Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512281

RESUMO

Cervical cancer is still a serious threat to women's health and life safety worldwide, and new treatment strategies are urgently needed. Accumulating evidences also imply that long non-coding RNAs (lncRNAs) are involved in a wide range of cellular processes, such as cell proliferation, apoptosis, and cell cycle. We found that the expression of lncOGFRP1 in cervical cancer tissues was significantly higher than that in normal cervical tissues (P < .05). Further, CCK8 detection found when lncOGFRP1 was silenced, the proliferation of cells was inhibited. After depleting lncOGFRP1, the proportion of apoptosis cells in C33A (3.71 ± 0.38% VS 11.98 ± 1.26%, P < .05) and SiHa (0.69 ± 0.06% VS 11.06 ± 1.03%, P < .05) cells increased significantly, and cell cycle was arrested in S phase. On the other hand, migration detection found the migration of cells also was hindered when lncOGFRP1 level was reduced. And the depletion of lncOGFRP1 inhibited the expression of ß-catenin, Vimentin, N-cadherin, and SNAIL and promoted the expression of E-cadherin. In summary, we first discovered the high expression of lncOGFRP1 in cervical cancer and revealed that silencing lncOGFRP1 inhibits the proliferation and migration of cervical carcinoma cells. SIGNIFICANCE OF THE STUDY: We first discovered the high expression of lncOGFRP1 in cervical cancer and revealed that silencing lncOGFRP1 inhibits the proliferation and migration of cervical carcinoma cells. These results help to better understand the pathogenesis and development of cervical cancer and provide insight to develop better diagnosis and treatment strategies.

2.
Int J Cancer ; 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433866

RESUMO

Calcium and magnesium affect muscle mass and function. Magnesium and calcium are also important for optimal vitamin D status. Vitamin D status modifies the associations between physical activity and risk of incident cardiovascular disease (CVD) and CVD mortality. However, no study examined whether levels of magnesium and calcium and the ratio of dietary calcium to magnesium (Ca:Mg) intake modify the relationship between physical activity and mortality. We included 20,295 National Health and Nutrition Examination Survey participants (1999-2006) aged >20 years with complete dietary, physical activity and mortality data (2,663 deaths). We assessed physical activity based on public health guidelines and sex-specific tertiles of MET-minutes/week. We used Cox proportional hazards models adjusted for potential confounding factors and stratified by the intakes of magnesium, calcium, Ca:Mg ratio. We found higher physical activity was significantly associated with reduced risk of total mortality and cause-specific mortality, regardless of Ca:Mg ratio, magnesium or calcium intake. In contrast, both moderate and high physical activity were significantly associated with substantially reduced risks of mortality due to cancer when magnesium intake was above the RDA level. We also found higher physical activity was significantly associated with a reduced risk of mortality due to cancer only when Ca:Mg ratios were between 1.7 and 2.6, although the interaction was not significant. Overall, dietary magnesium and, potentially, the Ca:Mg ratio modify the relationship between physical activity and cause-specific mortality. Further study is important to understand the modifying effects of the balance between calcium and magnesium intake on physical activity for chronic disease prevention.

3.
Circulation ; 140(8): 645-657, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31424985

RESUMO

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.

4.
Toxicol Lett ; 315: 39-46, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442585

RESUMO

The recession of regulatory T cells (Tregs) is pivotal for type 1 diabetes (T1D) progressing. Our previous study observed the decreased Tregs in prenatal nicotine exposure (PNE) offspring, but whether this led to the onset of T1D remains uncertain. Thus, this study aimed to investigate the effects of PNE on T1D susceptibility and the role of PNE-suppressed Tregs in T1D of female offspring. The decreased body weights and elevated blood glucose levels from postnatal day (PND) 21 to PND 42 indicated that PNE caused persistent impaired glucose homeostasis in offspring. The elevated serum glutamic acid decarboxylase autoantibody, the "Gold Standard" for the detection of T1D, was observed on PND 42, suggesting the early stage of T1D in PNE offspring during adolescence. The reduced pancreatic islet areas and beta cells number in PNE offspring were observed at neonatal period and became more severe during adolescence. In addition, PNE caused immune dysfunction in offspring, manifested as suppressed thymic Tregs percentage from PND 4 to PND 42 and splenic Tregs/Th17 ratio on PND 42. In conclusion, PNE resulted in metabolic changes of offspring that were consistent with T1D characteristics, which could be the consequence of Tregs recession from early life to adolescence.


