Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.856
Filtrar
1.
Bioelectrochemistry ; 160: 108769, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955054

RESUMO

The structure and surface physicochemical properties of anode play a crucial role in microbial fuel cells (MFCs). To enhance the enrichment of exoelectrogen and facilitate extracellular electron transfer (EET), a three-dimensional macroporous graphene aerogel with polydopamine coating was successfully introduced to modify carbon brush (PGA/CB). The three-dimensional graphene aerogel (GA) with micrometer pores improved the space utilization efficiency of microorganisms. Polydopamine (PDA) coating enhanced the physicochemical properties of the electrode surface by introducing abundant functional groups and nitrogen-containing active sites. MFCs equipped with PGA/CB anodes (PGA/CB-MFCs) demonstrated superior power generation compared to GA/CB-MFCs and CB-MFCs (MFCs with GA/CB and CB anodes respectively), including a 23.0 % and 30.1 % reduction in start-up time, and an increase in maximum power density by 2.43 and 1.24 times respectively. The higher bioelectrochemical activity exhibited by the biofilm of PGA/CB anode and the promoted riboflavin secretion by PGA modification imply the enhanced EET efficiency. 16S rRNA high-throughput sequence analysis of the biofilms revealed successful enrichment of Geobacter on PGA/CB anodes. These findings not only validate the positive impact of the synergistic effects between GA and PDA in promoting EET and improving MFC performance but also provide valuable insights for electrode design in other bioelectrochemical systems.

2.
Front Immunol ; 15: 1400177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953027

RESUMO

Background: Chimeric antigen receptor T (CAR-T) cell therapies have achieved remarkable success in the treatment of hematological tumors. However, given the distinct features of solid tumors, particularly heterogeneity, metabolic aggressiveness, and fewer immune cells in tumor microenvironment (TME), the practical utility of CAR-T cells for solid tumors remains as a challenging issue. Meanwhile, although anti-PD-1 monoclonal antibody (mAb) has shown clinical efficacy, most mAbs also show limited clinical benefits for solid tumors due mainly to the issues associated with the lack of immune cells in TME. Thus, the infiltration of targeted immunological active cells into TME could generate synergistic efficacy for mAbs. Methods: We present a combinational strategy for solid tumor treatment, which combines armored-T cells to express Fc-gamma receptor I (FcγRI) fragment on the surfaces for targeting various tumors with therapeutically useful mAbs. Choosing CD20 and HER-2 as the targets, we characterized the in vitro and in vivo efficacy and latent mechanism of the combination drug by using flow cytometry, ELISA and other methods. Results: The combination and preprocessing of armored T-cells with corresponding antibody of Rituximab and Pertuzumab exerted profound anti-tumor effects, which is demonstrated to be mediated by synergistically produced antibody-dependent cellular cytotoxicity (ADCC) effects. Meanwhile, mAb was able to carry armored-T cell by preprocessing for the infiltration to TME in cell derived xenograft (CDX) model. Conclusions: This combination strategy showed a significant increase of safety profiles from the reduction of antibody doses. More importantly, the present strategy could be a versatile tool for a broad spectrum of cancer treatment, with a simple pairing of engineered T cells and a conventional antibody.


Assuntos
Neoplasias , Receptores de IgG , Linfócitos T , Microambiente Tumoral , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Humanos , Animais , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoterapia Adotiva/métodos , Receptor ErbB-2/imunologia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Feminino , Antígenos CD20/imunologia
3.
ACS Omega ; 9(25): 26911-26921, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947833

RESUMO

Fast pyrolysis technology can reduce the secondary reactions, improve the volatile product yield, and reduce the semicoke yield. Still, the high proportion of heavy tar components affects the development of fast pyrolysis industrialization. Therefore, this paper put forward a catalytic upgrading method of coal based on the solid waste bauxite residue (BR) as a catalyst. This study investigated the impact of varying particle sizes of pulverized coal and the addition of the BR catalyst on the product distribution and kinetics of coal fast pyrolysis. The results found that the tar yield was the highest at 600 °C when the particle size of pulverized coal was 75-150 µm, which was 19.44%. In the range of 550-650 °C, the relative content of benzene and toluene xylene (BTX) in liquid products increased with the temperature. With the increase of the proportion of the BR catalyst, the yield of semicoke in coal pyrolysis products increased, the yield of the gas phase also increased, and the yield of the liquid phase decreased.

