Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(18): 4769-4776, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181779

RESUMO

Insertion and functionalization of gallasilylenes [LPhSi-Ga(Cl)LBDI] (LPh = PhC(NtBu)2; LBDI = [{2,6-iPr2C6H3NCMe}2CH]) into the cyclo-E5 rings of [Cp*Fe(η5-E5)] (Cp* = η5-C5Me5; E = P, As) are reported. Reactions of [Cp*Fe(η5-E5)] with gallasilylene result in E-E/Si-Ga bond cleavage and the insertion of the silylene in the cyclo-E5 rings. [(LPhSi-Ga(Cl)LBDI){(η4-P5)FeCp*}], in which the Si atom binds to the bent cyclo-P5 ring, was identified as a reaction intermediate. The ring-expansion products are stable at room temperature, while isomerization occurred at higher temperature, and the silylene moiety further migrates to the Fe atom, forming the corresponding ring-construction isomers. Furthermore, reaction of [Cp*Fe(η5-As5)] with the heavier gallagermylene [LPhGe-Ga(Cl)LBDI] was also investigated. All the isolated complexes represent rare examples of mixed group 13/14 iron polypnictogenides, which could only be synthesized by taking advantage of the cooperativity of the gallatetrylenes featuring low-valent Si(ii) or Ge(ii) and Lewis acidic Ga(iii) units/entities.

2.
Dalton Trans ; 52(20): 6712-6721, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37129049

RESUMO

In order to study the effects of silylene ligands on the catalytic activity of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes, readily available model catalysts are required. In this contribution, a comparative study of the hydrosilylation of aldehydes and ketones catalyzed by tris(trimethylphosphine) cobalt chloride, CoCl(PMe3)3 (1), and bis(silylene) cobalt chloride, Co(LSi:)2(PMe3)2Cl (2, LSi: = {PhC(NtBu)2}SiCl), is presented. It was found that both complexes 1 and 2 are good catalysts for the hydrosilylation of aldehydes and ketones under mild conditions. This catalytic system has a broad substrate scope and selectivity for multi-functional substrates. Silylene complex 2 shows higher activity than complex 1, bearing phosphine ligands, for aldehydes, but conversely, for ketones, the activity of complex 1 is higher than that of complex 2. It is worth noting that in the process of mechanistic studies the intermediates (PMe3)3Co(H)(Cl)(PhH2Si) (3) and (LSi:)2(PMe3)Co(H)(Cl)(PhH2Si) (4) were isolated from the stoichiometric reactions of 1 and 2 with phenylsilane, respectively. Further experiments confirmed that complex 3 is a real intermediate. A possible catalytic mechanism for the hydrosilylation of carbonyl compounds catalyzed by 1 was proposed based on the experimental investigation and literature reports, and this mechanism was further supported by DFT studies. The bis(silylene) complex 4 showed complicated behavior in solution. A series of experiments were designed to study the catalytic mechanism for the hydrosilylation of carbonyl compounds catalyzed by complex 2. According to the experimental results, the hydrosilylation of aldehydes catalyzed by 1 proceeds via a different mechanism than that of the analogous reaction with complex 2 as the catalyst. In the case of ketones, complex 4 is a real intermediate, indicating that both 1 and 2 catalyze the reaction by the same mechanism. The molecular structures of 3 and 4 were determined by single crystal X-ray diffraction analysis.

3.
Dalton Trans ; 52(8): 2214-2218, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36762566

RESUMO

The base-free carbazolyl bromosilylene RSiBr (R = 1,8-bis(3,5-di-tert-butyl-phenyl)-3,6-di-tert-butyl-carbazolyl) reacts with (η2-C2H4)Pt(PPh3)2 and Pt(PCy3)2 to form platinasilacyclobutane R(Br)Si(C2H4)Pt(PPh3)2 (1) and silylene platinum complex R(Br)SiPt(PCy3)2 (2), respectively. When silylene complex 2 is treated with C2H4, the six-membered metallasilacycle R(Br)Si(C2H4)2Pt(PCy3)2 (3) is obtained. All compounds are characterised by XRD and multinuclear NMR spectroscopy.

