Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.815
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1407051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947127

RESUMO

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.


Assuntos
Ceco , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade , Animais , Coelhos , Dieta Hiperlipídica/efeitos adversos , Ceco/microbiologia , Ceco/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Interações entre Hospedeiro e Microrganismos , Metagenômica , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Redes Reguladoras de Genes , Masculino , Perfilação da Expressão Gênica
2.
Chemistry ; : e202400655, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959118

RESUMO

A visible-light-induced cascade reaction is described for the one-pot synthesis of 6-hydroxyindoloquinazolinones using isatins (or isatins and isatoic anhydrides) and aliphatic carboxylic acids. The method provides 36 desired products in 33-96% yield, exhibiting broad substrate scope and good functional group tolerance. This approach utilizes inexpensive and commercially available starting materials, enabling the direct construction of high-value complex structures under mild conditions without the need for photocatalyst, showcasing significant applicability and environmental friendliness.

3.
J Cheminform ; 16(1): 76, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956728

RESUMO

Materials science is an interdisciplinary field that studies the properties, structures, and behaviors of different materials. A large amount of scientific literature contains rich knowledge in the field of materials science, but manually analyzing these papers to find material-related data is a daunting task. In information processing, named entity recognition (NER) plays a crucial role as it can automatically extract entities in the field of materials science, which have significant value in tasks such as building knowledge graphs. The typically used sequence labeling methods for traditional named entity recognition in material science (MatNER) tasks often fail to fully utilize the semantic information in the dataset and cannot effectively extract nested entities. Herein, we proposed to convert the sequence labeling task into a machine reading comprehension (MRC) task. MRC method effectively can solve the challenge of extracting multiple overlapping entities by transforming it into the form of answering multiple independent questions. Moreover, the MRC framework allows for a more comprehensive understanding of the contextual information and semantic relationships within materials science literature, by integrating prior knowledge from queries. State-of-the-art (SOTA) performance was achieved on the Matscholar, BC4CHEMD, NLMChem, SOFC, and SOFC-Slot datasets, with F1-scores of 89.64%, 94.30%, 85.89%, 85.95%, and 71.73%, respectively in MRC approach. By effectively utilizing semantic information and extracting nested entities, this approach holds great significance for knowledge extraction and data analysis in the field of materials science, and thus accelerating the development of material science.Scientific contributionWe have developed an innovative NER method that enhances the efficiency and accuracy of automatic entity extraction in the field of materials science by transforming the sequence labeling task into a MRC task, this approach provides robust support for constructing knowledge graphs and other data analysis tasks.

4.
Front Med (Lausanne) ; 11: 1397659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966525

RESUMO

Objective: To explore the knowledge, attitude, and practice (KAP) toward interstitial lung disease (ILD) among patients and analyze the factors affecting KAP. Methods: This cross-sectional study enrolled patients with ILD treated at the Respiratory Department of Shanghai Pulmonary Hospital between January 2023 and June 2023. A self-administered questionnaire was developed to evaluate their KAP toward ILD through convenient sampling. Multivariate regression analysis and structural equation model (SEM) were used to analyze the factors influencing KAP and their interactions. Results: A total of 397 patients were enrolled, with 61.71% male. The mean KAP scores were 4.60 ± 3.10 (possible range: 0-12), 16.97 ± 2.16 (possible range: 5-25), and 32.60 ± 7.16 (possible range: 9-45), respectively. Multivariate logistic regression analysis showed that junior high school [OR = 2.003, 95%CI: 1.056-3.798, p = 0.033], high school and above [OR = 2.629, 95%CI: 1.315-5.258, p = 0.006], and duration of disease ≥5 years [OR = 1.857, 95%CI: 1.132-3.046, p = 0.014] were independently associated with adequate knowledge. The knowledge [OR = 1.108, 95%CI: 1.032-1.189, p = 0.005] and duration of disease ≥5 years [OR = 0.525, 95%CI: 0.317-0.869, p = 0.012] were independently associated with a positive attitude. The knowledge [OR = 1.116, 95%CI: 1.036-1.202, p = 0.004], attitude [OR = 1.180, 95%CI: 1.061-1.312, p = 0.002], and the age of >70 years [OR = 0.447, 95%CI: 0.245-0.817, p = 0.009] were independently associated with the proactive practice. SEM showed that patients' knowledge of ILD directly affected their attitude (ß = 0.842, p < 0.001) and practice (ß = 0.363, p < 0.001), and their attitude also affected their practice (ß = 0.347, p = 0.014). Conclusion: Patients with ILD in China had poor knowledge, intermediate attitude, and proactive practice toward ILD, which suggests that the health education of patients should be further strengthened.

