Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(18): 186001, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759199

RESUMO

The kagome materials AV_{3}Sb_{5} (A=K, Rb, Cs) host an intriguing interplay between unconventional superconductivity and charge-density waves. Here, we investigate CsV_{3}Sb_{5} by combining high-resolution thermal-expansion, heat-capacity, and electrical resistance under strain measurements. We directly unveil that the superconducting and charge-ordered states strongly compete, and that this competition is dramatically influenced by tuning the crystallographic c axis. In addition, we report the absence of additional bulk phase transitions within the charge-ordered state, notably associated with rotational symmetry breaking within the kagome planes. This suggests that any breaking of the C_{6} invariance occurs via different stacking of C_{6}-symmetric kagome patterns. Finally, we find that the charge-density-wave phase exhibits an enhanced A_{1g}-symmetric elastoresistance coefficient, whose large increase at low temperature is driven by electronic degrees of freedom.

2.
Nano Lett ; 24(20): 6002-6009, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739273

RESUMO

Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.

3.
Int J Biol Macromol ; 264(Pt 1): 130453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432279

RESUMO

Periodate oxidation has been the widely accepted route for obtaining aldehyde group-functionalized polysaccharides but significantly influenced the various physicochemical properties due to the ring opening of the backbone of polysaccharides. The present study, for the first time, presents a novel method for the preparation of aldehyde group-functionalized polysaccharides that could retain the ring structure and the consequent rigidity of the backbone. Pectin was collected as the representative of polysaccharides and modified with cyclopropyl formaldehyde to obtain pectin aldehyde (AP), which was further crosslinked by DL-lysine (LYS) via the Schiff base reaction to prepare injectable hydrogel. The feasibility of the functionalization was proved by FT-IR and 1H NMR techniques. The obtained hydrogel showed acceptable mechanical properties, self-healing ability, syringeability, and sustained-release performance. Also, as-prepared injectable hydrogel presented great biocompatibility with a cell proliferation rate of 96 %, and the drug-loaded hydrogel exhibited clear inhibition of cancer cell proliferation. Overall, the present study showed a new method for the preparation of aldehyde group-functionalized polysaccharides, and the drug-loaded hydrogel has potential in drug release applications.


Assuntos
Hidrogéis , Pectinas , Hidrogéis/química , Aldeídos , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química
4.
Nat Commun ; 15(1): 1467, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368411

RESUMO

The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.

5.
Nat Commun ; 15(1): 785, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278821

RESUMO

Light engineering of correlated states in topological materials provides a new avenue of achieving exotic topological phases inaccessible by conventional tuning methods. Here we demonstrate a light control of correlation gaps in a model charge-density-wave (CDW) and polaron insulator (TaSe4)2I recently predicted to be an axion insulator. Our ultrafast terahertz photocurrent spectroscopy reveals a two-step, non-thermal melting of polarons and electronic CDW gap via the fluence dependence of a longitudinal circular photogalvanic current. This helicity-dependent photocurrent reveals continuous ultrafast phase switches from the polaronic state to the CDW (axion) phase, and finally to a hidden Weyl phase as the pump fluence increases. Additional distinctive attributes aligning with the light-induced switches include: the mode-selective coupling of coherent phonons to the polaron and CDW modulation, and the emergence of a non-thermal chiral photocurrent above the pump threshold of CDW-related phonons. The demonstrated ultrafast chirality control of correlated topological states here holds large potentials for realizing axion electrodynamics and advancing quantum-computing applications.

6.
Small ; : e2308357, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050942

RESUMO

2D layered magnets, such as iron chalcogenides, have emerged these years as a new family of unconventional superconductors and provided the key insights to understand the phonon-electron interaction and pairing mechanism. Their mechanical properties are of strategic importance for the potential applications in spintronics and optoelectronics. However, there is still a lack of efficient approach to tune the elastic modulus despite the extensive studies. Herein, the modulated elastic modulus of 2D magnetic FeTe and its thickness-dependence is reported via phase engineering. The grown 2D FeTe by chemical vapor deposition can present various polymorphs, that is tetragonal FeTe (t-FeTe, antiferromagnetic) and hexagonal FeTe (h-FeTe, ferromagnetic). The measured Young's modulus of t-FeTe by nanoindentation method shows an obvious thickness-dependence, from 290.9 ± 9.2 to 113.0 ± 8.7 GPa when the thicknesses increased from 13.2 to 42.5 nm, respectively. In comparison, the elastic modulus of h-FeTe remains unchanged. These results can shed light on the efficient modulation of mechanical properties of 2D magnetic materials and pave the avenues for their practical applications in nanodevices.

7.
ACS Nano ; 17(19): 18905-18913, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37767802

RESUMO

Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence, symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here, we report nonlinear magneto-optical second harmonic generation (SHG) studies of nonmagnetic topological materials including bilayer WTe2, monolayer WSe2, and bulk TaAs. The polarization-resolved patterns of optical SHG under a magnetic field show nonlinear Kerr rotation in these time-reversal symmetric materials. For materials with 3-fold rotational symmetric lattice structure, the SHG polarization pattern rotates just slightly in a magnetic field, whereas in those with mirror or 2-fold rotational symmetry, the SHG polarization pattern rotates greatly and distorts. These different magneto-SHG characters can be understood by considering the superposition of the magnetic field-induced time-noninvariant nonlinear optical tensor and the crystal-structure-based time-invariant counterpart. The situation is further clarified by scrutinizing the Faraday rotation, whose subtle interplay with crystal symmetry accounts for the diverse behavior of the extrinsic nonlinear Kerr rotation in different materials. Our work illustrates the application of magneto-SHG techniques to directly probe nontrivial topological properties, and underlines the importance of minimizing extrinsic nonlinear Kerr rotation in polarization-resolved magneto-optical studies.

8.
Nat Commun ; 14(1): 4892, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580381

RESUMO

A representative class of kagome materials, AV3Sb5 (A = K, Rb, Cs), hosts several unconventional phases such as superconductivity, [Formula: see text] non-trivial topological states, and electronic nematic states. These can often coexist with intertwined charge-density wave states. Recently, the discovery of the isostructural titanium-based single-crystals, ATi3Bi5 (A = K, Rb, Cs), which exhibit similar multiple exotic states but without the concomitant charge-density wave, has opened an opportunity to disentangle these complex states in kagome lattices. Here, we combine high-resolution angle-resolved photoemission spectroscopy and first-principles calculations to investigate the low-lying electronic structure of RbTi3Bi5. We demonstrate the coexistence of flat bands and several non-trivial states, including type-II Dirac nodal lines and [Formula: see text] non-trivial topological surface states. Our findings also provide evidence for rotational symmetry breaking in RbTi3Bi5, suggesting a directionality to the electronic structure and the possible emergence of pure electronic nematicity in this family of kagome compounds.

9.
ACS Nano ; 17(17): 16879-16885, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642321

RESUMO

Engineering nontrivial spin textures in magnetic van der Waals materials is highly desirable for spintronic applications based on hybrid heterostructures. The recent observation of labyrinth and bubble domains in the near room-temperature ferromagnet Fe5-xGeTe2 down to a bilayer thickness was thus a significant advancement toward van der Waals-based many-body physics. However, the physical mechanism responsible for stabilizing these domains remains unclear and requires further investigation. Here, we combine cryogenic scanning diamond quantum magnetometry and field reversal techniques to elucidate the high-field propagation and nucleation of bubble domains in trilayer Fe5-xGeTe2. We provide evidence of pinning-induced nucleation of magnetic bubbles and further show an unexpectedly high layer-dependent coercive field. These measurements can be easily extended to a wide range of magnetic materials to provide valuable nanoscale insight into domain processes critical for spintronic applications.

10.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475675

RESUMO

Spirulina has emerged as a promising microorganism for the treatment of industrial heavy metal ions in wastewater due to their simplicity of cultivation and harvesting, rich functional binding groups, and high bioreductive activity during the uptake process. While the capacities of biosorption and bioreduction for heavy metal ions differ significantly among various algal strains. Therefore, the physiological characteristics were investigated to identify the different Spirulina strains, and the chromium (VI) adsorption capacities of the algal strains were also evaluated. In this study, it was found that algal strains YCX2643 and CLQ1848 performed higher removal efficiency (86.5% and 83.7%) than the other four Spirulina strains (59.4%, 56.3%, 65.6%, and 66.5%, respectively). Moreover, the mechanisms of chromium (VI) ions binding and biotransformation in the Spirulina cell were scrutinized by FTIR (Fourier transform infrared) spectroscopy and scanning electron microscopy (SEM), and it indicated that the varieties of cellular components involved in high binding affinity may cause the higher biosorption and bioreduction of aqueous chromium (VI) in algal strains YCX2643 and CLQ1848, which could be used as promising biosorbents in the removing heavy metal pollutants from wastewaters.


Assuntos
Metais Pesados , Spirulina , Poluentes Químicos da Água , Spirulina/química , Spirulina/metabolismo , Cinética , Águas Residuárias , Adsorção , Água/química , Poluentes Químicos da Água/metabolismo , Concentração de Íons de Hidrogênio
11.
J Phys Chem Lett ; 14(23): 5456-5465, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37288804

RESUMO

The van der Waals Fe5-xGeTe2 is a 3d ferromagnetic metal with a high Curie temperature of 275 K. We report herein the observation of an exceptional weak antilocalization (WAL) effect that can persist up to 120 K in an Fe5-xGeTe2 nanoflake, indicating the dual nature with both itinerant and localized magnetism of 3d electrons. The WAL behavior is characterized by the magnetoconductance peak around zero magnetic field and is supported by the calculated localized nondispersive flat band around the Fermi level. The peak to dip crossover starting around 60 K in magnetoconductance is visible, which could be ascribed to temperature-induced changes in Fe magnetic moments and the coupled electronic band structure as revealed by angle-resolved photoemission spectroscopy and first-principles calculations. Our findings would be instructive for understanding the magnetic exchanges in transition metal magnets as well as for the design of next-generation room-temperature spintronic devices.

12.
Adv Mater ; 35(36): e2302568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285053

RESUMO

Fe3 GeTe2 have proven to be of greatly intrigue. However, the underlying mechanism behind the varying Curie temperature (Tc ) values remains a puzzle. This study explores the atomic structure of Fe3 GeTe2 crystals exhibiting Tc values of 160, 210, and 230 K. The elemental mapping reveals a Fe-intercalation on the interstitial sites within the van der Waals gap of the high-Tc (210 and 230 K) samples, which are observed to have an exchange bias effect by electrical transport measurements, while Fe intercalation or the bias effect is absent in the low-Tc (160 K) samples. First-principles calculations further suggest that the Fe-intercalation layer may be responsible for the local antiferromagnetic coupling that gives rise to the exchange bias effect, and that the interlayer exchange paths greatly contribute to the enhancement of Tc . This discovery of the Fe-intercalation layer elucidates the mechanism behind the hidden antiferromagnetic ordering that underlies the enhancement of Tc in Fe3 GeTe2 .

13.
Phys Rev Lett ; 130(22): 226501, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327423

RESUMO

The ultrafast electronic structures of the charge density wave material 1T-TiSe_{2} were investigated by high-resolution time- and angle-resolved photoemission spectroscopy. We found that the quasiparticle populations drove ultrafast electronic phase transitions in 1T-TiSe_{2} within 100 fs after photoexcitation, and a metastable metallic state, which was significantly different from the equilibrium normal phase, was evidenced far below the charge density wave transition temperature. Detailed time- and pump-fluence-dependent experiments revealed that the photoinduced metastable metallic state was a result of the halted motion of the atoms through the coherent electron-phonon coupling process, and the lifetime of this state was prolonged to picoseconds with the highest pump fluence used in this study. Ultrafast electronic dynamics were well captured by the time-dependent Ginzburg-Landau model. Our work demonstrates a mechanism for realizing novel electronic states by photoinducing coherent motion of atoms in the lattice.


Assuntos
Elétrons , Movimento (Física) , Espectroscopia Fotoeletrônica
14.
Nano Lett ; 23(12): 5625-5633, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310876

RESUMO

Kagome superconductors AV3Sb5 (A = K, Rb, Cs) provide a fertile playground for studying intriguing phenomena, including nontrivial band topology, superconductivity, giant anomalous Hall effect, and charge density wave (CDW). Recently, a C2 symmetric nematic phase prior to the superconducting state in AV3Sb5 drew enormous attention due to its potential inheritance of the symmetry of the unusual superconductivity. However, direct evidence of the rotation symmetry breaking of the electronic structure in the CDW state from the reciprocal space is still rare, and the underlying mechanism remains ambiguous. The observation shows unconventional unidirectionality, indicative of rotation symmetry breaking from six-fold to two-fold. The interlayer coupling between adjacent planes with π-phase offset in the 2 × 2 × 2 CDW phase leads to the preferred two-fold symmetric electronic structure. These rarely observed unidirectional back-folded bands in KV3Sb5 may provide important insights into its peculiar charge order and superconductivity.

15.
Front Mol Biosci ; 10: 1211621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363404

RESUMO

Introduction: Tannase is a crucial enzyme that finds wide applications in the pharmaceutical industry, feed processing, and beverage manufacturing. Although extensive studies have been conducted on tannases from fungi and bacteria, reports on tannases exhibiting favorable pH stability are relatively limited. Methods: In this study, a tannin-degrading strain Debaryomyces hansenii was screened to induce tannase production, and the corresponding tannase coding gene TANF was successfully cloned and expressed in Yarrowia lipolytica. SDS-PAGE analysis revealed that the purified TanF tannase had a molecular weight of approximately 70 kDa. Results and Discussion: The enzyme demonstrated optimal activity at 40°C and retained over 80% of its activity in the range of 35°C-60°C. Of particular interest, TanF exhibited remarkable enzyme activity at pH 5.0 and retained more than 70% of its relative activity across a wide pH range of 3.0-8.0. Furthermore, TanF exhibited broad substrate specificity for gallate esters. The final gallic acid production by TanF from tannic acid achieved 18.32 g/L. Therefore, the excellent properties TanF has been demonstrated to be an efficient tool for the preparation of gallic acid.

16.
J Phys Condens Matter ; 35(40)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37379852

RESUMO

RV6Sn6(R= Y and lanthanides) with two-dimensional vanadium-kagome surface states is an ideal platform to investigate kagome physics and manipulate the kagome features to realize novel phenomena. Utilizing the micron-scale spatially resolved angle-resolved photoemission spectroscopy and first-principles calculations, we report a systematical study of the electronic structures ofRV6Sn6(R= Gd, Tb, and Lu) on the two cleaved surfaces, i.e. the V- andRSn1-terminated (001) surfaces. The calculated bands without any renormalization match well with the main ARPES dispersive features, indicating the weak electronic correlation in this system. We observe 'W'-like kagome surface states around the Brillouin zone corners showingR-element-dependent intensities, which is probably due to various coupling strengths between V andRSn1layers. Our finding suggests an avenue for tuning electronic states by interlayer coupling based on two-dimensional kagome lattices.

17.
Front Vet Sci ; 10: 1109947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152685

RESUMO

Background: As a natural host of Fasciola gigantica, buffalo is widely infected by F. gigantica. Its impact on buffalo production has caused great losses to the husbandry sector, and repeat infection is non-negligible. In buffaloes experimentally infected with F. gigantica, primary and secondary infection have yielded the same rate of fluke recovery, indicating a high susceptibility of buffalo to F. gigantica, which contributes to the high infection rate. Determining the immunological mechanism of susceptibility will deepen the understanding of the interaction between F. gigantica and buffalo. Here, we explored the immune response of buffaloes against primary and secondary F. gigantica infection, with a focus on cytokines' dynamics explored through serum cytokine detection. Methods: Buffaloes were assigned to three groups: group A (noninfected, n = 4), group B (primary infection, n = 3), and group C (secondary infection, n = 3). Group B was infected via oral gavage with 250 viable F. gigantica metacercariae, and group C was infected twice with 250 metacercariae at an interval of 4 weeks. The second infection of group C was performed simultaneously with that of group B. Whole blood samples were collected pre-infection (0 weeks) and at 1-6, 10, and 12 weeks after that. The serum levels of seven cytokines (IFN-γ, IL-4, IL-5, IL-10, IL-13, TGF-ß, and IL-17) were simultaneously determined using ELISA and further analyzed. Results: In the present study, no significant changes in Th1-type cytokines production were detected in early infection, both in primary and secondary infections, while the Th2-type response was strongly induced. A comparison of primary and secondary infection showed no significant difference in the cytokine secretion, which may indicate that the re-infection at 4 weeks after primary infection could not induce a robust adaptive immune response. The full extent of interaction between buffalo and F. gigantica in re-infection requires further study.

18.
Nat Commun ; 14(1): 2492, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120572

RESUMO

The recently discovered kagome metals AV3Sb5 (A = Cs, Rb, K) exhibit a variety of intriguing phenomena, such as a charge density wave (CDW) with time-reversal symmetry breaking and possible unconventional superconductivity. Here, we report a rare non-monotonic evolution of the CDW temperature (TCDW) with the reduction of flake thickness approaching the atomic limit, and the superconducting transition temperature (Tc) features an inverse variation with TCDW. TCDW initially decreases to a minimum value of 72 K at 27 layers and then increases abruptly, reaching a record-high value of 120 K at 5 layers. Raman scattering measurements reveal a weakened electron-phonon coupling with the reduction of sample thickness, suggesting that a crossover from electron-phonon coupling to dominantly electronic interactions could account for the non-monotonic thickness dependence of TCDW. Our work demonstrates the novel effects of dimension reduction and carrier doping on quantum states in thin flakes and provides crucial insights into the complex mechanism of the CDW order in the family of AV3Sb5 kagome metals.

19.
J Phys Condens Matter ; 35(15)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36764004

RESUMO

Room-temperature two-dimensional antiferromagnetic (AFM) materials are highly desirable for various device applications. In this letter, we report the low-energy electronic structure of KMnBi measured by angle-resolved photoemission spectroscopy, which confirms an AFM ground state with the valence band maximum located at -100 meV below the Fermi level and small hole effective masses associated with the sharp band dispersion. Using complementary Raman, atomic force microscope and electric transport measurement, we systematically study the evolution of electric transport characteristics of micro-mechanically exfoliated KMnBi with varied flake thicknesses, which all consistently reveal the existence of a probable AFM ground state down to the quintuple-layer regime. The AFM phase transition temperature ranges from 220 K to 275 K, depending on the thickness. Our results suggest that with proper device encapsulation, multilayer KMnBi is indeed a promising 2D AFM platform for testing various theoretical proposals for device applications.

20.
J Phys Chem Lett ; 13(40): 9355-9362, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190250

RESUMO

Analogous to black phosphorus, SnS processes folded structure that shows a strongly anisotropic optical absorption. Herein, by using ultrafast two-color pump and probe spectroscopy, the azimuthal angle dependence of nonlinear optical anisotropy in SnS is investigated. After 390 nm photoexcitation, the reflectivity of the 780 nm probe beam is first reduced significantly, followed by a complex alternation with the rotation of the sample along the c-axis. The relaxation of reflectivity consisted of two components: a 1-3 ps fast process that shows azimuthal angle and pump fluence dependence, which arises from electron-phonon coupling. The slow process shows strongly azimuthal angle dependence, which arises from the recovery of a photoinduced structural change, i.e., from the photoinduced metastable state with Cmcm-like symmetry to the initial state with Pnma symmetry. In addition, a coherent acoustic phonon with a frequency of 40 GHz is also identified, which originates from the temperature gradient-induced strain wave in the SnS crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...