4.
Inorg Chem ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455154

RESUMO

Two new bisphosphine [PCP] pincer cobalt(III) hydrides, [(L1)Co(PMe3)(H)(Cl)] (L11, L1 = 2,6-((Ph2P)(Et)N)2C6H3) and [(L2)Co(PMe3)(H)(Cl)] (L21, L2 = 2,6-((iPr2P)(Et)N)2C6H3), as well as one new bissilylene [SiCSi] pincer cobalt(III) hydride, [(L3)Co(PMe3)(H)(Cl)] (L31, L3 = 1,3-((PhC(tBuN)2Si)(Et)N)2C6H3), were synthesized by reaction of the corresponding protic [PCP] or [SiCSi] pincer ligands L1H, L2H, and L3H with CoCl(PMe3)3. Despite the similarities in the ligand scaffolds, the three cobalt(III) hydrides show remarkably different performance as catalysts in alkene hydrosilylation. Among the PCP pincer complexes, L11 has higher catalytic activity than complex L21, and both catalysts afford anti-Markovnikov selectivity for both aliphatic and aromatic alkenes. In contrast, the catalytic activity for alkene hydrosilylation of silylene complex L31 is comparable to phosphine complex L11, but a dependence of regioselectivity on the substrates was observed: While aliphatic alkenes are converted in an anti-Markovnikov fashion, the hydrosilylation of aromatic alkenes affords Markovnikov products. The substrate scope was explored with 28 examples. Additional experiments were conducted to elucidate these mechanisms of hydrosilylation. The synthesis of cobalt(I) complex (L1)Co(PMe3)2 (L17) and its catalytic properties for alkene hydrosilylation allowed for the proposal of the mechanistic variations that occur in dependence of reaction conditions and substrates.

5.
Chemistry ; 28(55): e202201963, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35762907

RESUMO

The reaction of the dilithium salt of the enantiopure (S)-BINOL (1,1'-bi-2-naphthol) with two equivalents of the amidinate-stabilized chlorosilylene [LPh SiCl] (LPh =PhC(NtBu)2 ) led to the formation of the first example of a chiral cyclic silene species comprising an (S)-BINOL ligand. The reactivity of the Si=C bond was investigated by reaction with elemental sulfur, CO2 and HCl. The reaction with S8 led to a Si=C bond cleavage and concomitantly to a ring-opened product with imine and silanethione functional groups. The reaction with CO2 resulted in the cleavage of the CO2 molecule into a carbonyl group and an isolated O atom, while a new stereocenter is formed in a highly selective manner. According to DFT calculations, the [2+2] cycloaddition product is the key intermediate. Further reactivity studies of the chiral cyclic silene with HCl resulted in a stereoselective addition to the Si=C bond, while the fully selective formation of two stereocenters was achieved. The quantitative stereoselective addition of CO2 and HCl to a Si=C bond is unprecedented.

6.
Dalton Trans ; 51(13): 5218-5226, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35275153

RESUMO

The synthesis and characterisation of rare-earth metal complexes with redox-active formazanate ligands are described. Deprotonation of the neutral formazan ligand L1H (L1 = PhNNC(Ph)NNPh) with [Ln{N(SiMe3)2}3] (Ln = Y, Sm, Dy) resulted in homoleptic tris(formazanate) complexes with the general formula [(L1)3Ln] (Ln = Y (1), Sm (2), Dy (3)), in which the central metal atom is coordinated by six N atoms, revealing a propeller-type structure. To generate heteroleptic complexes, a novel formazan ligand L2H (L2 = {PhNNC(4-tBuPh)NNPh}) was employed. Salt metathesis by using the trivalent precursors [SmCp*2(µ-Cl)2K(thf)] (Cp* = η5-C5Me5) or [LnCp2Cl]2 (Cp = η5-C5H5, Ln = Dy, Yb) and [L2K(thf)] formed mono(formazanate) complexes, [L2SmCp*2] (4) and [L2LnCp2] (Ln = Dy (5), Yb (6)), respectively. Unexpectedly, a redox reaction occurred between [L2K(thf)] and the divalent ytterbium precursor, [YbI2(thf)2], generating the trivalent ytterbium complex [(L2)3Yb] (7). When the neutral formazan ligand (L2H) reacted with [SmCp*2(thf)2], the oxidised samarium complex 4 was formed. These novel compounds were fully characterised and their electrochemical properties were explored by cyclic voltammetry.

7.
Org Biomol Chem ; 20(14): 2873-2880, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315476

RESUMO

An air- and moisture-stable helical radical with seven six- and five-membered rings arranged alternately was synthesized by cyclizations in a suitably ortho,ortho'-substituted terphenyl and re-establishment of its conjugation. Mesityl groups at the five-membered rings prevent radical reactions. This cyclopenta-fused polyaromatic hydrocarbon (CP-PAH) was characterized by X-ray crystallographic analysis, EPR and UV/Vis spectroscopy, and by cyclic voltammetry. Further properties and spectra were determined by quantum chemical calculation (spin densities, orbital energies, UV/Vis/NIR and ECD spectra). It turned out that this radical is best described with its radical centre being in the outer five-membered rings, which allows for the largest number of fully intact benzene rings. Its triradical character is rather small and can be neglected. The five-membered rings show significant antiaromatic character, which is highest in the central ring.


Assuntos
Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Carbono , Cristalografia por Raios X , Ciclização , Hidrocarbonetos Policíclicos Aromáticos/química
8.
Chemistry ; 28(1): e202103974, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34817892

RESUMO

The synthesis and full characterization of α-silylated (α-SiCPs; 1-7) and α-germylated (α-GeCPs; 11-13) phosphorus ylides bearing one chloride substituent R3 PC(R1 )E(Cl)R2 2 (R=Ph; R1 =Me, Et, Ph; R2 =Me, Et, iPr, Mes; E=Si, Ge) is presented. The molecular structures were determined by X-ray diffraction studies. The title compounds were applied in halide abstraction studies in order to access cationic species. The reaction of Ph3 PC(Me)Si(Cl)Me2 (1) with Na[B(C6 F5 )4 ] furnished the dimeric phosphonium-like dication [Ph3 PC(Me)SiMe2 ]2 [B(C6 F5 )4 ]2 (8). The highly reactive, mesityl- or iPr-substituted cationic species [Ph3 PC(Me)SiMes2 ][B(C6 F5 )4 ] (9) and [Ph3 PC(Et)SiiPr2 ][B(C6 F5 )4 ] (10) could be characterized by NMR spectroscopy. Carrying out the halide abstraction reaction in the sterically demanding ether iPr2 O afforded the protonated α-SiCP [Ph3 PCH(Et)Si(Cl)iPr2 ][B(C6 F5 )4 ] (6 dec) by sodium-mediated basic ether decomposition, whereas successfully synthesized [Ph3 PC(Et)SiiPr2 ][B(C6 F5 )4 ] (10) readily cleaves the F-C bond in fluorobenzene. Thus, the ambiphilic character of α-SiCPs is clearly demonstrated. The less reactive germanium analogue [Ph3 PC(Me)GeMes2 ][B{3,5-(CF3 )2 C6 H3 }4 ] (14) was obtained by treating 11 with Na[B{3,5-(CF3 )2 C6 H3 }4 ] and fully characterized including by X-ray diffraction analysis. Structural parameters indicate a strong CYlide -Ge interaction with high double bond character, and consequently the C-E (E=Si, Ge) bonds in 9, 10 and 14 were analyzed with NBO and AIM methods.

9.
Chem Commun (Camb) ; 57(93): 12532-12535, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751692

RESUMO

We report details of our attempts to reduce the bulky carbazolyl diiodoalane [R-AlI2]. The reducing agents employed include KC8, Cp*2Co and the Mg(I) compound [(MesBDI)Mg]2. The use of KC8 allowed the spectroscopic observation of the alanediyl [R-Al]. With Cp*2Co as the reducing agent, the alanediyl [R-Al] was obtained as a crystalline material in low yield, but paramagnetic impurities remained. When diiodoalane [R-AlI2] was treated with [(MesBDI)Mg]2, no reduction but a 2 : 1 addition was observed.

10.
Nanoscale ; 13(23): 10555-10565, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34100512

RESUMO

Copper (Cu) as an excellent electrical conductor and the amphiphilic diblock copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) as a polymer electrolyte and ionic conductor can be combined with an active material in composite electrodes for polymer lithium-ion batteries (LIBs). As interfaces are a key issue in LIBs, sputter deposition of Cu contacts on PS-b-PEO thin films with high PEO fraction is investigated with in situ grazing-incidence small-angle X-ray scattering (GISAXS) to follow the formation of the Cu layer in real-time. We observe a hierarchical morphology of Cu clusters building larger Cu agglomerates. Two characteristic distances corresponding to the PS-b-PEO microphase separation and the Cu clusters are determined. A selective agglomeration of Cu clusters on the PS domains explains the origin of the persisting hierarchical morphology of the Cu layer even after a complete surface coverage is reached. The spheroidal shape of the Cu clusters growing within the first few nanometers of sputter deposition causes a highly porous Cu-polymer interface. Four growth stages are distinguished corresponding to different kinetics of the cluster growth of Cu on PS-b-PEO thin films: (I) nucleation, (II) diffusion-driven growth, (III) adsorption-driven growth, and (IV) grain growth of Cu clusters. Percolation is reached at an effective Cu layer thickness of 5.75 nm.

11.
Chemistry ; 27(30): 7998-8002, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834548

RESUMO

In this work we detail our efforts to systematically generate stable dicoordinate CuII complexes. Initial experiments via metathesis reactions of a bulky potassium carbazolide (RK) with copper(II) salts indeed yielded a stable product, RCuOTf (1). However, subsequent attempts to grasp systematic synthetic access to complexes of the type RCuX (X=monoanionic ligand) proved difficult as many of the complexes rapidly decomposed in solution. By using triflate-related ligands such as ethyl sulfate and bistriflimide, the additional dicoordinate copper complexes RCuOSO3 Et (2), [RCu(THF)][Cu(NTf2 )2 ] (3) and RCuNTf2 (4) could be isolated. Spectroscopic indications corroborate more CuI than CuII character in all RCuX derivatives.

12.
ACS Appl Electron Mater ; 3(2): 813-824, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644761

RESUMO

The performance of transistors designed specifically for high-frequency applications is critically reliant upon the semi-insulating electrical properties of the substrate. The suspected formation of a conductive path for radio frequency (RF) signals in the highly resistive (HR) silicon substrate itself has been long held responsible for the suboptimal efficiency of as-grown GaN high electron mobility transistors (HEMTs) at higher operating frequencies. Here, we reveal that not one but two discrete channels distinguishable by their carrier type, spatial extent, and origin within the metal-organic vapor phase epitaxy (MOVPE) growth process participate in such parasitic substrate conduction. An n-type layer that forms first is uniformly distributed in the substrate, and it has a purely thermal origin. Alongside this, a p-type layer is localized on the substrate side of the AlN/Si interface and is induced by diffusion of group-III element of the metal-organic precursor. Fortunately, maintaining the sheet resistance of this p-type layer to high values (∼2000 Ω/□) seems feasible with particular durations of either organometallic precursor or ammonia gas predose of the Si surface, i.e., the intentional introduction of one chemical precursor just before nucleation. It is proposed that the mechanism behind the control actually relies on the formation of disordered AlSiN between the crystalline AlN nucleation layer and the crystalline silicon substrate.

13.
J Phys Chem A ; 125(7): 1661-1667, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33577326

RESUMO

The combination of organic chemistry and chemical vapor deposition enables a unique way to deposit conformal, high quality polymer thin films from the vapor phase. Particularly initiated chemical vapor deposition (iCVD) has recently shown its great potential in many different application fields. With the ever-increasing demands on the process, the need for additional process refinement is also growing. In this study the enhancement of the iCVD process by in-situ mass spectrometry is presented. The approach enables insight into real-time reaction kinetics during the deposition process as well as identification of reaction pathways. Furthermore, the composition of the gas phase can be precisely controlled and spontaneously adjusted if necessary. Particularly the deposition of thin films with thicknesses in the low nanometer range and the deposition of copolymers can benefit from this approach. The presented approach enables enhanced process control as well as the ability to perform extensive kinetic studies.

14.
Chemistry ; 27(18): 5803-5809, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33470468

RESUMO

Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes (3-E)GaCl4 [(3-E).+ = [{(IPr)C(Ph)E}2 Fe(CO)3 ].+ , E = P or As; IPr = C{(NDipp)CH}2 , Dipp = 2,6-iPr2 C6 H3 ] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 (1-E) with Fe2 (CO)9 affords [{(IPr)C(Ph)E}2 Fe(CO)3 ] (2-E), in which 1-E binds to the Fe atom in an allylic (η3 -EECvinyl ) fashion and functions as a 4e donor ligand. Complexes 2-E undergo 1e oxidation with GaCl3 to yield (3-E)GaCl4 . Spin density analysis revealed that the unpaired electron in (3-E).+ is mainly located on the Fe (52-64 %) and vinylic C (30-36 %) atoms. Further 1e oxidation of (3-E)GaCl4 leads to unprecedented η3 -EECvinyl to η3 -ECvinyl CPh coordination shuttling to form the dications (4-E)(GaCl4 )2 .

15.
Nanoscale Horiz ; 6(2): 132-138, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290482

RESUMO

Ultra-thin metal layers on polymer thin films attract tremendous research interest for advanced flexible optoelectronic applications, including organic photovoltaics, light emitting diodes and sensors. To realize the large-scale production of such metal-polymer hybrid materials, high rate sputter deposition is of particular interest. Here, we witness the birth of a metal-polymer hybrid material by quantifying in situ with unprecedented time-resolution of 0.5 ms the temporal evolution of interfacial morphology during the rapid formation of ultra-thin gold layers on thin polystyrene films. We monitor average non-equilibrium cluster geometries, transient interface morphologies and the effective near-surface gold diffusion. At 1 s sputter deposition, the polymer matrix has already been enriched with 1% gold and an intermixing layer has formed with a depth of over 3.5 nm. Furthermore, we experimentally observe unexpected changes in aspect ratios of ultra-small gold clusters growing in the vicinity of polymer chains. For the first time, this approach enables four-dimensional insights at atomic scales during the gold growth under non-equilibrium conditions.

16.
Angew Chem Int Ed Engl ; 59(43): 19065-19069, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32779821

RESUMO

Mono-coordinated silicon(II) cations are predicted to be reactive ambiphiles, combining the typically high Lewis acidity of silicon cations with nucleophilicity due to the presence of an electron pair at the same atomic centre. Here, a carbazole-derived scaffold was used to isolate salts with a mono-coordinated silicon(II) cation, [RSi]+ (R=bulky carbazolyl substituent), by halide abstraction from a base-free halosilylene, RSiI, with Ag[Al(Ot BuF )4 ]. Despite the bulk of the carbazolyl moiety, the silylenylium cation [RSi]+ retains high reactivity. It was shown to react with an amine to form three bonds at the silicon atom in one reaction which conforms with the notion of a "supersilylene". The resulting silylium cation [RSi(H)NR'2 ]+ (in the formal oxidation state SiIV ) obtained by oxidative addition of an NH bond at [RSi]+ is even more acidic than the silylenylium cation (SiII ) due to the absence of a lone pair of electrons the silicon atom.

17.
Chem Commun (Camb) ; 56(24): 3575-3578, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32104835

RESUMO

2-Arsa-1,3-butadienes (L)As(cAACR) (L = PhC[double bond, length as m-dash]C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACR = C{(NDipp)CMe2CH2C(R)}, R = Me22a, R = cyclohexyl (Cy) 2b) and the corresponding radical cations [(L)As(cAACR)]GaCl4 (R = Me23a, Cy 3b) and dications [(L)As(cAACR)](GaCl4)2 (R = Me 4a, Cy 4b) featuring a C[double bond, length as m-dash]C-As[double bond, length as m-dash]C π-conjugated framework are reported.

18.
Chem Sci ; 11(7): 1975-1984, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123292

RESUMO

A synthetic strategy for the 2-phospha-1,3-butadiene derivatives [{(IPr)C(Ph)}P(cAACMe)] (3a) and [{(IPr)C(Ph)}P(cAACCy)] (3b) (IPr = C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACMe = C{(NDipp)CMe2CH2CMe2}; cAACCy = C{(NDipp)CMe2CH2C(Cy)}, Cy = cyclohexyl) containing a C[double bond, length as m-dash]C-P[double bond, length as m-dash]C framework has been established. Compounds 3a and 3b have a remarkably small HOMO-LUMO energy gap (3a: 5.09; 3b: 5.05 eV) with a very high-lying HOMO (-4.95 eV for each). Consequently, 3a and 3b readily undergo one-electron oxidation with the mild oxidizing agent GaCl3 to afford radical cations [{(IPr)C(Ph)}P(cAACR)]GaCl4 (R = Me 4a, Cy 4b) as crystalline solids. The main UV-vis absorption band for 4a and 4b is red-shifted with respect to that of 3a and 3b, which is associated with the SOMO related transitions. The EPR spectra of compounds 4a and 4b each exhibit a doublet due to coupling of the unpaired electron with the 31P nucleus. Further one-electron removal from the radical cations 4a and 4b is also feasible with GaCl3, affording the dications [{(IPr)C(Ph)}P(cAACR)](GaCl4)2 (R = Me 5a, Cy 5b) as yellow crystals. The molecular structures of compounds 3-5 have been determined by X-ray diffraction and analyzed by DFT calculations.

19.
ACS Appl Mater Interfaces ; 12(1): 1132-1141, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31829550

RESUMO

Metal top electrodes such as gold are widely used in organic solar cells. The active layer can be optimized by modifications of the polymer band gap via side-chain engineering, and low band gap polymers based on benzodithiophene units such as PTB7 and PTB7-Th are successfully used. The growth of gold contacts on PTB7 and PTB7-Th films is investigated with in situ grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) during the sputter deposition of gold. From GIWAXS, the crystal structure of the gold film is determined. Independent of the type of side chain, gold crystals form in the very early stages and improve in quality during the sputter deposition until the late stages. From GISAXS, the nanoscale structure is determined. Differences in terms of gold cluster size and growth phase limits for the two polymers are caused by the side-chain modification and result in a different surface coverage in the early phases. The changes in the diffusion and coalescence behavior of the forming gold nanoparticles cause differences in the morphology of the gold contact in the fully percolated regime, which is attributed to the different amount of thiophene rings of the side chains acting as nucleation sites.

20.
Angew Chem Int Ed Engl ; 58(49): 17599-17603, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31553520

RESUMO

The divinyldiarsene radical cations [{(NHC)C(Ph)}As]2 (GaCl4 ) (NHC=IPr: C{(NDipp)CH}2 3; SIPr: C{(NDipp)CH2 }2 4; Dipp=2,6-iPr2 C6 H3 ) and dications [{(NHC)C(Ph)}As]2 (GaCl4 )2 (NHC=IPr 5; SIPr 6) are readily accessible as crystalline solids on sequential one-electron oxidation of the corresponding divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 1; SIPr 2) with GaCl3 . Compounds 3-6 have been characterized by X-ray diffraction, cyclic voltammetry, EPR/NMR spectroscopy, and UV/vis absorption spectroscopy as well as DFT calculations. The sequential removal of one electron from the HOMO, that is mainly the As-As π-bond, of 1 and 2 leads to successive elongation of the As=As bond and contraction of the C-As bonds from 1/2→3/4→5/6. The UV/vis spectrum of 3 and 4 each exhibits a strong absorption in the visible region associated with SOMO-related transitions. The EPR spectrum of 3 and 4 each shows a broadened septet owing to coupling of the unpaired electron with two 75 As (I=3/2) nuclei.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...