Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Nano ; 16(3): 3573-3581, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35156797


The f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCo2P2. In its bulk, Ce is passive and behaves tetravalently. However, because of symmetry breaking and an effective magnetic field caused by an uncompensated ferromagnetic Co layer, the Ce 4f states become partially occupied and spin-polarized near the surface. The momentum-resolved photoemission measurements indicate a strong admixture of the Ce 4f states to the itinerant bands near the Fermi level including surface states that are split by exchange interaction with Co. The temperature-dependent measurements reveal strong changes of the 4f intensity at the Fermi level in accordance with the Kondo scenario. Our findings show how rich and diverse the f-driven properties can be at the surface of materials without f-physics in the bulk.

Phys Chem Chem Phys ; 20(28): 19082-19086, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29972161


Atomic force microscopy (AFM) was used to determine the mechanical properties as the indentation modulus of native and crosslinked poly(l-lysine) (PLL)/hyaluronic acid (HA) multilayer films by static force measurements. The influence of the surrounding medium on the mechanical properties of the films after preparation is investigated. The indentation modulus of native and crosslinked film was measured at different pH values, ionic strengths and temperatures. The native HA/PLL films, which behave like a physical gel, show the highest values of the indentation modulus for an intermediate pH value and low ionic strength. Any changes in the pH or an increase in the ionic strength/temperature decreases the measured indentation modulus. In contrast, the crosslinked films show an increase by a factor of 80 in the indentation modulus but no response to changes in the pH, ionic strength or temperature; they behave like a chemical gel. The pH, ionic strength and temperature used in this work are close to the in vivo conditions and thus give a fundamental point of view on the nanomechanical response of the PLL/HA films. Furthermore, information about the mechanical properties can be used for the understanding and manipulation of cell adhesion.

Meio Ambiente , Ácido Hialurônico/química , Polilisina/química , Fenômenos Biomecânicos
J Colloid Interface Sci ; 519: 119-129, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486431


Macroscopic beads of water-based gels consisting of uncharged and partially charged ß-(1,4)-d-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling.

Langmuir ; 32(41): 10505-10512, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27610635


Atomic force microscopy (AFM) is used to carry out rheology measurements on the nanoscale and to determine the mechanical properties of poly(l-lysine) (PLL)/hyaluronic acid (HA) multilayer films. Storage (G') and loss modulus (G″) of the films are calculated and compared with the values obtained from quartz crystal microbalance with dissipation monitoring measurements (QCM-D). A predominant elastic behavior independently of the applied frequencies (5-100 Hz) is observed for native HA/PLL films consisting of 36 double layer. If the layers are cross-linked, the value of G' increases by 2 orders of magnitude, while the loss modulus becomes negligible, making these films a purely elastic chemical gel. The values of G' and G'' extracted from QCM-D measurements on native films are much higher, due to the different frequency regime of the applied shear stress. However, the viscoelastic ratio from the two methods is the same and proves the elastic dominated response of the multilayer in both frequency regimes.

ACS Macro Lett ; 4(7): 698-703, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35596490


Polymer-network gels often exhibit local defects and spatial heterogeneity of their cross-linking density, which may differently affect their elasticity on microscopic and macroscopic scales. To appraise this effect, we prepare polymeric gels with defined extents of nanostructural heterogeneity and use atomic force microscopy to probe their local microscopic Young's moduli in comparison to their macroscopic elastic moduli measured by shear rheology. In this comparison, the moduli of the heterogeneous gels are found to be progressively smaller if the length scale of the probed gel region exceeds the size of the purposely imparted polymer-network heterogeneities. This finding can be explained with a conceptual picture of nonaffine deformation of the densely cross-linked polymer network domains in the heterogeneous gels.

Beilstein J Nanotechnol ; 3: 778-88, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23213641


Scanning- and colloidal-probe atomic force microscopy were used to study the mechanical properties of poly(L-lysine)/hyaluronan (PLL/HA)(n) films as a function of indentation velocity and the number of polymer deposition steps n. The film thickness was determined by two independent AFM-based methods: scratch-and-scan and newly developed full-indentation. The advantages and disadvantages of both methods are highlighted, and error minimization techniques in elasticity measurements are addressed. It was found that the film thickness increases linearly with the bilayer number n, ranging between 400 and 7500 nm for n = 12 and 96, respectively. The apparent Young's modulus E ranges between 15 and 40 kPa and does not depend on the indenter size or the film bilayer number n. Stress relaxation measurements show that PLL/HA films have a viscoelastic behaviour, regardless of their thickness. If indentation is performed several times at the same lateral position on the film, a viscous/plastic deformation takes place.