4.
Respir Res ; 25(1): 266, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965565

RESUMO

BACKGROUND: This study explored the relationship between inflammatory markers and glucocorticoid dosage upon admission. METHODS: We conducted a retrospective analysis of 206 patients with refractory Mycoplasma pneumoniae pneumonia (RMPP) admitted to a Children's Hospital from November 2017 to January 2022. Patients were categorized into three groups based on their methylprednisolone dosage: low-dose (≤ 2 mg/kg/d), medium-dose (2-10 mg/kg/d), and high-dose (≥ 10 mg/kg/d). We compared demographic data, clinical manifestations, laboratory findings, and radiological outcomes. Spearman's rank correlation coefficient was used to assess relationships between variables. RESULTS: The median age was highest in the low-dose group at 7 years, compared to 5.5 years in the medium-dose group and 6 years in the high-dose group (P < 0.001). The body mass index (BMI) was also highest in the low-dose group at 16.12, followed by 14.86 in the medium-dose group and 14.58 in the high-dose group (P < 0.001). More severe radiographic findings, longer hospital stays, and greater incidence of hypoxia were noted in the high-dose group (P < 0.05). Additionally, significant increases in white blood cells, C-reactive protein, procalcitonin, lactate dehydrogenase (LDH), alanine transaminase, aspartate transaminase, ferritin, erythrocyte sedimentation rate, and D-dimer levels were observed in the high-dose group (P < 0.05). Specifically, LDH and ferritin were markedly higher in the high-dose group, with levels at 660.5 U/L and 475.05 ng/mL, respectively, compared to 450 U/L and 151.4 ng/mL in the medium-dose group, and 316.5 U/L and 120.5 ng/mL in the low-dose group. Correlation analysis indicated that LDH and ferritin levels were significantly and positively correlated with glucocorticoid dose (Spearman ρ = 0.672 and ρ = 0.654, respectively; P < 0.001). CONCLUSIONS: Serum LDH and ferritin levels may be useful biomarkers for determining the appropriate corticosteroid dosage in treating children with RMPP.


Assuntos
Biomarcadores , Ferritinas , L-Lactato Desidrogenase , Pneumonia por Mycoplasma , Humanos , Feminino , Masculino , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/sangue , Pneumonia por Mycoplasma/diagnóstico , Criança , Ferritinas/sangue , Estudos Retrospectivos , Pré-Escolar , Biomarcadores/sangue , L-Lactato Desidrogenase/sangue , Relação Dose-Resposta a Droga , Adolescente , Mycoplasma pneumoniae/efeitos dos fármacos , Metilprednisolona/administração & dosagem , Glucocorticoides/administração & dosagem
5.
Water Res ; 261: 121992, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38971076

RESUMO

Electroactive biofilm (EAB) has garnered significant attention due to its effectiveness in pollutant remediation, electricity generation, and chemical synthesis. However, achieving precise control over the rapid formation of EAB presents challenges for the practical implementation of bioelectrochemical technology. In this study, we investigated the regulation of EAB formation by manipulating applied electric potential. We developed a modified XDLVO model for the applied electric field and quantitatively assessed the feasibility of existing rapid formation strategies for EAB. Our results revealed that electrostatic (EL) force significantly influenced EAB formation in the presence of the applied electric field, with the potential difference between the electrode and the microbial solution being the primary determinant of EL force. Compared to -0.2 V and 0 V vs.Ag/AgCl, EAB exhibited the highest electrochemical performance at 0.2 V vs.Ag/AgCl, with a maximum current density of 6.044 ± 0.10 A/m2, surpassing that at -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl by 1.73 times and 1.31 times, respectively. Furthermore, EAB demonstrated the highest biomass accumulation, measuring a thickness of 25 ± 2 µm at 0.2 V vs. Ag/AgCl, representing increases of 1.67 and 1.25 times compared to -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl, respectively. The strong electrostatic attraction under the anodic potential promoted the formation of a monolayer of biofilm. Additionally, the hydrophilicity and hydrophobicity of the biofilm were altered following inversion culture. The Lewis acid-base (AB) attraction offset the electrostatic repulsion caused by negative charges, it is beneficial for the formation of biofilms. This study, for the first time, elucidated the difference in the formation of cathode and anode biofilm from a thermodynamic perspective in the context of electric field introduction, laying the theoretical foundation for the directional regulation of the rapid formation of typical electroactive biofilms.

6.
Plant Dis ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982669

RESUMO

Tobacco is one of the most important economic crops in China. Disease is one of the main factors affecting the quality of tobacco production (Cai et al. 2022). Stem spot disease of tobacco was observed in the Planting Demonstration Garden in Chang Ning (26°37N; 112° 31E), Hunan Province of China, from May to June 2023. The disease seriously retarded tobacco growth and the incidence rate was about 30-50% of the plants(Yun Yan 87). Most of infected tobacco had black spots on the stems, and the spots expanded and joined together quickly, while many stems turned black and withered. For pathogen isolation, symptomatic stem samples were collected and disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite for 1 minute, followed by rinsing with sterile distilled water three times. Subsequently, small pieces (5 × 5 mm) of diseased tissues were placed on potato dextrose agar (PDA) and incubated in the dark at 25 °C for 24 h to 36 h. The emerging fungal hyphal tips were transferred to PDA and purified by the single-spore method(Yu et al. 2022). In total, 16 cultures with the same appearance were isolated from 30 disease spots on the stem. Strain coded as hnxryc2 was randomly selected for identification. After culturing in PDA for 7 days, white and dense colonies wereobserved with a mean radial growth rate of 6.4 mm/day. The strain cultured 10 days on SNA. Morphological observations were made on 10-day-old culture on SNA medium, and macroconidia were sickle-shaped and slightly curved, with 3-5 septa (2.32-7.00 µm × 0.53-1.17 µm, n = 50), neither microconidia nor chlamydospores were observed. These morphological characteristics were consistent with the description of Fusarium humuli (Wang et al. 2019, Li et al. 2023). Furthermore, primers ITS1/ITS4, EF728F/EF986R, RPB1-F5/RPB1-R8 and fRPB2-5F2/fRPB2-7cR(Xie et al. 2023) were used to amplify the ITS region, EF-1α, RPB1, and RPB2 from strain hnxryc2, respectively. The sequence alignment of hnxryc2 with the NCBI database and FUSARIOID-ID shows the following results: The sequence of ITS region(GenBank accession number PP543715) was 100% identical to these of Fusarium sp. (MN428026.1), the sequences of EF-1α, RPB1, and RPB2 of strain hnxryc2(GenBank accession numbersOR257586, OR326856 and OR257587 respectively) were 99% to 100% identical to these of F. humuli (GenBank accession numbers MK289578.1, MZ824672.1 and MZ824673.1, respectively). Then a phylogenetic tree based on ITS region, EF-1α, and RPB2 sequences was constructed (Kroon et al. 2004). The strain hnxryc2 was more closely related to F. humuli (CGMCC3.19374 GenBank accession nos. MK280845.1, MK289570.1 and MK289724.1, respectively), with bootstrap values 88%. Pathogenicity tests were performed on detached stems of tobacco and potted plants. Wounded stems were inoculated with conidial suspensions (100 µL, 1×107 spores/mL), and the controls were inoculated with sterile water (Xu et al. 2023). The inoculated detached stems were kept in humid chambers (Zhong et al., 2019), each treatment was given a 12h/12h light/dark cycle at 25°C. Deep black spots were observed for 3 days after inoculation. After 9 days, typical symptoms similar to the original diseased plants in the field were found on all inoculated stems, while the control stems did not exhibit any symptoms. Pathogenicity assays were repeated thrice. The pathogen F. humuli was successfully reisolated from the stem of inoculated samples showing symptoms. To our knowledge, this is the first report of F. humuli inducing stem spot on tobacco in China. Since F. humuli is a common pathogenic fungus that infects different plant species, more attention should be paid to its prevalence in tobacco, and the potential risk of a disease outbreak in other provinces of China.

7.
Pract Lab Med ; 40: e00416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38989481

RESUMO

Objectives: Rapid antigen test (RAT) and polymerase chain reaction (PCR) using nasopharyngeal (NP) or oropharyngeal (OP) swab specimens are the two main testing techniques used for laboratory diagnosis of influenza in clinical practice. However, performance variations have been observed not only between techniques, but also between different specimens. This study evaluated the differences in performance between specimens and testing techniques to identify the best combination in clinical practice. Methods: Both NP and OP samples from suspected influenza patients collected in the 2023/4-2023/5 Flu-season in Xiamen, China, were tested for RAT and quantitative PCR. The testing performance of the different specimens and testing techniques were recorded and evaluated. Results: Compared to PCR, RAT showed 58.9 % and 10.3 % sensitivity for NP and OP swabs, respectively. The Limit of Detection (LoD) was 28.71 the Median Tissue Culture Infectious Dose (TCID50)/mL. Compared with PCR using NP swabs, PCR with OP swabs showed 89.5 % sensitivity and 95.4 % specificity. Conclusions: There were no significant differences in performance between the specimens when PCR was used to test for influenza. However, a decrease in sensitivity was observed when the RAT was used, regardless of the specimen type. Therefore, to avoid false-negative results, PCR may be a better choice when OP swabs are used as specimens. In contrast, NP swabs should be the recommended specimens for RAT.

8.
Plant Physiol Biochem ; 214: 108921, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38991594

RESUMO

The use of halophytes in conjunction with arbuscular mycorrhizal (AM) fungi has been found to enhance the removal efficacy of heavy metals and salts in heavy metals contaminated saline soil. The mechanisms of AM fungi on promoting halophyte growth and regulating metabolism remain unclear. In this study, combinations of 0 g kg-1 NaCl and 3 mg kg-1 Cd (S0Cd3), 6 g kg-1 NaCl and 3 mg kg-1 Cd (S6Cd3), and 12 g kg-1 NaCl and 3 mg kg-1 Cd (S12Cd3) were employed to explore the impact of Funneliformis mosseae on the growth and metabolism of Suaeda salsa. The results showed that AM fungi increased the biomass and the P, K+, Ca2+, and Mg2+ accumulations, reduced the Cd and Na+ concentrations in S0Cd3 and S6Cd3, and increased the Cd concentrations in S12Cd3. AM fungi inoculation reduced the Cd and Na+ transfer factors and increased the Cd and Na+ accumulations in S6Cd3. The metabolomics of S6Cd3 showed that AM fungi upregulated the expression of 5-hydroxy-L-tryptophan and 3-indoleacid acid in tryptophan metabolism, potentially acting as crucial antioxidants enabling plants to actively cope with abiotic stresses. AM fungi upregulated the expression of arbutin in glycolysis process, enhancing the plants' osmoregulation capacity. AM fungi upregulated the expression of 2-hydroxycinnamic acid in phenylalanine metabolism and dopaquinone in tyrosine metabolism. These two metabolites help effectively remove reactive oxygen species. Correspondingly, AM fungi decreased MDA content and increased soluble sugar content. These results indicate that AM fungi improve the stress resistance of S. salsa by increasing nutrient uptake and regulating physiological and metabolic changes.