5.
J Extracell Vesicles ; 13(7): e12473, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965648

RESUMO

Extracellular vesicles (EVs) derived from dental pulp stem cells (DPSC) have been shown an excellent efficacy in a variety of disease models. However, current production methods fail to meet the needs of clinical treatment. In this study, we present an innovative approach to substantially enhance the production of 'Artificial Cell-Derived Vesicles (ACDVs)' by extracting and purifying the contents released by the DPSC lysate, namely intracellular vesicles. Comparative analysis was performed between ACDVs and those obtained through ultracentrifugation. The ACDVs extracted from the cell lysate meet the general standard of EVs and have similar protein secretion profile. The new ACDVs also significantly promoted wound healing, increased or decreased collagen regeneration, and reduced the production of inflammatory factors as the EVs. More importantly, the extraction efficiency is improved by 16 times compared with the EVs extracted using ultracentrifuge method. With its impressive attributes, this new subtype of ACDVs emerge as a prospective candidate for the future clinical applications in regenerative medicine.


Assuntos
Polpa Dentária , Vesículas Extracelulares , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Animais , Cicatrização , Medicina Regenerativa/métodos
6.
Oncol Lett ; 28(3): 413, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988449

RESUMO

T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.

7.
Front Public Health ; 12: 1434089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989120

RESUMO

Background: Empathy, as one of the fundamental principles of nursing professionalism, plays a pivotal role in the formation and advancement of the nursing team. Nursing interns, as a reserve force within the nursing team, are of significant importance in terms of their ability to empathize. This quality is not only directly related to the degree of harmony in the nurse-patient relationship and the enhancement of patient satisfaction, but also plays a pivotal role in the promotion of the quality of nursing services to a new level. Aim: The objective of this study was to gain a deeper understanding of the current state of nursing interns' empathic abilities. To this end, we sought to examine empathic performance under different profile models and to identify the key factors influencing these profile models. Methods: The study utilized 444 nursing interns from 11 tertiary general hospitals in Inner Mongolia as research subjects. The study employed a number of research tools, including demographic characteristics, the Jefferson Scale of Empathy, and the Professional Quality of Life Scale. A latent profile model of nursing interns' empathy ability was analyzed using Mplus 8.3. The test of variability of intergroup variables was performed using the chi-square test. Finally, the influencing factors of each profile model were analyzed by unordered multi-categorical logistic regression analysis. Results: The overall level of empathy among nursing interns was found to be low, with 45% belonging to the humanistic care group, 43% exhibiting low empathy, and 12% demonstrating high empathy. The internship duration, empathy satisfaction, secondary traumatic stress, only child, place of birth, and satisfaction with nursing were identified as factors influencing the latent profiles of empathy in nursing interns (p < 0.05). Conclusion: There is considerable heterogeneity in nursing interns' ability to empathize. Consequently, nursing educators and administrators should direct greater attention to interns with lower empathy and develop targeted intervention strategies based on the influences of the different underlying profiles.


Assuntos
Empatia , Humanos , Estudos Transversais , Masculino , Feminino , Adulto , Estudantes de Enfermagem/psicologia , Estudantes de Enfermagem/estatística & dados numéricos , Relações Enfermeiro-Paciente , Inquéritos e Questionários , China , Competência Clínica
8.
Chem Sci ; 15(27): 10381-10391, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994417

RESUMO

The assemblies of [M4O4] (M = metal) cubanes represent a fascinating class of materials for a variety of application fields. Although such a structural characteristic is relatively common in small molecules and in extended bulk solids, high nuclearity clusters composed of multiple [M4O4] units as their backbones are rare. In this work, we report two new Mn-oxo clusters, MnII 8MnIII 10O10(OOCMe)12(OMe)14(py)2 ([Mn18-Ac]) and MnII 4MnIII 14O14(OOCCMe3)8(OMe)14(MeOH)5(py) ([Mn18-Piv]), whose core structures are assemblies of either 6- or 7-cubanes in different packing patterns, which have been unambiguously revealed by single crystal X-ray diffraction technique. The cubane-assembled structural features can be deemed as the embryonic structures of the bulk manganese oxide. Herein, this report demonstrates the first case study of utilizing Mn-oxo clusters as precursors for the preparation of manganese oxide nanocrystals, which has never been explored before. Through a simple colloidal synthetic approach, high-quality, monodisperse Mn3O4 nanocrystals can be readily prepared by employing both precursors, while their morphologies were found to be quite different. This work confirms that the structural similarity between precursors and nanomaterials is instrumental in affording more kinetically efficient pathways for materials formation, and the structure of the precursor has a significant impact on the morphology of final nanocrystal products.

9.
STAR Protoc ; 5(3): 103188, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002134

RESUMO

Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for "zero-shot" enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload. For complete details on the use and execution of this protocol, please refer to He et al.1.

10.
Int J Antimicrob Agents ; : 107273, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002699

RESUMO

OBJECT: Colistin sulfate for injection (CSI) became clinically available in China in July 2019. To date, there is no published data regarding its usage in children. Our research group has been following data on the efficacy and safety of CSI in Chinese pediatric patients with carbapenem-resistant organism (CRO) infections. The purpose of this short communication is to provide a brief overview of the findings to date. METHODS: We reviewed the electronic medical records of pediatric patients (aged 9-17 years) who were administered CSI during their hospital stay at Tongji Hospital in Wuhan, China, between June 2021 and November 2023. Drug efficacy was evaluated based on clinical and microbiological outcomes, while drug safety was assessed using surveillance markers that reflect adverse reactions. RESULTS: A total of 20 patients met the inclusion criteria. The predominant pathogens were Klebsiella pneumoniae (8 strains), followed by Acinetobacter baumannii (5 strains) and Pseudomonas aeruginosa (2 strains). The clinical response rate of CSI was 85%, with a bacterial clearance rate of 79%. None of the patients experienced colistin-related nephrotoxicity or neurotoxicity during the treatment. CONCLUSION: In this real-world setting, CSI demonstrated a high level of clinical response and was well tolerated for the treatment of CRO infections in Chinese children.

11.
Sci Total Environ ; 947: 174539, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977103

RESUMO

Mycotoxins, unavoidable contaminants in feed and feed ingredients, have the potential to influence the incidence and severity of various diseases upon ingestion. Sheep coccidiosis is an enteric disease caused by protozoa of Eimeria spp. However, the extent to which the presence of aflatoxin b1 (AFB1) synergistically exacerbates damage to intestinal health in lambs with Eimeria remains unclear. 50-day-old female lambs were randomly assigned to a 2 × 2 factorial arrangement of treatments for 15 days to assess the impact of AFB1 exposure on lambs with or without Eimeria (E.) ovinoidalis infection. Our findings reveal that AFB1 synergistically intensifies damage to intestinal health in lambs challenged by E. ovinoidalis. This is evidenced by disruptions to the intestinal microbiota and reductions in the production of short-chain fatty acids. AFB1 further aggravates damage to the cecal mechanical barrier. Additionally, AFB1 contributes to the entry of lipopolysaccharide into the bloodstream, activating the inflammatory response. Interestingly, AFB1 exposure history results in an early peak of oocyst excretion and a decreased number of oocyst excretion in E. ovinoidalis infected lambs. This may be closely linked to the destruction of the intestinal epithelial cell structure and its apoptosis, as indicated by a decreased ratio of Bcl-2 to Bax and increased caspase-3 levels. Mechanistically, proteomics analysis identified mitochondrial dysfunction (inhibition of the oxidative phosphorylation pathway) as the primary factor intensifying intestinal epithelial cell destruction caused by coccidia, exacerbated by AFB1 through the inhibiting the conversion of NADH to NAD+ in the cecum of lambs via down-regulation of the PGC-1α/NRF1/TFAM pathway. Overall, these results offer novel insights into the AFB1 complicity in accelerating intestinal damage caused by E. ovinoidalis in lambs. Targeting the mitochondrial oxidative phosphorylation pathway of the intestine may represent a new therapeutic strategy against the detrimental effects of mycotoxin and coccidia.

12.
iScience ; 27(7): 110225, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040050

RESUMO

Glioblastoma (GBM) is characterized by aggressive growth, invasiveness, and poor prognosis. Elucidating the molecular mechanisms underlying GBM is crucial. This study explores the role of Sm-like protein 14 homolog A (LSM14A) in GBM. Bioinformatics and clinical tissue samples analysis demonstrated that overexpression of LSM14A in GBM correlates with poorer prognosis. CCK8, EdU, colony formation, and transwell assays revealed that LSM14A promotes proliferation, migration, and invasion in GBM in vitro. In vivo mouse xenograft models confirmed the results of the in vitro experiments. The mechanism of LSM14A modulating GBM cell proliferation was investigated using mass spectrometry, co-immunoprecipitation (coIP), protein half-life, and methylated RNA immunoprecipitation (MeRIP) analyses. The findings indicate that during the G1/S phase, LSM14A stabilizes DDX5 in the cytoplasm, regulating CDK4 and P21 levels. Furthermore, METTL1 modulates LSM14A expression via mRNA m7G methylation. Altogether, our work highlights the METTL1-LSM14A-DDX5 pathway as a potential therapeutic target in GBM.

13.
Int Immunopharmacol ; 139: 112662, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39038385

RESUMO

OBJECTIVE: Sarcopenia manifests as a chronic, low-level inflammation along with multiple inflammatory cells infiltration. Interleukin (IL)-25 can regulate the function of macrophages. However, the specific role and mechanisms through which IL-25 functions in sarcopenia are still not fully understood and require further investigation. METHODS: Aged mice were utilized as sarcopenia models and examined the expression of inflammatory factors. To investigate the effects of IL-25 on sarcopenia, the model mice received IL-25 treatment and underwent in vivo adoptive transfer of IL-25-induced macrophages. Meanwhile, RAW264.7 cells, bone marrow-derived macrophages, satellite cells and C2C12 cells were used in vitro. Shh insufficiency was induced through intramuscular administration of SHH-shRNA adenoviruses. Then, various assays including scratch wound, cell counting kit-8 and Transwell assays, as well as histological staining and molecular biological methods, were conducted. RESULTS: Aged mice exhibited an accelerated decline in muscle strength and mass, along with an increased muscle lipid droplets and macrophage infiltration, and decreased IL-25 levels compared to the young group. IL-25 therapy and the transfer of IL-25-preconditioned macrophages could improve these conditions by promoting M2 macrophage polarization in vivo as well as in vitro. M2 macrophage conditioned medium enhanced satellite cell proliferation and migration, as well as the vitality, migration, and differentiation of C2C12 cells in vitro. Furthermore, IL-25 enhanced Shh expression in macrophages in vitro, and activated the Shh signaling pathway in muscle tissue of aged mice, which could be suppressed by either the inhibitor cyclopamine or Shh knockdown. Mechanistic studies showed that Shh insufficiency suppressed the activation of Akt/mTOR signaling pathway in muscle tissue of aged mice. CONCLUSION: IL-25 promotes the secretion of Shh by M2 macrophages and activates the Shh/Akt/mTOR signaling pathway, which improves symptoms and function in sarcopenia mice. This suggests that IL-25 has potential as a therapeutic agent for treating sarcopenia.

14.
Stem Cell Res Ther ; 15(1): 218, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026343

RESUMO

Due to the rapid development of stem cell technology, there have been tremendous advances in molecular biological and pathological research, cell therapy as well as organoid technologies over the past decades. Advances in genome editing technology, particularly the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related protein 9 (Cas9), have further facilitated the rapid development of stem cell researches. The CRISPR-Cas9 technology now goes beyond creating single gene editing to enable the inhibition or activation of endogenous gene loci by fusing inhibitory (CRISPRi) or activating (CRISPRa) domains with deactivated Cas9 proteins (dCas9). These tools have been utilized in genome-scale CRISPRi/a screen to recognize hereditary modifiers that are synergistic or opposing to malady mutations in an orderly and fair manner, thereby identifying illness mechanisms and discovering novel restorative targets to accelerate medicinal discovery investigation. However, the application of this technique is still relatively rare in stem cell research. There are numerous specialized challenges in applying large-scale useful genomics approaches to differentiated stem cell populations. Here, we present the first comprehensive review on CRISPR-based functional genomics screening in the field of stem cells, as well as practical considerations implemented in a range of scenarios, and exploration of the insights of CRISPR-based screen into cell fates, disease mechanisms and cell treatments in stem cell models. This review will broadly benefit scientists, engineers and medical practitioners in the areas of stem cell research.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Células-Tronco , Humanos , Edição de Genes/métodos , Células-Tronco/metabolismo , Células-Tronco/citologia , Animais
16.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000648

RESUMO

The ductile forming process of a polymer in a standard screw extruder and pin-barrel extruder, equipped with or without a field synergy elongation screw, was investigated by the finite element method. In order to assess the mixing and heat transfer capabilities of screws, characteristic parameters such as the mixing efficiency, segregation scale, and temperature distribution of different structures were analyzed and compared. The results indicated that the flow pattern of the polymer melt in the extruder was significantly influenced by the screw structure and was improved by the newly designed field synergy screw configuration, which brought a desirable elongational flow to enhance the radial convection. This was attributed to the unique radial wedge-shaped repeated convergence region of the field synergy elongation screw, increasing the synergistic effect between the velocity field, velocity gradient field, and temperature gradient field and thus improving the heat transfer and mixing efficiency. After adding barrel pins, the flow was forced to split, resulting in a more significant stretching effect on the melt. The field synergy effect in the pin mixed region was strengthened, which further increased the heat and mass transfer efficiency of the screw. However, increasing barrel pins could also lead to undesired temperature fluctuation and flow resistance, which have a negative impact on the melt uniformity. This study offers an important reference for optimizing screw structure to obtain strong mixing and heat transfer performances.

17.
J Org Chem ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034667

RESUMO

A photoredox-neutral radical-radical cross-coupling is described for the synthesis of 3-hydroxy-3-alkyloxindoles using isatins and benzyl carboxylic acids as substrates and 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as the photocatalyst. The method features a broad substrate scope and good functional group tolerance, providing 30 sterically hindered alcohols with moderate to excellent yields. This approach utilizes inexpensive and commercially available starting materials, avoiding the use of transition metals, extra oxidants/reductants, and harsh reaction conditions, showcasing significant applicability and environmental friendliness.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39019070

RESUMO

The spatial Kibble-Zurek mechanism (KZM) is applied to the Kitaev chain with inhomogeneous pairing interactions that vanish in half of the lattice and result in a quantum critical point separating the superfluid and normal-gas phases in real space. The weakly-interacting BCS theory predicts scaling behavior of the penetration of the pair wavefunction into the normal-gas region different from conventional power-law results due to the non-analytic dependence of the BCS order parameter on the interaction. The Bogoliubov-de Gennes (BdG) equation produces numerical results confirming the scaling behavior and hints complications in the strong-interaction regime. The limiting case of the step-function quench reveals the dominance of the BCS coherence length in absence of additional length scale. Furthermore, the energy spectrum and wavefunctions from the BdG equation show abundant in-gap states from the normal-gas region in addition to the topological edge states.

19.
Sci Total Environ ; 946: 174415, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38969116

RESUMO

Mercury (Hg) alkylation and methane (CH4) emissions pose significant global concerns. Paddy soil, due to its long-term anaerobic conditions and abundant organic matter, is hotspots for soil Hg alkylation and CH4 emissions. However, the relevance between Hg alkylation and CH4 emissions, especially their simultaneous reduction strategies, remains poorly understood. Here, we investigated the effects of biochar (BC), selenium (Se) and rice straw (RS) amendments on Hg alkylation and CH4 emissions in paddy soil, and the accumulation of Hg speciation. Results found that both BC and RS amendments significantly increased the levels of soil organic carbon (SOC) and humification index (HIX). Furthermore, BC decreased the concentrations of Hg(II), methylmercury (MeHg) and ethylmercury (EtHg) by 63.1%, 53.6% and 100% in rice grains. However, RS increased Hg(II) concentration but decreased the total Hg (THg), MeHg and EtHg concentrations in rice grains. Compared to the CK, RS significantly increased CH4 emissions, while BC decreased CH4 emissions, and Se showed no significant difference. Se amendment increased the Hg(II) and EtHg concentrations by 20.3% and 17.0% respectively, and decreased the MeHg concentration in grains by 58.3%. Both BC and RS impacted the abundance of methanogens by enhancing SOC and HIX, subsequently modulating the relevance between Hg alkylation and CH4 emissions. These findings provide insights into the relevance between Hg alkylation and CH4 emissions and propose potential mitigation mechanisms in Hg-contaminated paddy soil.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39031314

RESUMO

In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA