of the geochemical and radiological hazardous risks associated with the different uses of PG. In this review, we show that NPs are important residues in both raw and waste materials originating from the uses of phosphate rock. Different industrial processes in the phosphate fertilizer industries are discussed in the context of the chemical and mineralogical composition as well as size and reactivity of the released NP. We also review how incidental NPs of PG impact the global environment, especially with respect to the distribution of rare earth elements (REEs), toxic elements such as As, Se, and Pb, and natural radionuclides. We also propose the application of advanced techniques and methods to better understand formation and transport of NPs containing elements of high scientific, economic, and environmental importance.


Assuntos
Sulfato de Cálcio , Nanopartículas , Fertilizantes/análise , Fósforo , Solo
9.
Nutr Neurosci ; 25(5): 1026-1040, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078695

RESUMO

Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesity.


Assuntos
Encefalite , Doença de Parkinson , Animais , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Encefalite/metabolismo , Doenças Neuroinflamatórias , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
10.
Neurochem Res ; 47(2): 409-421, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34557995

RESUMO

Neuroblastoma is the most common extracranial solid tumour in childhood, originated from cells of the neural crest during the development of the Sympathetic Nervous System. Retinoids are vitamin-A derived differentiating agents utilised to avoid disease resurgence in high-risk neuroblastoma treatment. Several studies indicate that hypoxia-a common feature of the tumoural environment-is a key player in cell differentiation and proliferation. Hypoxia leads to the accumulation of the hypoxia-inducible factor-1α (HIF-1α). This work aims to investigate the effects of the selective inhibition of HIF-1α on the differentiation induced by retinoic acid in human neuroblastoma cells from the SH-SY5Y lineage to clarify its role in cell differentiation. Our results indicate that HIF-1α inhibition impairs RA-induced differentiation by reducing neuron-like phenotype and diminished immunolabeling and expression of differentiation markers. HIF1A is involved in Retinoic Acid (RA) induced differentiation in SH-SY5Y neuroblastoma cells. siRNA HIF1A gene silencing leads to a weaker response to RA, demonstrated by changes in the neuro-like phenotype and diminished expression of differentiation markers.


Assuntos
Neuroblastoma , Tretinoína , Diferenciação Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuritos , Neuroblastoma/metabolismo , Tretinoína/farmacologia
11.
Neurochem Int ; 151: 105215, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710535

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of the nigrostriatal dopaminergic neurons that are associated with motor alterations and non-motor manifestations (such as depression). Neuroinflammation is a process with a critical role in the pathogenesis of PD. In this regard, toll-like receptor 4 (TLR4) is a central mediator of immune response in PD. Moreover, there are gender-related differences in the incidence, prevalence, and clinical features of PD. Therefore, we aimed to elucidate the role of TLR4 in the sex-dependent response to dopaminergic denervation induced by 6-hydroxydopamine (6-OHDA) in mice. Female and male adult wildtype (WT) and TLR4 knockout (TLR4-/-) mice were administered with unilateral injection of 6-OHDA in the dorsal striatum, and non-motor and motor impairments were evaluated for 30 days, followed by biochemistry analysis in the substantia nigra pars compacta (SNc), dorsal striatum, and dorsoventral cortex. Early non-motor impairments (i.e., depressive-like behavior and spatial learning deficits) induced by 6-OHDA were observed in the male WT mice but not in male TLR4-/- or female mice. Motor alterations were observed after administration of 6-OHDA in both strains, and the lack of TLR4 was also related to motor commitment. Moreover, ablation of TLR4 prevented 6-OHDA-induced dopaminergic denervation and microgliosis in the SNc, selectively in female mice. These results reinforced the existence of sex-biased alterations in PD and indicated TLR4 as a promising therapeutic target for the motor and non-motor symptoms of PD, which will help counteract the neuroinflammatory and neurodegenerative processes.


Assuntos
Encéfalo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Fatores Sexuais , Receptor 4 Toll-Like/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Hidroxidopaminas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/genética
12.
Brain Behav Immun Health ; 14: 100253, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34589762

RESUMO

HSP70 is one of the main molecular chaperones involved in the cellular stress response. Besides its chaperone action, HSP70 also modulates the immune response. Increased susceptibility to toxic insults in intra- and extracellular environments has been associated with insufficient amounts of inducible HSP70 in adult neurons. On the other hand, exogenous HSP70 administration has demonstrated neuroprotective effects in experimental models of age-related disorders. In this regard, this study investigated the effects of exogenous HSP70 in an animal model of dopaminergic denervation of the nigrostriatal axis. After unilateral intrastriatal injection with 6-hydroxydopamine (6-OHDA), the animals received purified recombinant HSP70 through intranasal administration (2 µg/rat/day) for 15 days. Our results indicate a neuroprotective effect of intranasal HSP70 against dopaminergic denervation induced by 6-OHDA. Exogenous HSP70 improved motor impairment and reduced the loss of dopaminergic neurons caused by 6-OHDA. Moreover, HSP70 modulated neuroinflammatory response in the substantia nigra, an important event in Parkinson's disease pathogenesis. Specifically, HSP70 treatment reduced microglial activation and astrogliosis induced by 6-OHDA, as well as IL-1ß mRNA expression in this region. Also, recombinant HSP70 increased the protein content of HSP70 in the substantia nigra of rats that received 6-OHDA. These data suggest the neuroprotection of HSP70 against dopaminergic neurons damage after cellular stress. Finally, our results indicate that HSP70 neuroprotective action against 6-OHDA toxicity is related to inflammatory response modulation.

13.
J Biol Chem ; 297(2): 100979, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303703

RESUMO

Schistosomiasis, a neglected tropical disease caused by trematodes of the Schistosoma genus, affects over 250 million people around the world. This disease has been associated with learning and memory deficits in children, whereas reduced attention levels, impaired work capacity, and cognitive deficits have been observed in adults. Strongly correlated with poverty and lack of basic sanitary conditions, this chronic endemic infection is common in Africa, South America, and parts of Asia and contributes to inhibition of social development and low quality of life in affected areas. Nonetheless, studies on the mechanisms involved in the neurological impairment caused by schistosomiasis are scarce. Here, we used a murine model of infection with Schistosoma mansoni in which parasites do not invade the central nervous system to evaluate the consequences of systemic infection on neurologic function. We observed that systemic infection with S. mansoni led to astrocyte and microglia activation, expression of oxidative stress-induced transcription factor Nrf2, oxidative damage, Tau phosphorylation, and amyloid-ß peptide accumulation in the prefrontal cortex of infected animals. We also found impairment in spatial learning and memory as evaluated by the Morris water maze task. Administration of anthelmintic (praziquantel) and antioxidant (N-acetylcysteine plus deferoxamine) treatments was effective in inhibiting most of these phenotypes, and the combination of both treatments had a synergistic effect to prevent such changes. These data demonstrate new perspectives toward the understanding of the pathology and possible therapeutic approaches to counteract long-term effects of systemic schistosomiasis on brain function.


Assuntos
Astrócitos/patologia , Microglia/patologia , Doenças Neurodegenerativas/patologia , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/complicações , Acetilcisteína/farmacologia , Animais , Anti-Helmínticos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Desferroxamina/farmacologia , Modelos Animais de Doenças , Sequestradores de Radicais Livres/farmacologia , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/patologia , Sideróforos/farmacologia
14.
Glia ; 68(7): 1396-1409, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32003513

RESUMO

Astrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animals, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human-induced pluripotent stem cells (iPSC)-derived astrocytes which replicate temporally intertwined aspects of reactive astrocytes in vivo. We analyzed the time course of astrogliosis by measuring nuclear translocation of NF-kB, production of cytokines, changes in morphology and function of iPSC-derived astrocytes exposed to TNF-α. We observed NF-kB p65 subunit nuclear translocation and increased gene expression of IL-1ß, IL-6, and TNF-α in the first hours following TNF-α stimulation. After 24 hr, conditioned media from iPSC-derived astrocytes exposed to TNF-α exhibited increased secretion of inflammation-related cytokines. After 5 days, TNF-α-stimulated cells presented a typical phenotype of astrogliosis such as increased immunolabeling of Vimentin and GFAP and nuclei with elongated shape and shrinkage. Moreover, ~50% decrease in aspartate uptake was observed during the time course of astrogliosis with no evident cell damage, suggesting astroglial dysfunction. Together, our results indicate that human iPSC-derived astrocytes reproduce canonical events associated with astrogliosis in a time dependent fashion. The approach described here may contribute to a better understanding of mechanisms governing human astrogliosis with potential applicability as a platform to uncover novel biomarkers and drug targets to prevent or mitigate astrogliosis associated with human brain disorders.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encefalopatias/metabolismo , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Filamentos Intermediários/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo
15.
J Cell Mol Med ; 24(1): 88-97, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654493

RESUMO

We aim to characterize the kinetics of early and late microglial phenotypes after systemic inflammation in an animal model of severe sepsis and the effects of minocycline on these phenotypes. Rats were subjected to CLP, and some animals were treated with minocycline (10 ug/kg) by i.c.v. administration. Animals were killed 24 hours, 5, 10 and 30 days after sepsis induction, and serum and hippocampus were collected for subsequent analyses. Real-time PCR was performed for M1 and M2 markers. TNF-α, IL-1ß, IL-6, IL-10, CCL-22 and nitrite/nitrate levels were measured. Immunofluorescence for IBA-1, CD11b and arginase was also performed. We demonstrated that early after sepsis, there was a preponderant up-regulation of M1 markers, and this was not switched to M2 phenotype markers later on. We found that up-regulation of both M1 and M2 markers co-existed up to 30 days after sepsis induction. In addition, minocycline induced a down-regulation, predominantly, of M1 markers. Our results suggest early activation of M1 microglia that is followed by an overlap of both M1 and M2 phenotypes and that the beneficial effects of minocycline on sepsis-associated brain dysfunction may be related to its effects predominantly on the M1 phenotype.


Assuntos
Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/patologia , Inflamação/patologia , Microglia/patologia , Sepse/patologia , Animais , Hipocampo/metabolismo , Inflamação/metabolismo , Masculino , Microglia/metabolismo , Fenótipo , Ratos , Ratos Wistar , Sepse/metabolismo
16.
Mol Cell Biochem ; 462(1-2): 11-23, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31446616

RESUMO

BRCA-1 is a nuclear protein involved in DNA repair, transcriptional regulation, and cell cycle control. Its involvement in other cellular processes has been described. Here, we aimed to investigate the role of BRCA-1 in macrophages M(LPS), M(IL-4), and tumor cell-induced differentiation. We used siRNAs to knockdown BRCA-1 in RAW 264.7 macrophages exposed to LPS, IL-4, and C6 glioma cells conditioned medium (CMC6), and evaluated macrophage differentiation markers and functional phagocytic activity as well as DNA damage and cell survival in the presence and absence of BRCA-1. LPS and CMC6, but not by IL-4, increased DNA damage in macrophages, and this effect was more pronounced in BRCA-1-depleted cells, including M(IL-4). BRCA-1 depletion impaired expression of pro-inflammatory cytokines, TNF-α and IL-6, and reduced the phagocytic activity of macrophages in response to LPS. In CMC6-induced differentiation, BRCA-1 knockdown inhibited TNF-α and IL-6 expression which was accompanied by upregulation of the anti-inflammatory markers IL-10 and TGF-ß and reduced phagocytosis. In contrast, M(IL-4) phenotype was not affected by BRCA-1 status. Molecular docking predicted that the conserved BRCA-1 domain BRCT can interact with the p65 subunit of NF-κB. Immunofluorescence assays showed that BRCA-1 and p65 co-localize in the nucleus of LPS-treated macrophages and reporter gene assay showed that depletion of BRCA-1 decreased LPS and CMC6-induced NF-κB transactivation. IL-4 had no effect upon NF-κB. Taken together, our findings suggest a role of BRCA-1 in macrophage differentiation and phagocytosis induced by LPS and tumor cells secretoma, but not IL-4, in a mechanism associated with inhibition of NF-κB.


Assuntos
Proteína BRCA1/metabolismo , Polaridade Celular , Inflamação/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/metabolismo , Animais , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Dano ao DNA , Inflamação/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Ratos
17.
Food Chem Toxicol ; 133: 110766, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31430511

RESUMO

People with large amounts of adipose tissue are more vulnerable and more likely to develop diseases where oxidative stress and inflammation play a pivotal role, than persons with a healthy weight. Atmospheric contamination is a reality to which a large part of the worldwide population is exposed. Half of today's global electrical energy is derived from coal. Each organism, in its complexity, responds in different ways to dietary compounds and air pollution. The objective of this study was to investigate the effects of obesity and coal ash inhalation within the parameters of oxidative damage and inflammation in different regions of the brain of rats. A diet containing high-fat concentration was administered chronically to rats, along with exposure to coal ash, simulating the contamination that occurs daily throughout human life. High-resolution transmission electron microscopy was performed to identify the particles present in coal ash samples. Our results demonstrated that obese rats exposed to coal ash inhalation were more affected by oxidative damage with subsequent systemic inflammation in the hippocampus. Since there is an inflammatory predisposition caused by obesity, the inhalation of nanoparticles increases the levels of free radicals, resulting in systemic inflammation and oxidative damage, which can lead to chronic neurodegeneration.


Assuntos
Cinza de Carvão/toxicidade , Hipocampo/efeitos dos fármacos , Inflamação/metabolismo , Exposição por Inalação , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Animais , Catalase/metabolismo , Dieta Hiperlipídica , Glutationa Peroxidase/metabolismo , Inflamação/induzido quimicamente , Masculino , Ratos Wistar , Superóxido Dismutase/metabolismo
18.
Cell Signal ; 62: 109356, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288066

RESUMO

Recent studies have investigated the use of retinoic acid (RA) molecule in combined chemotherapies to cancer cells as an attempt to increase treatment efficiency and circumvent cell resistance. Positive results were obtained in clinical trials from lung cancer patients treated with RA and cisplatin. Meanwhile, the signalling process that results from the interaction of both molecules remains unclear. One of the pathways that RA is able to modulate is the activity of NRF2 transcription factor, which is highly associated with tumour progression and resistance. Therefore, the aim of this work was to investigate molecular mechanism of RA and cisplatin co-treatment in A549 cells, focusing in NRF2 pathway. To this end, we investigated NRF2 and NRF2-target genes expression, cellular redox status, cisplatin-induced apoptosis, autophagy and DNA repair through homologous recombination. RA demonstrated to have an inhibitory effect over NRF2 activation, which regulates the expression of thiol antioxidants enzymes. Moreover, RA increased reactive species production associated with increased oxidation of thiol groups within the cells. The expression of proteins associated with DNA repair through homologous recombination was also suppressed by RA pre-treatment. All combined, these effects appear to create a more sensitive cellular environment to cisplatin treatment, increasing apoptosis frequency. Interestingly, autophagy was also increased by combination therapy, suggesting a resistance mechanism by A549 cells. In conclusion, these results provided new information about molecular mechanisms of RA and cisplatin treatment contributing to chemotherapy optimization.


Assuntos
Recombinação Homóloga/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Tretinoína/farmacologia , Células A549 , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Compostos de Sulfidrila/efeitos adversos , Compostos de Sulfidrila/farmacologia
19.
Front Neurol ; 10: 221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930837

RESUMO

The presence of autoantibodies against neuronal cell surface or synaptic proteins and their relationship to autoimmune encephalitis have recently been characterized. These autoantibodies have been also reported in other pathologic conditions; however, their role during sepsis is not known. This study detected the presence of autoantibodies against neuronal cell surface or synaptic proteins in the serum of septic patients and determined their relationship to the occurrence of brain dysfunction and mortality. This prospective, observational cohort study was performed in four Brazilian intensive care units (ICUs). Sixty patients with community-acquired severe sepsis or septic shock admitted to the ICU were included. Blood samples were collected from patients within 24 h of ICU admission. Antibodies to six neuronal proteins were assessed, including glutamate receptors (types NMDA, AMPA1, and AMPA2); voltage-gated potassium channel complex (VGKC) proteins, leucine-rich glioma-inactivated protein 1 (LGI1), and contactin-associated protein-2 (Caspr2), as well as the GABAB1 receptor. There was no independent association between any of the measured autoantibodies and the occurrence of brain dysfunction (delirium or coma). However, there was an independent and significant relationship between anti-NMDAR fluorescence intensity and hospital mortality. In conclusion, anti-NMDAR was independently associated with hospital mortality but none of the measured antibodies were associated with brain dysfunction in septic patients.

20.
Phytother Res ; 33(5): 1394-1403, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868680

RESUMO

Obesity is a metabolic disorder associated with adverse health consequences that has increased worldwide at an epidemic rate. This has encouraged many people to utilize nonprescription herbal supplements for weight loss without knowledge of their safety or efficacy. However, mounting evidence has shown that some herbal supplements used for weight loss are associated with adverse effects. Guarana seed powder is a popular nonprescription dietary herb supplement marketed for weight loss, but no study has demonstrated its efficacy or safety when administered alone. Wistar rats were fed four different diets (low-fat diet and Western diet with or without guarana supplementation) for 18 weeks. Metabolic parameters, gut microbiota changes, and toxicity were then characterized. Guarana seed powder supplementation prevented weight gain, insulin resistance, and adipokine dysregulation induced by Western diet compared with the control diet. Guarana induced brown adipose tissue expansion, mitochondrial biogenesis, uncoupling protein-1 overexpression, AMPK activation, and minor changes in gut microbiota. Molecular docking suggested a direct activation of AMPK by four guarana compounds tested here. We propose that brown adipose tissue activation is one of the action mechanisms involved in guarana supplementation-induced weight loss and that direct AMPK activation may underlie this mechanism. In summary, guarana is an attractive potential therapeutic agent to treat obesity.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Resistência à Insulina , Paullinia/química , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental , Suplementos Nutricionais , Humanos , Masculino , Simulação de Acoplamento Molecular , Obesidade/metabolismo , Ratos , Ratos Wistar , Aumento de Peso , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...