9.
Ecotoxicology ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001972

RESUMO

The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg-1). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.

10.
Small ; : e2400641, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989690

RESUMO

Li-rich manganese-based cathode (LRMC) has attracted intense attention to developing advanced lithium-ion batteries with high energy density. However, LRMC is still plagued by poor cyclic stability, undesired rate capacity, and irreversible oxygen release. To address these issues, herein, a feasible polyvinylidene fluoride (PVDF)-assisted interface modification strategy is proposed for modulating the surface architecture and electronic conductivity of LRMC by intruding the F-doped carbon coating, spinel structure, and oxygen vacancy on the LRMC, which can greatly enhance the cyclic stability and rate capacity, and restrain the oxygen release for LRMC. As a result, the modified material delivers satisfactory cyclic performance with a capacity retention of 90.22% after 200 cycles at 1 C, an enhanced rate capacity of 153.58 mAh g-1 at 5 C and 126.32 mAh g-1 at 10 C, and an elevated initial Coulombic efficiency of 85.63%. Moreover, the thermal stability, electronic conductivity, and structure stability of LRMC are also significantly improved by the PVDF-assisted interface modification strategy. Therefore, the strategy of simultaneously modulating the surface architecture and the electronic conductivity of LRMC provides a valuable idea to improve the comprehensive electrochemical performance of LRMC, which offers a promising reference for designing LRMC with high electrochemical performance.

11.
Phys Rev Lett ; 132(25): 250603, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996268

RESUMO

Single electrons trapped on solid-neon surfaces have recently emerged as a promising platform for charge qubits. Experimental results have revealed their exceptionally long coherence times, yet the actual quantum states of these trapped electrons, presumably on imperfectly flat neon surfaces, remain elusive. In this Letter, we examine the electron's interactions with neon surface topography, such as bumps and valleys. By evaluating the surface charges induced by the electron, we demonstrate its strong perpendicular binding to the neon surface. The Schrödinger equation for the electron's lateral motion on the curved 2D surface is then solved for extensive topographical variations. Our results reveal that surface bumps can naturally bind an electron, forming unique quantum ring states that align with experimental observations. We also show that the electron's excitation energy can be tuned using a modest magnetic field to facilitate qubit operation. This study offers a leap in our understanding of electron-on-solid-neon qubit properties and provides strategic insights on minimizing charge noise and scaling the system to propel forward quantum computing architectures.

12.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001038

RESUMO

The accurate detection of electrical equipment states and faults is crucial for the reliable operation of such equipment and for maintaining the health of the overall power system. The state of power equipment can be effectively monitored through deep learning-based visual inspection methods, which provide essential information for diagnosing and predicting equipment failures. However, there are significant challenges: on the one hand, electrical equipment typically operates in complex environments, thus resulting in captured images that contain environmental noise, which significantly reduces the accuracy of state recognition based on visual perception. This, in turn, affects the comprehensiveness of the power system's situational awareness. On the other hand, visual perception is limited to obtaining the appearance characteristics of the equipment. The lack of logical reasoning makes it difficult for purely visual analysis to conduct a deeper analysis and diagnosis of the complex equipment state. Therefore, to address these two issues, we first designed an image super-resolution reconstruction method based on the Generative Adversarial Network (GAN) to filter environmental noise. Then, the pixel information is analyzed using a deep learning-based method to obtain the spatial feature of the equipment. Finally, by constructing the logic diagram for electrical equipment clusters, we propose an interpretable fault diagnosis method that integrates the spatial features and temporal states of the electrical equipment. To verify the effectiveness of the proposed algorithm, extensive experiments are conducted on six datasets. The results demonstrate that the proposed method can achieve high accuracy in diagnosing electrical equipment faults.

13.
Ultrasonics ; 142: 107401, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39004039

RESUMO

In recent years, personalized diagnosis and treatment have gained significant recognition and rapid development in the biomedicine and healthcare. Due to the flexibility, portability and excellent compatibility, wearable ultrasound (WUS) devices have become emerging personalized medical devices with great potential for development. Currently, with the development of the ongoing advancements in materials and structural design of the ultrasound transducers, WUS devices have improved performance and are increasingly applied in the medical field. In this review, we provide an overview of the design and structure of WUS devices, focusing on their application for diagnosis and treatment of various diseases from a clinical application perspective, and then explore the issues that need to be addressed before clinical translation. Finally, we summarize the progress made in the development of WUS devices, and discuss the current challenges and the future direction of their development. In conclusion, WUS devices usher an emerging era for biomedicine with great clinical promise.

14.
Cancer Med ; 13(14): e70039, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046176

RESUMO

BACKGROUND: The presence of lymph node (LN) metastasis directly affects the treatment strategy for lung adenocarcinoma (LUAD). Next-generation sequencing (NGS) has been widely used in patients with advanced LUAD to identify targeted genes, while early detection of pathologic LN metastasis using NGS has not been assessed. METHODS: Clinicopathologic features and molecular characteristics of 224 patients from Ruijin Hospital were analyzed to detect factors associated with LN metastases. Another 140 patients from Huashan Hospital were set as a test cohort. RESULTS: Twenty-four out of 224 patients were found to have lymph node metastases (10.7%). Pathologic LN-positive tumors showed higher mutant allele tumor heterogeneity (p < 0.05), higher tumor mutation burden (p < 0.001), as well as more frequent KEAP1 (p = 0.001), STK11 (p = 0.004), KRAS (p = 0.007), CTNNB1 (p = 0.017), TP53, and ARID2 mutations (both p = 0.02); whereas low frequency of EGFR mutation (p = 0.005). A predictive nomogram involving male sex, solid tumor morphology, higher T stage, EGFR wild-type, and TP53, STK11, CDKN2A, KEAP1, ARID2, KRAS, SDHA, SPEN, CTNNB1, DICER1 mutations showed outstanding efficiency in both the training cohort (AUC = 0.819) and the test cohort (AUC = 0.780). CONCLUSION: This study suggests that the integration of genomic profiling and clinical features identifies early-invasive LUAD patients at higher risk of LN metastasis. Improved identification of LN metastasis is beneficial for the optimization of the patient's therapy decisions.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Metástase Linfática , Mutação , Humanos , Masculino , Feminino , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Pessoa de Meia-Idade , Metástase Linfática/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores Tumorais/genética , Nomogramas , Adulto , Perfilação da Expressão Gênica , Genômica/métodos
15.
J Cell Mol Med ; 28(14): e18541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046429

RESUMO

Synovial sarcoma (SS) is an aggressive soft tissue sarcoma with poor prognosis due to late recurrence and metastasis. Metastasis is an important prognostic factor of SS. This study aimed to identify the core genes and mechanisms associated with SS metastasis. Microarray data for GSE40021 and GSE40018 were obtained from the Gene Expression Omnibus database. 186 differentially expressed genes (DEGs) were identified. The biological functions and signalling pathways closely associated with SS metastasis included extracellular matrix (ECM) organization and ECM-receptor interaction. Gene set enrichment analysis showed that the terms cell cycle, DNA replication, homologous recombination and mismatch repair were significantly enriched in the metastasis group. Weighted gene co-expression network analysis identified the most relevant module and 133 hub genes, and 31 crossover genes were identified by combining DEGs. Subsequently, four characteristic genes, EXO1, NCAPG, POLQ and UHRF1, were identified as potential biomarkers associated with SS metastasis using the least absolute shrinkage and selection operator algorithm and validation dataset verification analysis. Immunohistochemistry results from our cohort of 49 patients revealed visible differences in the expression of characteristic genes between the non-metastatic and metastatic groups. Survival analysis indicated that high expression of characteristic genes predicted poor prognosis. Our data revealed that primary SS samples from patients who developed metastasis showed activated homologous recombination and mismatch repair compared to samples from patients without metastasis. Furthermore, EXO1, NCAPG, POLQ and UHRF1 were identified as potential candidate metastasis-associated genes. This study provides further research insights and helps explore the mechanisms of SS metastasis.


