Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Nature ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.

3.
Blood ; 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320121

RESUMO

Coagulation Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single variant meta-analysis including up to 45,289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified three candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells (HUVECs). Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P<5×10-9) at seven new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and one for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multi-phenotype analysis of FVIII and VWF identified another three new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, while silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and one for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.

4.
medRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260412

RESUMO

We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α=0.001. Notably, when 5% or more heteroplasmic variants within a target region were linked to an outcome, burden-extension tests (including the adaptive burden test, variable threshold burden test, and z-score weighting burden test) outperformed the sequence kernel association test (SKAT) and the original burden test. Applying this framework, we conducted association analyses on whole-blood derived heteroplasmy in 17,507 individuals of African and European ancestries (31% of African Ancestry, mean age of 62, with 58% women) with whole genome sequencing data. We performed both cohort- and ancestry-specific association analyses, followed by meta-analysis on both pooled samples and within each ancestry group. Our results suggest that mtDNA-encoded genes/regions are likely to exhibit varying rates in somatic aging, with the notably strong associations observed between heteroplasmy in the RNR1 and RNR2 genes (p<0.001) and advance aging by the Original Burden test. In contrast, SKAT identified significant associations (p<0.001) between diabetes and the aggregated effects of heteroplasmy in several protein-coding genes. Further research is warranted to validate these findings. In summary, our proposed statistical framework represents a valuable tool for facilitating association testing of heteroplasmy with disease traits in large human populations.

5.
Commun Biol ; 7(1): 107, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233474

RESUMO

We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 1 locus at genome-wide significance level (p < 5×10-8) and 9 with significance of p < 5×10-6 for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p = 4.96×10-9); Hispanic and European Ancestry infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we identify a novel locus at GLI3 with relevance to retinal biology, supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.


Assuntos
Estudo de Associação Genômica Ampla , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Etnicidade , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
6.
JAMA Cardiol ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294787

RESUMO

Importance: Familial hypercholesterolemia (FH) is a genetic disorder that often results in severely high low-density lipoprotein cholesterol (LDL-C) and high risk of premature coronary heart disease (CHD). However, the impact of FH variants on CHD risk among individuals with moderately elevated LDL-C is not well quantified. Objective: To assess CHD risk associated with FH variants among individuals with moderately (130-189 mg/dL) and severely (≥190 mg/dL) elevated LDL-C and to quantify excess CHD deaths attributable to FH variants in US adults. Design, Setting, and Participants: A total of 21 426 individuals without preexisting CHD from 6 US cohort studies (Atherosclerosis Risk in Communities study, Coronary Artery Risk Development in Young Adults study, Cardiovascular Health Study, Framingham Heart Study Offspring cohort, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis) were included, 63 of whom had an FH variant. Data were collected from 1971 to 2018, and the median (IQR) follow-up was 18 (13-28) years. Data were analyzed from March to May 2023. Exposures: LDL-C, cumulative past LDL-C, FH variant status. Main Outcomes and Measures: Cox proportional hazards models estimated associations between FH variants and incident CHD. The Cardiovascular Disease Policy Model projected excess CHD deaths associated with FH variants in US adults. Results: Of the 21 426 individuals without preexisting CHD (mean [SD] age 52.1 [15.5] years; 12 041 [56.2%] female), an FH variant was found in 22 individuals with moderately elevated LDL-C (0.3%) and in 33 individuals with severely elevated LDL-C (2.5%). The adjusted hazard ratios for incident CHD comparing those with and without FH variants were 2.9 (95% CI, 1.4-6.0) and 2.6 (95% CI, 1.4-4.9) among individuals with moderately and severely elevated LDL-C, respectively. The association between FH variants and CHD was slightly attenuated when further adjusting for baseline LDL-C level, whereas the association was no longer statistically significant after adjusting for cumulative past LDL-C exposure. Among US adults 20 years and older with no history of CHD and LDL-C 130 mg/dL or higher, more than 417 000 carry an FH variant and were projected to experience more than 12 000 excess CHD deaths in those with moderately elevated LDL-C and 15 000 in those with severely elevated LDL-C compared with individuals without an FH variant. Conclusions and Relevance: In this pooled cohort study, the presence of FH variants was associated with a 2-fold higher CHD risk, even when LDL-C was only moderately elevated. The increased CHD risk appeared to be largely explained by the higher cumulative LDL-C exposure in individuals with an FH variant compared to those without. Further research is needed to assess the value of adding genetic testing to traditional phenotypic FH screening.

7.
Cell ; 187(2): 464-480.e10, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242088

RESUMO

Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.


Assuntos
Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto , Humanos , Predisposição Genética para Doença , Glaucoma de Ângulo Aberto/genética , População Negra/genética , Polimorfismo de Nucleotídeo Único/genética
8.
Cell Genom ; 4(1): 100468, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190104

RESUMO

Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/diagnóstico , Taxa de Filtração Glomerular/genética , Herança Multifatorial/genética , Rim/fisiologia
9.
Hypertension ; 81(3): 552-560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226488

RESUMO

BACKGROUND: The Dietary Approaches to Stop Hypertension (DASH) diet score lowers blood pressure (BP). We examined interactions between genotype and the DASH diet score in relation to systolic BP. METHODS: We analyzed up to 9 420 585 single nucleotide polymorphisms in up to 127 282 individuals of 6 population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (n=35 660) and UK Biobank (n=91 622) and performed European population-specific and cross-population meta-analyses. RESULTS: We identified 3 loci in European-specific analyses and an additional 4 loci in cross-population analyses at Pinteraction<5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency, 0.03) and the DASH diet score (Pinteraction=4e-8; P for heterogeneity, 0.35) in European population, where the interaction effect size was 0.42±0.09 mm Hg (Pinteraction=9.4e-7) and 0.20±0.06 mm Hg (Pinteraction=0.001) in Cohorts for Heart and Aging Research in Genomic Epidemiology and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P=4e-273) and cis-DNA methylation quantitative trait loci variants (P=1e-300). Although the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by single nucleotide polymorphisms potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. CONCLUSIONS: We demonstrated gene-DASH diet score interaction effects on systolic BP in several loci. Studies with larger diverse populations are needed to validate our findings.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Humanos , Pressão Sanguínea/genética , Dieta , Genótipo
10.
Commun Biol ; 6(1): 1117, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923804

RESUMO

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Pessoa de Meia-Idade , Humanos , Idoso , Cognição , Neurônios , Biomarcadores
11.
Circ Genom Precis Med ; : e004176, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014529

RESUMO

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10-4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis. CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.

12.
bioRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961394

RESUMO

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. The mechanisms that mediate metformin's effects on energy balance remain incompletely defined. Here we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite Lac-Phe in mice as well as in two independent human cohorts. In cell culture, metformin drives Lac-Phe biosynthesis via inhibition of complex I, increased glycolytic flux, and intracellular lactate mass action. Other biguanides and structurally distinct inhibitors of oxidative phosphorylation also increase Lac-Phe levels in vitro. Genetic ablation of CNDP2, the principal biosynthetic enzyme for Lac-Phe, in mice renders animals resistant to metformin's anorexigenic and anti-obesity effects. Mediation analyses also support a role for Lac-Phe in metformin's effect on body mass index in humans. These data establish the CNDP2/Lac-Phe pathway as a critical mediator of the effects of metformin on energy balance.

13.
Front Genet ; 14: 1235337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028628

RESUMO

Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

14.
BMC Med ; 21(1): 443, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968697

RESUMO

BACKGROUND: Metabolite signatures of long-term alcohol consumption are lacking. To better understand the molecular basis linking alcohol drinking and cardiovascular disease (CVD), we investigated circulating metabolites associated with long-term alcohol consumption and examined whether these metabolites were associated with incident CVD. METHODS: Cumulative average alcohol consumption (g/day) was derived from the total consumption of beer, wine, and liquor on average of 19 years in 2428 Framingham Heart Study Offspring participants (mean age 56 years, 52% women). We used linear mixed models to investigate the associations of alcohol consumption with 211 log-transformed plasma metabolites, adjusting for age, sex, batch, smoking, diet, physical activity, BMI, and familial relationship. Cox models were used to test the association of alcohol-related metabolite scores with fatal and nonfatal incident CVD (myocardial infarction, coronary heart disease, stroke, and heart failure). RESULTS: We identified 60 metabolites associated with cumulative average alcohol consumption (p < 0.05/211 ≈ 0.00024). For example, 1 g/day increase of alcohol consumption was associated with higher levels of cholesteryl esters (e.g., CE 16:1, beta = 0.023 ± 0.002, p = 6.3e - 45) and phosphatidylcholine (e.g., PC 32:1, beta = 0.021 ± 0.002, p = 3.1e - 38). Survival analysis identified that 10 alcohol-associated metabolites were also associated with a differential CVD risk after adjusting for age, sex, and batch. Further, we built two alcohol consumption weighted metabolite scores using these 10 metabolites and showed that, with adjustment age, sex, batch, and common CVD risk factors, the two scores had comparable but opposite associations with incident CVD, hazard ratio 1.11 (95% CI = [1.02, 1.21], p = 0.02) vs 0.88 (95% CI = [0.78, 0.98], p = 0.02). CONCLUSIONS: We identified 60 long-term alcohol consumption-associated metabolites. The association analysis with incident CVD suggests a complex metabolic basis between alcohol consumption and CVD.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Prospectivos , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Doença das Coronárias/complicações , Dieta , Fatores de Risco
15.
medRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986948

RESUMO

Objective: We examined interactions between genotype and a Dietary Approaches to Stop Hypertension (DASH) diet score in relation to systolic blood pressure (SBP). Methods: We analyzed up to 9,420,585 biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European population-specific and cross-population meta-analyses. Results: We identified three loci in European-specific analyses and an additional four loci in cross-population analyses at P for interaction < 5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where the interaction effect size was 0.42±0.09 mm Hg (P for interaction = 9.4e-7) and 0.20±0.06 mm Hg (P for interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P = 4e-273) and cis-DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by SNPs potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. Conclusion: We demonstrated gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations are needed to validate our findings.

16.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37868038

RESUMO

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

17.
Sci Rep ; 13(1): 17680, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848499

RESUMO

Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.


Assuntos
Aterosclerose , Epigênese Genética , Humanos , Epigenoma , Fator de Crescimento Transformador beta3/genética , Medicina de Precisão , Estudo de Associação Genômica Ampla , Metilação de DNA , Ilhas de CpG/genética , Aterosclerose/genética
18.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802043

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Estudo de Associação Genômica Ampla , Medicina de Precisão , Sequenciamento Completo do Genoma/métodos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
19.
J Am Heart Assoc ; 12(20): e029090, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37804200

RESUMO

Background The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains elusive. Methods and Results We performed cross-sectional and prospective association analyses of blood-derived mtDNA CN and cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole-genome sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia). P<0.01 was used for significance. We validated most of the previously reported associations between mtDNA CN and cardiovascular disease outcomes. For example, 1-SD unit lower level of mtDNA CN was associated with 1.08 (95% CI, 1.04-1.12; P<0.001) times the hazard for developing incident CHD, adjusting for covariates. Mendelian randomization analyses showed no causal effect from a lower level of mtDNA CN to a higher CHD risk (ß=0.091; P=0.11) or in the reverse direction (ß=-0.012; P=0.076). Additional bidirectional Mendelian randomization analyses revealed that low-density lipoprotein cholesterol had a causal effect on mtDNA CN (ß=-0.084; P<0.001), but the reverse direction was not significant (P=0.059). No causal associations were observed between mtDNA CN and obesity, diabetes, and hypertension, in either direction. Multivariable Mendelian randomization analyses showed no causal effect of CHD on mtDNA CN, controlling for low-density lipoprotein cholesterol level (P=0.52), whereas there was a strong direct causal effect of higher low-density lipoprotein cholesterol on lower mtDNA CN, adjusting for CHD status (ß=-0.092; P<0.001). Conclusions Our findings indicate that high low-density lipoprotein cholesterol may underlie the complex relationships between mtDNA CN and vascular atherosclerosis.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Diabetes Mellitus , Hipertensão , Humanos , DNA Mitocondrial/genética , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , LDL-Colesterol , Variações do Número de Cópias de DNA , Estudos Transversais , Doença das Coronárias/genética , HDL-Colesterol , Hipertensão/epidemiologia , Hipertensão/genética , Obesidade
20.
Nat Genet ; 55(11): 1912-1919, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904051

RESUMO

Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Mosaicismo , Humanos , População Negra/genética , Hispânico ou Latino/genética , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...