Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
Anal Chem ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557023

RESUMO

Current diagnostic methods for thyroid diseases, including blood tests, ultrasound, and biopsy, always have difficulty diagnosing thyroiditis accurately, occasionally mistaking it for thyroid cancer. To address this clinical challenge, we developed Ox-PGP1, a novel fluorescent probe realizing rapid, noninvasive, and real-time diagnostic techniques. This is the first imaging tool capable of noninvasively distinguishing between thyroiditis and thyroid cancer. Ox-PGP1 was introduced as a fluorescent probe custom-built for the specific detection and quantification of pyroglutamate aminopeptidase 1 (PGP-1), a known pivotal biomarker of inflammation. Ox-PGP1 overcame the disadvantages of traditional enzyme-responsive fluorescent probes that relied on the intramolecular charge transfer (ICT) mechanism, including the issue of high background fluorescence, while offering exceptional photostability under laser irradiation. The spectral properties of Ox-PGP1 were meticulously optimized to enhance its biocompatibility. Furthermore, the low limit of detection (LOD) of Ox-PGP1 was determined to be 0.09 µg/mL, which demonstrated its remarkable sensitivity and precision. Both cellular and in vivo experiments validated the capacity of Ox-PGP1 for accurate differentiation between normal, inflammatory, and cancerous thyroid cells. Furthermore, Ox-PGP1 showed the potential to rapidly and sensitively differentiate between autoimmune thyroiditis and anaplastic thyroid carcinoma in a mouse model, achieving results in just 5 min. The successful design and application of Ox-PGP1 represent a substantial advancement in technology over traditional diagnostic approaches, potentially enabling earlier interventions for thyroid diseases.

2.
Int J Cancer ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561936

RESUMO

Recombinant human granulocyte colony-stimulating factor (G-CSF) administration in patients with cancer and coronavirus disease (COVID-19) remains controversial. Concerns exist that it may worsen COVID-19 outcomes by triggering an inflammatory cytokine storm, despite its common use for managing chemotherapy-induced neutropenia (CIN) or febrile neutropenia post-chemotherapy. Here, we determined whether prophylactic or therapeutic G-CSF administration following chemotherapy exacerbates COVID-19 progression to severe/critical conditions in breast cancer patients with COVID-19. Between December 2022 and February 2023, all 503 enrolled breast cancer patients had concurrent COVID-19 and received G-CSF post-chemotherapy, with most being vaccinated pre-chemotherapy. We prospectively observed COVID-19-related adverse outcomes, conducted association analyses, and subsequently performed Mendelian randomization (MR) analyses to validate the causal effect of genetically predicted G-CSF or its associated granulocyte traits on COVID-19 adverse outcomes. Only 0.99% (5/503) of breast cancer patients experienced COVID-19-related hospitalization following prophylactic or therapeutic G-CSF administration after chemotherapy. No mortality or progression to severe/critical COVID-19 occurred after G-CSF administration. Notably, no significant associations were observed between the application, dosage, or response to G-CSF and COVID-19-related hospitalization (all p >.05). Similarly, the MR analyses showed no evidence of causality of genetically predicted G-CSF or related granulocyte traits on COVID-19-related hospitalization or COVID-19 severity (all p >.05). There is insufficient evidence to substantiate the notion that the prophylactic or therapeutic administration of G-CSF after chemotherapy for managing CIN in patients with breast cancer and COVID-19 would worsen COVID-19 outcomes, leading to severe or critical conditions, or even death, especially considering the context of COVID-19 vaccination.

3.
Nat Commun ; 15(1): 2818, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561369

RESUMO

Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.


Assuntos
Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Animais , Masculino , Camundongos , Evasão da Resposta Imune , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo
4.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522197

RESUMO

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Plásticos , Polietileno , Solo , Rizosfera , Microplásticos , Metais Pesados/toxicidade , Metais Pesados/análise , Enterobacter , Poluentes do Solo/análise
5.
Mediators Inflamm ; 2024: 7459054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549714

RESUMO

Background: Cerebral ischemia-reperfusion injury is a common complication of ischemic stroke that affects the prognosis of patients with ischemic stroke. The lipid-soluble diterpene Tanshinone IIA, which was isolated from Salvia miltiorrhiza, has been indicated to reduce cerebral ischemic injury. In this study, we investigated the molecular mechanism of Tanshinone IIA in alleviating reperfusion-induced brain injury. Methods: Middle cerebral artery occlusion animal models were established, and neurological scores, tetrazolium chloride staining, brain volume quantification, wet and dry brain water content measurement, Nissl staining, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were performed. The viability of cells was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assays, while cell damage was measured by lactate dehydrogenase release in the in vitro oxygen glucose deprivation model. In addition, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were used to evaluate the therapeutic effect of Tanshinone IIA on ischemia/reperfusion (I/R) induced brain injury, as well as its effects on the inflammatory response and neuronal apoptosis, in vivo and in vitro. Furthermore, this study validated the targeting relationship between miR-124-5p and FoxO1 using a dual luciferase assay. Finally, we examined the role of Tanshinone IIA in brain injury from a molecular perspective by inhibiting miR-124-5p or increasing FoxO1 levels. Results: After treatment with Tanshinone IIA in middle cerebral artery occlusion-reperfusion (MCAO/R) rats, the volume of cerebral infarction was reduced, the water content of the brain was decreased, the nerve function of the rats was significantly improved, and the cell damage was significantly reduced. In addition, Tanshinone IIA effectively inhibited the I/R-induced inflammatory response and neuronal apoptosis, that is, it inhibited the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, decreased the expression of apoptotic protein Bax and Cleaved-caspase-3, and promoted the expression of antiapoptotic protein Bcl-2. In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, Tanshinone IIA also inhibited the expression of inflammatory factors in neuronal cells and inhibited the occurrence of neuronal apoptosis. In addition, Tanshinone IIA promoted the expression of miR-124-5p. Transfection of miR-124-5p mimic has the same therapeutic effect as Tanshinone IIA and positive therapeutic effect on OGD cells, while transfection of miR-124-5p inhibitor has the opposite effect. The targeting of miR-124-5p negatively regulates FoxO1 expression. Inhibition of miR-124-5p or overexpression of FoxO1 can weaken the inhibitory effect of Tanshinone IIA on brain injury induced by I/R, while inhibition of miR-124-5p and overexpression of FoxO1 can further weaken the effect of Tanshinone IIA. Conclusion: Tanshinone IIA alleviates ischemic-reperfusion brain injury by inhibiting neuroinflammation through the miR-124-5p/FoxO1 axis. This finding provides a theoretical basis for mechanistic research on cerebral ischemia-reperfusion injury.


Assuntos
Abietanos , Lesões Encefálicas Traumáticas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Oxigênio/metabolismo , Reperfusão/efeitos adversos , Glucose/metabolismo , Água , Apoptose
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124162, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522377

RESUMO

In recent years, hemi-cyanine dyes have been widely used as biological probes due to their red-light emission characteristics and high fluorescence quantum yield. In this study, we synthesized a novel hemi-cyanine dye containing a tetrahydropyridine ring. A lysosomal target was introduced into its structure to create a new pH-sensitive near-infrared fluorescent probe that successfully targeted lysosomes. The results showed that when the probe solution was excited at the absorption wavelength of 650 nm, its fluorescence emission wavelength was about 700 nm, and the peak intensity changed with different pH values in a wide range. Therefore, this probe enabled non-invasive detection of changes in the acidic environment of lysosomes in living organisms and showed good imaging capabilities. Moreover, the probe displays high sensitivity and good stability. The theoretical calculation of a probe structure has also been completed to discuss the relationship between structure and property.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38503560

RESUMO

BACKGROUND: Previously, we demonstrated that Spp1-/- mice exhibit a greater susceptibility to alcohol-induced liver injury than wild-type (WT) mice. Notably, alcohol triggers the expression of osteopontin (encoded by SPP1) in hepatocytes. However, the specific role of hepatocyte-derived SPP1 in either mitigating or exacerbating alcohol-associated liver disease (AALD) has yet to be elucidated. We hypothesized that hepatocyte-derived SPP1 plays a role in AALD by modulating the regulation of steatosis. METHODS: We analyzed hepatic SPP1 expression using four publicly available datasets from patients with alcoholic hepatitis (AH). Additionally, we examined SPP1 expression in the livers of WT mice subjected to either a control or ethanol Lieber-DeCarli (LDC) diet for 6 weeks. We compared the relationship between SPP1 expression and significantly dysregulated genes in AH with controls using correlation and enrichment analyses. To investigate the specific impact of hepatocyte-derived SPP1, we generated hepatocyte-specific Spp1 knock-out (Spp1ΔHep ) mice and subjected them to either a control or ethanol Lieber-DeCarli diet for 6 weeks. RESULTS: Alcohol induced hepatic SPP1 expression in both humans and mice. Our analysis, focusing on genes correlated with SPP1, revealed an enrichment of fatty acid oxidation (FAO) in three datasets, and peroxisome proliferator-activated receptor signaling in one dataset. Notably, FAO genes correlating with SPP1 were downregulated in patients with AH. Ethanol-fed WT mice exhibited higher serum-free fatty acids (FFAs), adipose tissue lipolysis, and hepatic fatty acid (FA) transporters. In contrast, ethanol-fed Spp1ΔHep mice displayed lower liver triglycerides, FFAs, and serum alanine transaminase and greater FAO gene expression than WT mice, indicating a protective effect against AALD. Primary hepatocytes from Spp1∆Hep mice exhibited heightened expression of genes encoding proteins involved in FAO. CONCLUSIONS: Alcohol induces the expression of SPP1 in hepatocytes, leading to impaired FAO and contributing to the development of AALD.

8.
Chem Commun (Camb) ; 60(25): 3445-3448, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38445390

RESUMO

Quinoline carboxylic acid-linked and Pd nanoparticle (NP)-loaded COF nanospheres were constructed via a three-component one-pot Doebner reaction and post-synthetic metalation. The obtained Pd@DhaTAPB-COOH solid stabilizer can greatly promote the pH-switched recyclable Pickering interfacial dechlorination reaction, which sheds light on the bright future of smart Pickering emulsion catalysis.

9.
iScience ; 27(3): 109327, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487015

RESUMO

Emerging studies have demonstrated the link between RNA modifications and various cancers, while the predictive value and functional mechanisms of RNA modification-related genes (RMGs) in esophageal squamous cell carcinoma (ESCC) remain unclear. Here we established a prognostic signature for ESCC based on five RMGs. The analysis of ESCC clinical samples further verified the prognostic power of the prognostic signature. Moreover, we found that the knockdown of NSUN6 promotes ESCC progression in vitro and in vivo, whereas the overexpression of NSUN6 inhibits the malignant phenotype of ESCC cells. Mechanically, NSUN6 mediated tRNA m5C modifications selectively enhance the translation efficiency of CDH1 mRNA in a codon dependent manner. Rescue assays revealed that E-cadherin is an essential downstream target that mediates NSUN6's function in the regulation of ESCC progression. These findings offer additional insights into the link between ESCC and RMGs, as well as provide potential strategies for ESCC management and therapy.

10.
Huan Jing Ke Xue ; 45(3): 1361-1370, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471852

RESUMO

Atmospheric PM2.5 samples were collected in Heze, Shandong Province, from a total of three sampling sites at Heze College, Huarun Pharmacy, and a wastewater treatment plant between October 15, 2017 and January 31, 2018, to determine the concentrations of 21 metal elements in PM2.5 using inductively coupled plasma mass spectrometry (ICP-MS). The degree of elemental enrichment was also discussed, the health risks and potential heavy metal ecological risks were assessed. The results showed that ρ (PM2.5) ranged from 26.7 to 284.1 µg·m-3 at the three sampling sites during the sampling period, and the concentration values did not differ significantly, all of which were at high pollution levels. The highest concentrations of K were found in the three sampling sites, accounting for 31.03%, 39.47%, and 38.43% of the total, respectively, mainly due to the high contribution of biomass burning in autumn and winter in Heze, a large agricultural city. The highest concentrations of Zn, 89.70, 84.21, and 67.68 ng·m-3, were found in the trace elements at the three sampling sites, respectively. The enrichment factor results showed that the enrichment factor values of Zn, Pb, Sn, Sb, Cd, and Se were higher than 100, among which the enrichment factors of Cd and Se were higher than 2 000 and 4 000, respectively, which were significantly influenced by anthropogenic activities and might have been related to industrial production, metal smelting, road sources, and coal combustion emissions. The health risk results showed that there was some potential non-carcinogenic risk (HQ>0.1 for children and adults) for As and a combined potential non-carcinogenic risk (HI>0.1) and some potential carcinogenic risk (CRT>1×10-6) for both children and adults at the three sampling sites. There was a more significant carcinogenic risk (CRT>1×10-4) for adults at the wastewater treatment plant, and the slightly higher carcinogenic risk for adults than that for children may have been related to the longer outdoor activity and higher PM2.5 exposure for adults. The elements with the highest potential ecological risk values were Cd, As, and Pb, with Cd exhibiting a very high potential ecological risk that should be taken seriously. All three sampling sites showed a very high combined potential ecological risk, with the intensity spatially expressed as Heze College>Huarun Pharmacy>wastewater treatment plant.


Assuntos
Cádmio , Metais Pesados , Criança , Adulto , Humanos , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Carcinógenos/análise , Medição de Risco , Material Particulado/análise , China , Poeira/análise
11.
Heliyon ; 10(5): e27465, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463768

RESUMO

Background: Lactylation is a significant post-translational modification bridging the gap between cancer epigenetics and metabolic reprogramming. However, the association between lactylation and prognosis, tumor microenvironment (TME), and response to drug therapy in various cancers remains unclear. Methods: First, the expression, prognostic value, and genetic and epigenetic alterations of lactylation genes were systematically explored in a pan-cancer manner. Lactylation scores were derived for each tumor using the single-sample gene set enrichment analysis (ssGSEA) algorithm. The correlation of lactylation scores with clinical features, prognosis, and TME was assessed by integrating multiple computational methods. In addition, GSE135222 data was used to assess the efficacy of lactylation scores in predicting immunotherapy outcomes. The expression of lactylation genes in breast cancers and gliomas were verified by RNA-sequencing. Results: Lactylation genes were significantly upregulated in most cancer types. CREBBP and EP300 exhibited high mutation rates in pan-cancer analysis. The prognostic impact of the lactylation score varied by tumor type, and lactylation score was a protective factor for KIRC, ACC, READ, LGG, and UVM, and a risk factor for CHOL, DLBC, LAML, and OV. In addition, a high lactylation score was associated with cold TME. The infiltration levels of CD8+ T, γδT, natural killer T cell (NKT), and NK cells were lower in tumors with higher lactylation scores. Finally, immunotherapy efficacy was worse in patients with high lactylation scores than other types. Conclusion: Lactylation genes are involved in malignancy formation. Lactylation score serves as a promising biomarker for predicting patient prognosis and immunotherapy efficacy.

12.
Ying Yong Sheng Tai Xue Bao ; 35(1): 255-267, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511463

RESUMO

The optimization of production-living-ecology (PLE) space is an important basis for promoting regional high-quality development. Taking the Dongting Lake Eco-economic Zone as an example, from the perspective of improving the comprehensive benefits of the development and protection of the PLE space, we coupled the GMOP-FLUS model, and proposed an optimization method combining the scenario configuration and the bottom line protection of the PLE space. We compared the three optimization scenarios (economic optimization scenario, ecological optimization scenario, and multi-objective optimization scenario), and coordinated the conflict areas of two lines to clarify the comprehensive optimization scheme of the PLE space in the Dongting Lake Eco-economic Zone. The results showed the characteristics of increasing production space and living space and decreasing ecological space from 2010 to 2020, resulting in the partial loss of land ecological and environmental benefits. Under the economic optimization scenario, the ecological optimization scenario promoted the rapid growth of regional economy but damaged regional ecological security. The ecological optimization scenario inhibited regional economic development. The multi-objective optimization scenario led to improvement of economic and ecological benefits of the PLE space, which increased by 2.0% and 1.3%, respectively. The multi-objective optimization scenario was the best optimization scenario among the three scenarios. By superimposing the best scenario and the two-line conflict regional coordination results, we obtained the comprehensive optimization scheme for 2030. The production space, living space, and ecological space areas of the scheme were 25777.18, 2062.94, and 32552.68 km2, respectively. Based on the natural and social conditions, combining the comprehensive optimization scheme, we put forward different control suggestions for each type of PLE space. Our results could provide reference for the rational formulation of territorial spatial planning and the formulation of policies for the coordinated development of ecological environment and social economy in the Dongting Lake Eco-economic Zone.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Conservação dos Recursos Naturais/métodos , Lagos , Desenvolvimento Econômico , China , Ecossistema
13.
Bioengineering (Basel) ; 11(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534485

RESUMO

B0 field inhomogeneity is a long-lasting issue for Cardiac MRI (CMR) in high-field (3T and above) scanners. The inhomogeneous B0 fields can lead to corrupted image quality, prolonged scan time, and false diagnosis. B0 shimming is the most straightforward way to improve the B0 homogeneity. However, today's standard cardiac shimming protocol requires manual selection of a shim volume, which often falsely includes regions with large B0 deviation (e.g., liver, fat, and chest wall). The flawed shim field compromises the reliability of high-field CMR protocols, which significantly reduces the scan efficiency and hinders its wider clinical adoption. This study aims to develop a dual-channel deep learning model that can reliably contour the cardiac region for B0 shim without human interaction and under variable imaging protocols. By utilizing both the magnitude and phase information, the model achieved a high segmentation accuracy in the B0 field maps compared to the conventional single-channel methods (Dice score: 2D-mag = 0.866, 3D-mag = 0.907, and 3D-mag-phase = 0.938, all p < 0.05). Furthermore, it shows better generalizability against the common variations in MRI imaging parameters and enables significantly improved B0 shim compared to the standard method (SD(B0Shim): Proposed = 15 ± 11% vs. Standard = 6 ± 12%, p < 0.05). The proposed autonomous model can boost the reliability of cardiac shimming at 3T and serve as the foundation for more reliable and efficient high-field CMR imaging in clinical routines.

14.
Cancers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539565

RESUMO

The spectral quality of magnetic resonance spectroscopic imaging (MRSI) can be affected by strong magnetic field inhomogeneities, posing a challenge for 3D-MRSI's widespread clinical use with standard scanner-equipped 2nd-order shim coils. To overcome this, we designed an empirical unified shim-RF head coil (32-ch RF receive and 51-ch shim) for 3D-MRSI improvement. We compared its shimming performance and 3D-MRSI brain coverages against the standard scanner shim (2nd-order spherical harmonic (SH) shim coils) and integrated parallel reception, excitation, and shimming (iPRES) 32-ch AC/DC head coil. We also simulated a theoretical 3rd-, 4th-, and 5th-order SH shim as a benchmark to assess the UNIfied shim-RF coil (UNIC) improvements. In this preliminary study, the whole-brain coverage was simulated by using B0 field maps of twenty-four healthy human subjects (n = 24). Our results demonstrated that UNIC substantially improves brain field homogeneity, reducing whole-brain frequency standard deviations by 27% compared to the standard 2nd-order scanner shim and 17% compared to the iPRES shim. Moreover, UNIC enhances whole-brain coverage of 3D-MRSI by up to 34% compared to the standard 2nd-order scanner shim and up to 13% compared to the iPRES shim. UNIC markedly increases coverage in the prefrontal cortex by 147% and 47% and in the medial temporal lobe and temporal pole by 29% and 13%, respectively, at voxel resolutions of 1.4 cc and 0.09 cc for 3D-MRSI. Furthermore, UNIC effectively reduces variations in shim quality and brain coverage among different subjects compared to scanner shim and iPRES shim. Anticipated advancements in higher-order shimming (beyond 6th order) are expected via optimized designs using dimensionality reduction methods.

15.
J Agric Food Chem ; 72(8): 4127-4141, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362879

RESUMO

An amyloid-ß (Aß) fibril is a vital pathogenic factor of Alzheimer's disease (AD). Aß fibril disintegrators possess great potential to be developed into novel anti-AD agents. Here, a ligand fishing method was employed to rapidly discover Aß42 fibril disintegrators from Ganoderma lucidum using Aß42 fibril-immobilized magnetic beads, which led to the isolation of six Aß42 fibril disintegrators including ganodermanontriol, ganoderic acid DM, ganoderiol F, ganoderol B, ganodermenonol, and ergosterol. Neuroprotective evaluation in vitro exhibited that these Aß42 fibril disintegrators could significantly mitigate Aß42-induced neurotoxicity. Among these six disintegrators, ergosterol and ganoderic acid DM with stronger protecting activity were further selected to evaluate their neuroprotective effect on AD in vivo. Results showed that ergosterol and ganoderic acid DM could significantly alleviate Aß42-induced cognitive dysfunction and hippocampus neuron loss in vivo. Moreover, ergosterol and ganoderic acid DM could significantly inhibit Aß42-induced neuron apoptosis and Nrf2-mediated neuron oxidative stress in vitro and in vivo.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Reishi , Triterpenos , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ligantes , Peptídeos beta-Amiloides , Amiloide , Ergosterol , Fragmentos de Peptídeos/uso terapêutico
16.
Cell Oncol (Dordr) ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393513

RESUMO

PURPOSE: Sunitinib is a recommended drug for metastatic renal cell carcinoma (RCC). However, the therapeutic potential of sunitinib is impaired by toxicity and resistance. Therefore, we seek to explore a combinatorial strategy to improve sunitinib efficacy of low-toxicity dose for better clinical application. METHODS: We screen synergistic reagents of sunitinib from a compound library containing 1374 FDA-approved drugs by in vitro cell viability evaluation. The synergistically antiproliferative and proapoptotic effects were demonstrated on in vitro and in vivo models. The molecular mechanism was investigated by phosphoproteomics, co-immunoprecipitation, immunofluorescence and western-blot assays, etc. RESULTS: From the four-step screening, nilotinib stood out as a potential synergistic killer combined with sunitinib. Subsequent functional evaluation demonstrated that nilotinib and sunitinib synergistically inhibit RCC cell proliferation and promote apoptosis in vitro and in vivo. Mechanistically, nilotinib activates E3-ligase HUWE1 and in combination with sunitinib renders MCL-1 for degradation via proteasome pathway, resulting in the release of Beclin-1 from MCL-1/Beclin-1 complex. Subsequently, Beclin-1 induces complete autophagy flux to promote antitumor effect. CONCLUSION: Our findings revealed that a novel mechanism that nilotinib in combination with sunitinib overcomes sunitinib resistance in RCC. Therefore, this novel rational combination regimen provides a promising therapeutic avenue for metastatic RCC and rationale for evaluating this combination clinically.

17.
Elife ; 132024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38375778

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The induction of ACE2 expression may serve as a strategy by SARS-CoV-2 to facilitate its propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. Using 45 different luciferase reporters, the transcription factors SP1 and HNF4α were found to positively and negatively regulate ACE2 expression, respectively, at the transcriptional level in human lung epithelial cells (HPAEpiCs). SARS-CoV-2 infection increased the transcriptional activity of SP1 while inhibiting that of HNF4α. The PI3K/AKT signaling pathway, activated by SARS-CoV-2 infection, served as a crucial regulatory node, inducing ACE2 expression by enhancing SP1 phosphorylation-a marker of its activity-and reducing the nuclear localization of HNF4α. However, colchicine treatment inhibited the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. In Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2, inhibition of SP1 by either mithramycin A or colchicine resulted in reduced viral replication and tissue injury. In summary, our study uncovers a novel function of SP1 in the regulation of ACE2 expression and identifies SP1 as a potential target to reduce SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Fator de Transcrição Sp1 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Colchicina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , SARS-CoV-2/metabolismo , Fator de Transcrição Sp1/metabolismo
18.
Oral Dis ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376115

RESUMO

OBJECTIVES: To investigate the inhibitory effects of STM2457, which is a novel METTL3 (m6 A writer) inhibitor, both as a monotherapy and in combination with anlotinib, in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. MATERIALS AND METHODS: The efficacy of STM2457 or STM2457 plus anlotinib was evaluated using two OSCC cell lines by CCK8, transwell, colony formation, would-healing, sphere formation, cell cycle, apoptosis assays, and nude mice tumor xenograft techniques. The molecular mechanism study was carried out by western blotting, qRT-PCR, MeRIP-qPCR, immunofluorescence, and immunohistochemistry. RESULTS: STM2457 combined with anlotinib enhanced inhibition of cellular survival/proliferation and promotion of apoptosis in vitro. Moreover, this combinatorial approach exerted a notable reduction in stemness properties and EMT (epithelial-mesenchymal transition) features of OSCC cells. Remarkably, in vivo studies validated the efficacy of the combination treatment. Mechanistically, our investigations revealed that the combined action of STM2457 and anlotinib exerted downregulatory effects on EGFR (epidermal growth factor receptor) expression in OSCC cells. CONCLUSIONS: The combination of STM2457 and anlotinib targeting EGFR exerted a multiple anti-tumor effect. In near future, anlotinib combined with STM2457 may provide a novel insight for the treatment of OSCC.

19.
Int J Surg ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329065

RESUMO

BACKGROUND: Radical inguinal lymph node dissection (rILND) is the most available treatment to cure penile cancer (PC) with limited inguinal-confined disease. However, guidelines regarding acceptable boundaries of rILND are controversial, and consensus is lacking. We aimed to standardize the surgical boundaries of rILND with definite pathological evidence and explore the distribution pattern of inguinal lymph nodes (ILNs) in PC. METHODS: A total of 414 PC patients from two centers who underwent rILND were enrolled. The ILN distribution was divided into seven zones anatomically for pathological examination. Student's t test and Kaplan‒Meier survival analysis were used. RESULTS: ILNs displayed a funnel-shaped distribution with high density in superior regions. ILNs and metastatic nodes present anywhere within the radical boundaries. Positive ILNs were mainly concentrated in zone I (51.7%) and zone II (41.3%), but there were 8.7 and 12.3% in inferior zones V and VI, respectively, and 7.1% in the deep ILNs. More importantly, a single positive ILN and first-station positive zone was detected in all seven regions. Single positive ILNs were located in zones I through VI in 40.4%, 23.6%, 6.7%, 18.0%, 4.5% and 1.1%, respectively, and 5.6% presented deep ILN metastasis directly. CONCLUSION: We established a detailed ILN distribution map and displayed lymphatic drainage patterns with definite pathological evidence using a large cohort of PC patients. Single positive ILNs and first-station metastatic zones were observed in any region, even directly with deep ILN metastasis. Only rILND can ensure tumor-free resection without the omission of positive nodes.

20.
Food Res Int ; 178: 113931, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309903

RESUMO

The comprehensive understanding of multi-scale structure of starch and how the structure regulates the pasting/digestion properties remain unclear. This work investigated the effects of γ-ray irradiation with different doses on multi-scale structure and pasting/digestion properties of potato starch. Results indicated that γ-ray at lower doses (<20 kGy) had little effect on micromorphology of starch, increased mainly the amylose content and the thickness of amorphous region while decreased crystallinity, double helix content and lamellar ordering. With the increase of dose, the internal structure of large granules was destroyed, resulting in the depolymerization of starch to form more short-chains and to reduce molecular weight. Meanwhile, amylose content decreased due to the depolymerization of amylose. The enhanced double helix content, crystallinity, lamellar ordering and structural compactness manifested the formation of the thicker and denser starch structure. These structure changes resulted in the decreased viscosity, the increased stability and anti- digestibility of paste.


Assuntos
Amilose , Solanum tuberosum , Amilose/química , Amido/química , Viscosidade , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...