Assuntos
Biomarcadores Tumorais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Sarcoma Sinovial , Sarcoma Sinovial/genética , Sarcoma Sinovial/patologia , Sarcoma Sinovial/metabolismo , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Redes Reguladoras de Genes , Feminino , Masculino , Bases de Dados Genéticas , Biologia Computacional/métodos , Pessoa de Meia-Idade
16.
Front Neurol ; 15: 1412237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040537

RESUMO

Background: Approximately 86% of patients with spinal dural arteriovenous fistulas (SDVAFs) exhibit clinical improvement after surgery. However, 12%-55.8% of these patients experience late deterioration (LD) after an initial period of improvement. The risk factors for LD remain unclear. The aim of this study was to explore the risk factors for LD in SDVAF patients. Methods: The clinical data of patients who were admitted to two tertiary hospitals between June 2014 and May 2022 were reviewed. Patients were divided into two groups: the LD group and the no LD group. The severity of neurological dysfunction (NDF) was evaluated using the Modified Aminoff and Logue Scale. Univariable and multivariable Cox regression analyses were performed. Results: A total of 105 eligible patients were enrolled, with a mean age of 57.55 ± 9.42 years. The LD group comprised 37 individuals, while the no LD group consisted of 68 individuals. According to the univariable analysis, preoperative NDF severity and treatment strategy were associated with the risk of LD. According to the multivariable analysis, patients who underwent microsurgery (MS) had a lower risk of LD than did those who underwent endovascular treatment (EVT; HR 0.197, 95% CI 0.085-0.457), and patients with severe NDF had a higher risk of LD than did those with mild NDF (HR 3.604, 95% CI 1.226-10.588), whereas the risk of LD in patients with moderate NDF was similar to that of patients with mild NDF (HR 1.352, 95% CI 0.519-3.524). Conclusion: EVT and severe preoperative NDF are independent risk factors for LD.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39042585

RESUMO

The spin-orbit charge transfer intersystem crossing (SOCT-ISC) photophysical process has shown great potential for constructing heavy-atom-free photosensitizers (PSs) for photodynamic therapy (PDT) of tumors. However, for almost all such PSs reported to date, the SOCT-ISC is driven by the acceptor-excited photoinduced electron transfer (a-PeT). In this work, for the first time the donor-excited photoinduced electron transfer (d-PeT)-driven SOCT-ISC mechanism is utilized to construct the heavy-atom-free PSs for PDT of tumors by directly installing the electron-deficient N-alkylquinolinium unit (as an electron acceptor) into the meso-position of the near-infrared (NIR) distyryl Bodipy chromophore (as an electron donor). In the less polar environment, the PSs exist as the monomer and promote the production of singlet oxygen (1O2) (Type-II) relying on the d-PeT-driven population of the triplet excited state via SOCT-ISC, whereas in the aqueous environment, they exist as nanoaggregates and induce the generation of superoxides (O2-•) and hydroxyl radicals (HO•) (Type-I) via the d-PeT-driven formation of the delocalized charge-separated state. The PSs could rapidly be internalized into cancer cells and induce the simultaneous production of intracellular 1O2, O2-•, and HO• upon NIR light irradiation, endowing the PSs with superb photocytotoxicity with IC50 values up to submicromolar levels whether under normoxia or under hypoxia. Based on the PSs platform, a tumor-targetable PS is developed, and its abilities in killing cancer cells and in ablating tumors without damage to normal cells/tissues under NIR light irradiation are verified in vitro and in vivo. The study expands the design scope of PSs by introducing the d-PeT conception, thus being highly valuable for achieving novel PSs in the realm of tumor PDT.

18.
Nanotechnology ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038472

RESUMO

One-step direct laser writing process has been an efficient route for constructing flexible metal structures. However, the effect of laser wavelength on the structuring process remains unclear, thus limiting the universal manufacturing process development. In this work, the feasibility of one-step writing flexible Cu structures with different wavelength continuous diode lasers has been verified. Here, photothermal reaction dominate in the decomposition of the reducing agent to form copper structures. Difference in the wavelength mainly affect the photothermal reaction amplitude for structuring, resulting in a variation in the formation of Cu structures. At our processing conditions, the photothermal reaction induced by 532 nm laser is higher than 808 nm laser, a higher reducing-joining degree of Cu structure can be achieved by 532 nm laser. This results in a superior conductivity, adhesion, and bendability of Cu structures fabricated by 532 nm laser than that of 808 nm laser. Further, strain sensor that can detect different bending angles and bending frequencies have been fabricated by 532 nm laser-written structures to demonstrate their practical application.

19.
J Am Chem Soc ; 146(29): 20530-20538, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991189

RESUMO

The electrochemical reduction reaction of carbon dioxide (CO2RR) into valuable products offers notable economic benefits and contributes to environmental sustainability. However, precisely controlling the reaction pathways and selectively converting key intermediates pose considerable challenges. In this study, our theoretical calculations reveal that the active sites with different states of copper atoms (1-3-5-7-9) play a pivotal role in the adsorption behavior of the *CHO critical intermediate. This behavior dictates the subsequent hydrogenation and coupling steps, ultimately influencing the formation of the desired products. Consequently, we designed two model electrocatalysts comprising Cu single atoms and particles supported on CeO2. This design enables controlled *CHO intermediate transformation through either hydrogenation with *H or coupling with *CO, leading to a highly selective CO2RR. Notably, our selective control strategy tunes the Faradaic efficiency from 61.1% for ethylene (C2H4) to 61.2% for methane (CH4). Additionally, the catalyst demonstrated a high current density and remarkable stability, exceeding 500 h of operation. This work not only provides efficient catalysts for selective CO2RR but also offers valuable insights into tailoring surface chemistry and designing catalysts for precise control over catalytic processes to achieve targeted product generation in CO2RR technology.

20.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3185-3193, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041079

RESUMO

Peptidomics was employed to systematically analyze the characteristic peptides in Galli Gigerii Endothelium Corneum and its adulterants and establish a method for distinguishing Galli Gigerii Endothelium Corneum from its adulterants, including the gizzard membranes from ducks, geese, and pigeons. UPLC-Q-Exactive Orbitrap-MS was combined with multivariate statistical analysis to analyze the peptides in Galli Gigerii Endothelium Corneum and its adulterants. The structures of peptides were identified by pNovo combined with manual recognition of spectra, and synthetic peptide standards were used for validation. LC-MS/MS was used to optimize the sample pre-processing conditions, including the extraction procedure, extraction time, extraction solvents, and solvent volumes, for the characteristic peptide LESY in Galli Gigerii Endothelium Corneum. Multiple reaction monitoring(MRM) in the ESI~+ mode with m/z 511.24→269.11 and 511.24→243.13 as detection ions was employed for qualitative and quantitative analyses. The established UPLC-MS/MS method demonstrated good specificity, stability, and durability. The content of LESY in 16 batches of Galli Gigerii Endothelium Corneum samples ranged from 55.03 to 113.36 µg·g~(-1). Additionally, a qualitative detection method for the common peptide RDPVLVSR in adulterants was established with m/z 471.28→785.45 and 471.28→670.41 as the detection ions. This study established a convenient, rapid, and accurate detection method for the characteristic peptides in Galli Gigerii Endothelium Corneum and its adulterants. The method possesses good specificity, stability, and durability, providing a valuable reference for the identification and quality control of Galli Gigerii Endothelium Corneum and other traditional Chinese medicines derived from animal sources.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/química , Peptídeos/análise , Endotélio/química , Galinhas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Proteômica/métodos , Contaminação de Medicamentos , Espectrometria de Massa com Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA