Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
Int Wound J ; 21(4): e14864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619084

RESUMO

Multidrug-resistant (MDR) bacterial infections have become increasingly common in recent years due to the increased prevalence of diabetic foot ulcers (DFUs). We carried out a meta-analysis aimed at investigating the prevalence of MDR bacteria isolated from DFUs and analysing the risk factors for MDR bacterial infection in patients with DFUs. The PubMed/Medline, Web of Science, Embase, Cochrane Library, Ovid, Scopus, and ProQuest databases were searched for studies published up to November 2023 on the clinical outcomes of MDR bacteria in DFUs. The main outcome was the prevalence of MDR bacteria in DFUs. A total of 21 studies were included, representing 4885 patients from which 2633 MDR bacterial isolates were obtained. The prevalence of MDR bacteria in DFUs was 50.86% (95% confidence interval (CI): 41.92%-59.78%). The prevalence of MDR gram-positive bacteria (GPB) in DFUs was 19.81% (95% CI: 14.35%-25.91%), and the prevalence of MDR gram-negative bacteria (GNB) in DFUs was 32.84% (95% CI: 26.40%-39.62%). MDR Staphylococcus aureus (12.13% (95% CI: 8.79%-15.91%)) and MDR Enterococcus spp. (3.33% (95% CI: 1.92%-5.07%)) were the main MDR-GPB in DFUs. MDR Escherichia coli, MDR Pseudomonas aeruginosa, MDR Enterobacter spp., MDR Klebsiella pneumoniae, and MDR Proteus mirabilis were the main MDR-GNB in DFUs. The prevalence rates were 6.93% (95% CI: 5.15%-8.95%), 6.01% (95% CI: 4.03%-8.33%), 3.59% (95% CI: 0.42%-9.30%), 3.50% (95% CI: 2.31%-4.91%), and 3.27% (95% CI: 1.74%-5.21%), respectively. The clinical variables of diabetic foot ulcer patients infected with MDR bacteria and non-MDR bacteria in the included studies were analysed. The results showed that peripheral vascular disease, peripheral neuropathy, nephropathy, osteomyelitis, Wagner's grade, previous hospitalization and previous use of antibacterial drugs were significantly different between the MDR bacterial group and the non-MDR bacterial group. We concluded that there is a high prevalence of MDR bacterial infections in DFUs. The prevalence of MDR-GNB was greater than that of MDR-GPB in DFUs. MDR S. aureus was the main MDR-GPB in DFUs, and MDR E. coli was the main MDR-GNB in DFUs. Our study also indicated that peripheral vascular disease, peripheral neuropathy, nephropathy, osteomyelitis, Wagner's grade, previous hospitalization, and previous use of antibacterial drugs were associated with MDR bacterial infections in patients with DFUs.


Assuntos
Infecções Bacterianas , Diabetes Mellitus , Pé Diabético , Osteomielite , Doenças Vasculares Periféricas , Humanos , Pé Diabético/epidemiologia , Escherichia coli , Prevalência , Staphylococcus aureus , Antibacterianos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia
2.
J Diabetes ; 16(4): e13549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584275

RESUMO

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Glicemia , Automonitorização da Glicemia , Exercício Físico/fisiologia , Músculo Esquelético
3.
Front Oncol ; 14: 1345288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577330

RESUMO

Background: In patients with pulmonary nodules undergoing computed tomography (CT)-guided localization procedures, a range of liquid-based materials have been employed to date in an effort to guide video-assisted thoracoscopic surgery (VATS) procedures to resect target nodules. However, the relative performance of these different liquid-based localization strategies has yet to be systematically evaluated. Accordingly, this study was developed with the aim of examining the relative safety and efficacy of CT-guided indocyanine green (IG) and blue-stained glue (BSG) PN localization. Methods: Consecutive patients with PNs undergoing CT-guided localization prior to VATS from November 2021 - April 2022 were enrolled in this study. Safety and efficacy outcomes were compared between patients in which different localization materials were used. Results: In total, localization procedures were performed with IG for 121 patients (140 PNs), while BSG was used for localization procedures for 113 patients (153 PNs). Both of these materials achieved 100% technical success rates for localization, with no significant differences between groups with respect to the duration of localization (P = 0.074) or visual analog scale scores (P = 0.787). Pneumothorax affected 8 (6.6%) and 8 (7.1%) patients in the respective IG and BSG groups (P = 0.887), while 12 (9.9%) and 10 (8.8%) patients of these patients experienced pulmonary hemorrhage. IG was less expensive than BSG ($17.2 vs. $165). VATS sublobar resection procedure technical success rates were also 100% in both groups, with no instances of conversion to thoracotomy. Conclusions: IG and BSG both offer similarly high levels of clinical safety and efficacy when applied for preoperative CT-guided PN localization, with IG being less expensive than BSG.

4.
Biochem Biophys Res Commun ; 710: 149871, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38579538

RESUMO

Brassinosteroid activated kinase 1 (BAK1) is a cell-surface coreceptor which plays multiple roles in innate immunity of plants. HopF2 is an effector secreted by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 into Arabidopsis and suppresses host immune system through interaction with BAK1 as well as its downstream kinase MKK5. The association mechanism of HopF2 to BAK1 remains unclear, which prohibits our understanding and subsequent interfering of their interaction for pathogen management. Herein, we found the kinase domain of BAK1 (BAK1-KD) is sufficient for HopF2 association. With a combination of hydrogen/deuterium exchange mass spectrometry and mutational assays, we found a region of BAK1-KD N-lobe and a region of HopF2 head subdomain are critical for intermolecular interaction, which is also supported by unbiased protein-protein docking with ClusPro and kinase activity assay. Collectively, this research presents the interaction mechanism between Arabidopsis BAK1 and P. syringae HopF2, which could pave the way for bactericide development that blocking the functioning of HopF2 toward BAK1.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38573157

RESUMO

OBJECTIVE: To identify the risk factors for placenta accreta spectrum (PAS) disorders in women without prior cesarean section (CS). METHODS: This retrospective case-control study investigated patients without prior CS who gave birth at Peking University Third Hospital between January 1, 2015 and December 31, 2021. Patients diagnosed with PAS according to the clinical diagnostic criteria of the 2019 International Federation of Gynecology and Obstetrics (FIGO) classification were included as the study group. Patients were matched as the control group according to delivery date and placenta previa, in a 1:2 allocation ratio. Maternal characteristics were compared between the two groups. RESULTS: The study included 348 patients in the study group and 696 in the control group. The multivariate analysis showed that the independent risk factors of PAS consisted of operative hysteroscopy (once: adjusted odds ratio [aOR] 2.38, 95% CI 1.28-4.24, P = 0.006; twice or more: aOR 5.43, 95% CI 1.04-28.32, P = 0.045), uterine curettage (once: aOR 2.54, 95% CI 1.80-3.58, P < 0.001; twice: aOR 3.01, 95% CI 1.81-5.02, P < 0.001; three or more times: aOR 9.18, 95% CI 4.64-18.18, P < 0.001), multifetal pregnancy (aOR 5.64, 95% CI 3.01-10.57, P < 0.001), adenomyosis (aOR 2.77, 95% CI 1.23-6.22, P = 0.014), in vitro fertilization (aOR 1.51, 95% CI 1.04-2.20, P = 0.030) and pre-eclampsia (aOR 2.72, 95% CI 1.36-5.45, P = 0.005), and the independent protective factor was being multiparous (aOR 0.37, 95% CI 0.25-0.54, P < 0.001). CONCLUSION: After controlling the effect of placenta previa, we found that patients with PAS without prior CS had unique maternal characteristics. Classification and quantification of the intrauterine surgeries they have undergone is essential for identifying high-risk patients. Early identification of high-risk groups by risk factors has the potential to improve the prognosis considerably.

6.
Biomed Chromatogr ; : e5873, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587039

RESUMO

Ziziphi Spinosae Semen (ZSS) and fried ZSS (FZSS) have been used for treating insomnia and depression in China. However, the potential influence of chemical variations on their efficacy remains unclear. This study demonstrated that compared with ZSS, FZSS exhibited an increase in the content of seven compounds, while the fatty oil content decreased. Both ZSS and FZSS exhibited antidepressive effects in a chronic unpredictable mild stress rat model, indicating a synergistic regulation of deficiencies in 5-hydroxytryptamine in the brain and the hyperactivation of severe peripheral inflammation. ZSS demonstrated a superior modulatory effect compared with FZSS, as indicated by integrated pharmacodynamic index, metabolic profile, and relative distance value. The potential mechanism underlying their antidepressive effects involved the modulation of gut microbiota structure to alleviate excessive inflammatory responses and imbalanced tryptophan metabolism. Correlation analysis indicated that the higher fatty oil contents should be comprehensively considered as the main reason for ZSS's superior antidepressive effects, achieved through the regulation of pyroglutamic acid levels.

7.
Front Microbiol ; 15: 1386552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596379

RESUMO

A new strain of xanthan-degrading bacteria identified as Cohnella sp. has been isolated from a xanthan thickener for food production. The strain was able to utilize xanthan as the only carbon source and to reduce the viscosity of xanthan-containing medium during cultivation. Comparative analysis of the secretomes of Cohnella sp. after growth on different media led to the identification of a xanthanase designated as CspXan9, which was isolated after recombinant production in Escherichia coli. CspXan9 could efficiently degrade the ß-1,4-glucan backbone of xanthan after previous removal of pyruvylated mannose residues from the ends of the native xanthan side chains by xanthan lyase treatment (XLT-xanthan). Compared with xanthanase from Paenibacillus nanensis, xanthanase CspXan9 had a different module composition at the N- and C-terminal ends. The main putative oligosaccharides released from XLT-xanthan by CspXan9 cleavage were tetrasaccharides and octasaccharides. To explore the functions of the N- and C-terminal regions of the enzyme, truncated variants lacking some of the non-catalytic modules (CspXan9-C, CspXan9-N, CspXan9-C-N) were produced. Enzyme assays with the purified deletion derivatives, which all contained the catalytic glycoside hydrolase family 9 (GH9) module, demonstrated substantially reduced specific activity on XLT-xanthan of CspXan9-C-N compared with full-length CspXan9. The C-terminal module of CspXan9 was found to represent a novel carbohydrate-binding module of family CBM66 with binding affinity for XLT-xanthan, as was shown by native affinity polyacrylamide gel electrophoresis in the presence of various polysaccharides. The only previously known binding function of a CBM66 member is exo-type binding to the non-reducing fructose ends of the ß-fructan polysaccharides inulin and levan.

8.
Clin Interv Aging ; 19: 491-502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525317

RESUMO

Purpose: We aimed to identify the risk factors for postoperative cognitive decline (POCD) by evaluating the outcomes from preoperative comprehensive geriatric assessment (CGA) and intraoperative anesthetic interventions. Patients and Methods: Data used in the study were obtained from the Aged Patient Perioperative Longitudinal Evaluation-Multidisciplinary Trial (APPLE-MDT) cohort recruited from the Department of Orthopedics in Xuanwu Hospital, Capital Medical University between March, 2019 and June, 2022. All patients accepted preoperative CGA by the multidisciplinary team using 13 common scales across 15 domains reflecting the multi-organ functions. The variables included demographic data, scales in CGA, comorbidities, laboratory tests and intraoperative anesthetic data. Cognitive function was assessed by Montreal Cognitive Assessment scale within 48 hours after admission and after surgery. Dropping of ≥1 point between the preoperative and postoperative scale was defined as POCD. Results: We enrolled 119 patients. The median age was 80.00 years [IQR, 77.00, 82.00] and 68 patients (57.1%) were female. Forty-two patients (35.3%) developed POCD. Three cognitive domains including calculation (P = 0.046), recall (P = 0.047) and attention (P = 0.007) were significantly worsened after surgery. Univariate analysis showed that disability of instrumental activity of daily living, incidence rate of postoperative respiratory failure (PRF) ≥4.2%, STOP-Bang scale score, Caprini risk scale score and Sufentanil for maintenance of anesthesia were different between the POCD and non-POCD patients. In the multivariable logistic regression analysis, PRF ≥ 4.2% (odds ratio [OR] = 2.343; 95% confidence interval [CI]: 1.028-5.551; P = 0.046) and Sufentanil for maintenance of anesthesia (OR = 0.260; 95% CI: 0.057-0.859; P = 0.044) was independently associated with POCD as risk and protective factors, respectively. Conclusion: Our study suggests that POCD is frequent among older patients undergoing elective orthopedic surgery, in which decline of calculation, recall and attention was predominant. Preoperative comprehensive geriatric assessments are important to identify the high-risk individuals of POCD.


Assuntos
Anestésicos , Disfunção Cognitiva , Delírio , Procedimentos Ortopédicos , Complicações Cognitivas Pós-Operatórias , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , China/epidemiologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Procedimentos Ortopédicos/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fatores de Risco , Sufentanil , Ensaios Clínicos como Assunto
9.
Acta Pharmacol Sin ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438582

RESUMO

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation. We established an AXL-overexpression NSCLC cell line and conducted high-throughput screening of a small molecule chemical library containing 510 anti-tumor drugs. We found that brigatinib potently inhibited AXL expression, and that brigatinib (0.5 µM) significantly enhanced the anti-tumor efficacy of osimertinib (1 µM) in AXL-mediated osimertinib-resistant NSCLC cell lines in vitro. We demonstrated that brigatinib had a potential ability to bind AXL kinase protein and further inhibit its downstream pathways in NSCLC cell lines. Furthermore, we revealed that brigatinib might decrease AXL expression through increasing K48-linked ubiquitination of AXL and promoting AXL degradation in HCC827OR cells and PC-9OR cells. In AXL-high expression osimertinib-resistant PC-9OR and HCC827OR cells derived xenograft mouse models, administration of osimertinib (10 mg·kg-1·d-1) alone for 3 weeks had no effect, and administration of brigatinib (25 mg·kg-1·d-1) alone caused a minor inhibition on the tumor growth; whereas combination of osimertinib and brigatinib caused marked tumor shrinkages. We concluded that brigatinib may be a promising clinical strategy for enhancing osimertinib efficacy in AXL-mediated osimertinib-resistant NSCLC patients.

10.
Front Pharmacol ; 15: 1363212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476326

RESUMO

Both continuous oxidative stress and poly (ADP-ribose) polymerase 1 (PARP-1) activation occur in neurodegenerative diseases such as Parkinson's disease. PARP-1 inhibition can reverse mitochondrial damage and has a neuroprotective effect. In a previous study, we synthesized melatonin derivative 6a (MD6a) and reported that it has excellent antioxidant activity and significantly reduces α-synuclein aggregation in Caenorhabditis elegans; however, the underlying mechanism is largely unknown. In the present study, we revealed that MD6a is a potential PARP-1 inhibitor, leading to mammalian targe of rapamycin/heat shock factor 1 signaling downregulation and reducing heat shock protein 4 and 6 expression, thus helping to maintain protein homeostasis and improve mitochondrial function. Together, these findings suggest that MD6a might be a viable candidate for the prevention and treatment of Parkinson's disease.

11.
Acta Pharmacol Sin ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504011

RESUMO

Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms  of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.

12.
Brain Res ; 1833: 148885, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531465

RESUMO

BACKGROUND: Immune-inflammatory response is a key element in the occurrence and development of olfactory dysfunction (OD) in patients with allergic rhinitis (AR). As one of the core factors in immune-inflammatory responses, interleukin (IL)-6 is closely related to the pathogenesis of allergic diseases. It may also play an important role in OD induced by diseases, such as Sjögren's syndrome and coronavirus disease 2019. However, there is no study has reported its role in OD in AR. Thus, this study aimed to investigate the role of IL-6 in AR-related OD, in an attempt to discover a new target for the prevention and treatment of OD in patients with AR. METHODS: Differential expression analysis was performed using the public datasets GSE52804 and GSE140454 for AR, and differentially expressed genes (DEGs) were obtained by obtaining the intersection points between these two datasets. IL-6, a common differential factor, was obtained by intersecting the DEGs with the General Olfactory Sensitivity Database (GOSdb) again. A model of AR mice with OD was developed by sensitizing with ovalbumin (OVA) to verify the reliability of IL-6 as a key factor of OD in AR and explore the potential mechanisms. Furthermore, a supernatant and microglia co-culture model of nasal mucosa epithelial cells stimulated by the allergen house dust mite extract Derp1 was established to identify the cellular and molecular mechanisms of IL-6-mediated OD in AR. RESULTS: The level of IL-6 in the nasal mucosa and olfactory bulb of AR mice with OD significantly increased and showed a positive correlation with the expression of olfactory bulb microglia marker Iba-1 and the severity of OD. In-vitro experiments showed that the level of IL-6 significantly increased in the supernatant after the nasal mucosa epithelial cells were stimulated by Derp1, along with significantly decreased barrier function of the nasal mucosa. The expression levels of neuroinflammatory markers IL-1ß and INOS increased after a conditioned culture of microglia with the supernatant including IL-6. Then knockdown (KD) of IL-6R by small interfering RNA (siRNA), the expression of IL-1ß and INOS significantly diminished. CONCLUSION: IL-6 plays a key role in the occurrence and development of OD in AR, which may be related to its effect on olfactory bulb microglia-mediated neuroinflammation.

13.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543378

RESUMO

High-performance thermally conductive composites are increasingly vital due to the accelerated advancements in communication and electronics, driving the demand for efficient thermal management in electronic packaging, light-emitting diodes (LEDs), and energy storage applications. Controlling the orderly arrangement of fillers within a polymer matrix is acknowledged as an essential strategy for developing thermal conductive composites. In this study, isotactic polypropylene/GNP (iPP/GNP) composite filament tailored for fused deposition modeling (FDM) was achieved by combining ball milling with melt extrusion processing. The rheological properties of the composites were thoroughly studied. The shear field and pressure field distributions during the FDM extrusion process were simulated and examined using Polyflow, focusing on the influence of the 3D printing processing flow field on the orientation of GNP within the iPP matrix. Exploiting the unique capabilities of FDM and through strategic printing path design, thermally conductive composites with GNPs oriented in the through-plane direction were 3D printed. At a GNP content of 5 wt%, the as-printed sample demonstrated a thermal conductivity of 0.64 W/m · K, which was 1.5 times the in-plane thermal conductivity for 0.42 W/m · K and triple pure iPP for 0.22 W/m · K. Effective medium theory (EMT) model fitting results indicated a significantly reduced interface thermal resistance in the through-plane direction compared to the in-plane direction. This work shed brilliant light on developing PP-based thermal conductive composites with arbitrarily-customized structures.

14.
J Transl Med ; 22(1): 253, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459561

RESUMO

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Assuntos
Poluentes Ambientais , MicroRNAs , Animais , Feminino , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Embrião não Mamífero/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia
15.
J Hazard Mater ; 469: 134093, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522199

RESUMO

The inadequate understanding of the biofouling formation mechanism and the absence of effective control have inhibited the commercial application of membrane distillation (MD). In this study, an advanced oxidation process (AOP)/coagulation-coupled (Coag) membrane distillation system was proposed and exhibited the potential for MD ammonia recovery (recovery rate: 94.1%). Extracellular polymeric substances (EPS) and soluble microbial products (SMP) components such as humic acid and tryptophan-like proteins were disrupted and degraded in the digestate. The curtailment and sterilizing efficiency of AOP on biofilm growth was also verified by optical coherence tomography (OCT) in situ real-time monitoring and confocal laser scanning microscopy (CLSM). Peroxymonosulfate (PMS) was activated to generate sulfate (SO4•-) and hydroxyl radicals (HO•), which altered the microbial community. After oxidative treatment, 16 S rRNA sequencing indicated that the dominant phylum of the microbial community evolved into Firmicutes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that free radicals produced by PMS could disrupt cells' signaling molecules and interactions. In conjunction with these analyses, the mechanisms of response to free radical attack by Gram-negative bacteria, Gram-positive bacteria, and fungi were revealed. This research provided new insights into the field of membrane fouling control for membrane technology resource recovery processes, broadening the impact of AOP applications on microbiological response and fate in the environment.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Amônia , Destilação , Membranas Artificiais , Biofilmes
16.
Cancer Lett ; 588: 216762, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38408602

RESUMO

The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Compostos Organofosforados , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Compostos de Anilina/farmacologia , Sialiltransferases/genética
17.
Curr Neurovasc Res ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38409728

RESUMO

Electroacupuncture (EA) treatment plays a protective role in cerebral ischemiareperfusion (CIR) injury. However, the underlying molecular mechanism is still not fully elucidated. METHODS: All rats were randomly divided into five groups: the SHAM group, MCAO group, MCAO+EA (MEA) group, MCAO+METTL3 overexpression+EA (METTL3) group and MCAO+lncRNA H19 overexpression+EA (lncRNA H19) group. The middle cerebral artery occlusion (MCAO) rats were established to mimic CIR injury. The overexpression of lncRNA H19 and METTL3 was induced by stereotactic injection of lentiviruses into the rat lateral ventricles. The rats in the MEA, METTL3, and lncRNA H19 groups were treated with EA therapy on "Renzhong" (DU26) and "Baihui" (DU20) acupoints (3.85/6.25Hz; 1mA). Besides, the neurological deficit scoring, cerebral infarction area, pathological changes in brain tissue, total RNA m6A level, and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 were detected in this experiment. RESULTS: EA improved the neurological deficit scoring, cerebral infarction area, and pathological injury in MCAO rats, while these beneficial effects of EA on CIR injury were attenuated by the overexpression of METTL3 or lncRNA H19. More importantly, EA down-regulated the total RNA m6A level and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 in MCAO rats. Instead, the overexpression of METTL3 or lncRNA H19 was found to reverse the EA-induced down-regulation. CONCLUSION: The findings indicated that EA might down-regulate the S1PR2/TLR4/NLRP3 signaling pathway via m6A methylation of lncRNA H19 to alleviate CIR injury. Our findings provide a new insight into the molecular mechanism of EA on CIR injury.

18.
BMC Genomics ; 25(1): 194, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373886

RESUMO

BACKGROUND: Bone morphogenetic proteins (BMPs) are part of the transforming growth factor beta (TGF-ß) superfamily and play crucial roles in bone development, as well as in the formation and maintenance of various organs. Triplophysa dalaica, a small loach fish that primarily inhabits relatively high elevations and cooler water bodies, was the focus of this study. Understanding the function of BMP genes during the morphogenesis of T. dalaica helps to clarify the mechanisms of its evolution and serves as a reference for the study of BMP genes in other bony fishes. The data for the T. dalaica transcriptome and genome used in this investigation were derived from the outcomes of our laboratory sequencing. RESULTS: This study identified a total of 26 BMP genes, all of which, except for BMP1, possess similar TGF-ß structural domains. We conducted an analysis of these 26 BMP genes, examining their physicochemical properties, subcellular localization, phylogenetic relationships, covariance within and among species, chromosomal localization, gene structure, conserved motifs, conserved structural domains, and expression patterns. Our findings indicated that three BMP genes were associated with unstable proteins, while 11 BMP genes were located within the extracellular matrix. Furthermore, some BMP genes were duplicated, with the majority being enriched in the GO:0008083 pathway, which is related to growth factor activity. It was hypothesized that genes within the BMP1/3/11/15 subgroup (Group I) play a significant role in the growth and development of T. dalaica. By analyzing the expression patterns of proteins in nine tissues (gonad, kidney, gill, spleen, brain, liver, fin, heart, and muscle), we found that BMP genes play diverse regulatory roles during different stages of growth and development and exhibit characteristics of division of labor. CONCLUSIONS: This study contributes to a deeper understanding of BMP gene family member expression patterns in high-altitude, high-salinity environments and provides valuable insights for future research on the BMP gene family in bony fishes.


Assuntos
Proteínas Morfogenéticas Ósseas , Cipriniformes , Animais , Filogenia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Cipriniformes/genética , Fator de Crescimento Transformador beta/genética , Transcriptoma
19.
Heliyon ; 10(3): e25556, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356600

RESUMO

As an important marine aquaculture species, the mud crab (Scylla paramamosain) is a good candidate for studying the osmoregulatory mechanism of crustaceans. While previous studies have focused on the osmoregulatory function of the gills, this study aims to explore the osmoregulatory function of the antennal glands. By the comparative transcriptomic analysis, we found the pathways of ion regulation including "proximal tubule bicarbonate reclamation" and "mineral absorption" were activated in the antennal glands of the crabs long-term dwelling in low salinity. The enhanced ionic reabsorption was associated with up-regulated ion transport genes such as NKA, CA-c, VPA, and NHE, and with energy metabolism genes such as MDH, SLC25, and PEPCK. The upregulation of NKA and CA-c was also verified by the increased enzyme activity. The lowered osmolality and ion concentration of the hemolymph and the enlarged labyrinth lumen and hemolymph capillary inside the antennal glands indicated the infiltration of external water and the responsively increase of urine excretion, which explained the requirement of enhanced ionic reabsorption. To further confirm these findings, we examined the change of gene expression, enzyme activity, internal ion concentration, and external ion concentration during a 96 h low salinity challenge with seven intervals. The results were basically consistent with the results as shown in the long-term low salinity adaptation. The present study provides valuable information on the osmoregulatory function of the antennal glands of S. paramamosain. The implication of this study in marine aquaculture is that it provides valuable information on the osmoregulatory mechanism of mud crabs, which can be used to improve their culture conditions and enhance their tolerance to salinity stress. The identified genes and pathways involved in osmoregulation can also be potential targets for genetic selection and breeding programs to develop more resilient mud crab strains for aquaculture.

20.
World J Surg Oncol ; 22(1): 51, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336734

RESUMO

BACKGROUND: Presurgical computed tomography (CT)-guided localization is frequently employed to reduce the thoracotomy conversion rate, while increasing the rate of successful sublobar resection of ground glass nodules (GGNs) via video-assisted thoracoscopic surgery (VATS). In this study, we compared the clinical efficacies of presurgical CT-guided hook-wire and indocyanine green (IG)-based localization of GGNs. METHODS: Between January 2018 and December 2021, we recruited 86 patients who underwent CT-guided hook-wire or IG-based GGN localization before VATS resection in our hospital, and compared the clinical efficiency and safety of both techniques. RESULTS: A total of 38 patients with 39 GGNs were included in the hook-wire group, whereas 48 patients with 50 GGNs were included in the IG group. There were no significant disparities in the baseline data between the two groups of patients. According to our investigation, the technical success rates of CT-based hook-wire- and IG-based localization procedures were 97.4% and 100%, respectively (P = 1.000). Moreover, the significantly longer localization duration (15.3 ± 6.3 min vs. 11.2 ± 5.3 min, P = 0.002) and higher visual analog scale (4.5 ± 0.6 vs. 3.0 ± 0.5, P = 0.001) were observed in the hook-wire patients, than in the IG patients. Occurrence of pneumothorax was significantly higher in hook-wire patients (27.3% vs. 6.3%, P = 0.048). Lung hemorrhage seemed higher in hook-wire patients (28.9% vs. 12.5%, P = 0.057) but did not reach statistical significance. Lastly, the technical success rates of VATS sublobar resection were 97.4% and 100% in hook-wire and IG patients, respectively (P = 1.000). CONCLUSIONS: Both hook-wire- and IG-based localization methods can effectively identified GGNs before VATS resection. Furthermore, IG-based localization resulted in fewer complications, lower pain scores, and a shorter duration of localization.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Verde de Indocianina , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Cirurgia Torácica Vídeoassistida/métodos , Pulmão , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...