Assuntos
Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/fisiopatologia , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Feminino , Humanos , Camundongos , Gravidez
5.
Aging (Albany NY) ; 11(16): 5895-5923, 2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31422385

RESUMO

Telomere length (TL) is associated with several aging-related diseases. Here, we present a DNA methylation estimator of TL (DNAmTL) based on 140 CpGs. Leukocyte DNAmTL is applicable across the entire age spectrum and is more strongly associated with age than measured leukocyte TL (LTL) (r ~-0.75 for DNAmTL versus r ~ -0.35 for LTL). Leukocyte DNAmTL outperforms LTL in predicting: i) time-to-death (p=2.5E-20), ii) time-to-coronary heart disease (p=6.6E-5), iii) time-to-congestive heart failure (p=3.5E-6), and iv) association with smoking history (p=1.21E-17). These associations are further validated in large scale methylation data (n=10k samples) from the Framingham Heart Study, Women's Health Initiative, Jackson Heart Study, InChianti, Lothian Birth Cohorts, Twins UK, and Bogalusa Heart Study. Leukocyte DNAmTL is also associated with measures of physical fitness/functioning (p=0.029), age-at-menopause (p=0.039), dietary variables (omega 3, fish, vegetable intake), educational attainment (p=3.3E-8) and income (p=3.1E-5). Experiments in cultured somatic cells show that DNAmTL dynamics reflect in part cell replication rather than TL per se. DNAmTL is not only an epigenetic biomarker of replicative history of cells, but a useful marker of age-related pathologies that are associated with it.

6.
Aging (Albany NY) ; 11(14): 4970-4989, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31322503

RESUMO

Evidence indicates associations between higher optimism and reduced risk of age-related conditions and premature mortality. This suggests optimism is a positive health asset, but research identifying potential biological mechanisms underlying these associations remains limited. One potential pathway is slower cellular aging, which may delay age-related deterioration in health. Data were from the Women's Health Initiative (WHI) (N=3,298) and the Veterans Affairs Normative Aging Study (NAS) (N=514), and included dispositional and explanatory style optimism measures. We evaluated whether higher optimism was associated with metrics suggestive of less cellular aging, as indicated by two DNA methylation algorithms, intrinsic (IEAA) and extrinsic epigenetic age acceleration (EEAA); these algorithms represent accelerated biologic aging that exceeds chronological age. We used linear regression models to test our hypothesis while considering several covariates (sociodemographics, depressive symptoms, health behaviors). In both cohorts, we found consistently null associations of all measures of optimism with both measures of DNA methylation aging, regardless of covariates considered. For example, in fully-adjusted models, dispositional optimism was not associated with either IEAA (WHI:ß=0.02; 95% Confidence Interval [CI]:-0.15-0.20; NAS:ß=-0.06; 95% CI:-0.56-0.44) or EEAA (WHI:ß=-0.04; 95% CI: -0.26-0.17; NAS:ß=-0.17; 95% CI: -0.80-0.46). Higher optimism was not associated with reduced cellular aging as measured in this study.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31277270

RESUMO

DNA methylation may play a critical role in aging and age-related diseases. DNA methylation phenotypic age (DNAmPhenoAge) is a new aging biomarker and predictor of chronic disease risk. While smoking is a strong risk factor for chronic diseases and influences methylation, its influence on DNAmPhenoAge is unknown. We investigated associations of self-reported and epigenetic smoking indicators with DNAmPhenoAge acceleration in a longitudinal aging study in eastern Massachusetts. DNA methylation was measured in whole blood samples from multiple visits for 692 male participants in the Veterans Affairs Normative Aging Study during 1999-2013. Acceleration was defined using residuals from linear regression of the DNAmPhenoAge on the chronological age. Cumulative smoking (pack-years) was significantly associated with DNAmPhenoAge acceleration, whereas self-reported smoking status was not. We observed significant validated associations between smoking-related loci and DNAmPhenoAge acceleration for 52 CpG sites, where 18 were hypomethylated and 34 were hypermethylated, mapped to 16 genes. The AHRR gene had the most loci (N = 8) among the 16 genes. We generated a smoking aging index based on these 52 loci, which showed positive significant associations with DNAmPhenoAge acceleration. These epigenetic biomarkers may help to predict age-related risks driven by smoking.

8.
Nat Commun ; 10(1): 2581, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197173

RESUMO

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.


Assuntos
Metilação de DNA/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Insulina/metabolismo , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Ilhas de CpG/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética/fisiologia , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Homeostase/genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Adulto Jovem
9.
Environ Int ; 132: 104723, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31208937

RESUMO

BACKGROUND: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 µm in diameter (PM2.5; PM10; PM2.5-10). METHODS: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0 × 10-7; PCochran's Q > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study. RESULTS: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33 × 10-8). One-month mean PM10 and PM2.5-10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84 × 10-8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86 × 10-8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA. CONCLUSIONS: Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.

10.
Sci Rep ; 9(1): 6983, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043638

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Int J Epidemiol ; 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038702

RESUMO

BACKGROUND: A 'mortality risk score' (MS) based on ten prominent mortality-related cytosine-phosphate-guanine (CpG) sites was previously associated with all-cause mortality, but has not been verified externally. We aimed to validate the association of MS with mortality and to compare MS with three aging biomarkers: telomere length (TL), DNA methylation age (DNAmAge) and phenotypic age (DNAmPhenoAge) to explore whether MS can serve as a reliable measure of biological aging and mortality. METHODS: Among 534 males aged 55-85 years from the US Normative Aging Study, the MS, DNAmAge and DNAmPhenoAge were derived from blood DNA methylation profiles from the Illumina HumanMethylation450 BeadChip, and TL was measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: A total of 147 participants died during a median follow-up of 9.4 years. The MS showed strong associations with all-cause, cardiovascular disease (CVD) and cancer mortality. After controlling for all potential covariates, participants with high MS (>5 CpG sites with aberrant methylation) had almost 4-fold all-cause mortality (hazard ratio: 3.84, 95% confidence interval: 1.92-7.67) compared with participants with a low MS (0-1 CpG site with aberrant methylation). Similar patterns were observed with respect to CVD and cancer mortality. MS was associated with TL and DNAmPhenoAge acceleration but not with DNAmAge acceleration. Although the MS and DNAmPhenoAge acceleration were independently associated with all-cause mortality, the former exhibited a higher predictive accuracy of mortality than the latter. CONCLUSIONS: MS has the potential to be a prominent predictor of mortality that could enhance survival prediction in clinical settings.

13.
Toxicol Ind Health ; 35(5): 339-348, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31023176

RESUMO

Traffic-related PM2.5 can result in immune system damage and diseases; however, the possible mechanism of its effect remains unclear. Calcium (Ca2+) is a critical signaling molecule in a variety of cells. Indeed, Ca2+ is involved in numerous basic functions, including cell growth and death. In this study, Jurkat T cells were used to explore the possible mechanisms of PM2.5-elicited intracellular Ca2+signal responses. The results indicate that PM2.5 could raise the level of intracellular Ca2+ concentration ([Ca2+]i). The [Ca2+]i in Jurkat T cells significantly decreased after treatment with heparin as an inhibitor of inositol trisphosphate receptors (IP3 R), or procaine as an inhibitor of ryanodine receptors (RyR). The expression of calmodulin (CAM) protein decreased in a time-dependent manner after exposure to PM2.5, whereas the activity of Ca2+-Mg2+-ATPase seemed to show a slight drop trend after exposure to PM2.5. Our findings demonstrate that PM2.5 stimulation to Jurkat T cells would result in an increase in [Ca2+]i, which is modulated by IP3 R and RyR, as well as CAM.

14.
Diabetes ; 68(5): 1073-1083, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30936141

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 × 10-6) with replication at Bonferroni-corrected P < 8.6 × 10-4 Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 × 10-4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.

15.
Environ Int ; 126: 395-405, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30826618

RESUMO

BACKGROUND: Exploring the associations of air pollution and weather variables with blood leukocyte distribution is critical to understand the impacts of environmental exposures on the human immune system. OBJECTIVES: As previous analyses have been mainly based on data from cell counters, which might not be feasible in epidemiologic studies including large populations of long-stored blood samples, we aimed to expand the understanding of this topic by employing the leukocyte distribution estimated by DNA methylation profiles. METHODS: We measured DNA methylation profiles in blood samples using Illumina HumanMethylation450 BeadChip from 1519 visits of 774 Caucasian males participating in the Normative Aging Study. Leukocyte distribution was estimated using Houseman's and Horvath's algorithms. Data on air pollution exposure, temperature, and relative humidity within 28 days before each blood draw was obtained. RESULTS: After fully adjusting for potential covariates, PM2.5, black carbon, particle number, carbon monoxide, nitrogen dioxide, sulfur dioxide, temperature, and relative humidity were associated with the proportions of at least one subtype of leukocytes. Particularly, an interquartile range-higher 28-day average exposure of PM2.5 was associated with 0.147-, 0.054- and 0.101-unit lower proportions (z-scored) of plasma cells, naïve CD8+ T cells, and natural killers, respectively, and 0.059- and 0.161-unit higher proportions (z-scored) of naïve CD4+ T cells and CD8+ T cells, respectively. CONCLUSIONS: Our study suggests that short-term air pollution exposure, temperature, and relative humidity are associated with leukocyte distribution. Our study further provides a successful attempt to use epigenetic patterns to assess the influences of environmental exposures on human immune profiles.

16.
Arch Toxicol ; 93(5): 1323-1335, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30805671

RESUMO

Our previous studies demonstrated that prenatal caffeine exposure (PCE) caused thymopoiesis inhibition, immune disorders, and airway remodeling in offspring, which raises the question of whether PCE is a risk factor for postnatal asthma. Meanwhile, the mechanism of PCE-induced thymopoiesis inhibition is not clear yet. Considering caffeine's pro-autophagy effects (lacking evidence in thymus) and the important role of autophagy in maintaining thymopoiesis, this study aimed to investigate whether PCE contributes to asthma susceptibility, and further explore the molecular mechanisms of thymopoiesis inhibition from the perspective of pro-autophagy effects of caffeine both in vivo and in vitro. The PCE mouse model was established by 96 mg/kg/day caffeine administration from gestational day (GD) 9-GD 18, and an asthma model was established on the offspring by ovalbumin sensitization and challenge. The results confirmed our hypothesis that PCE could suppress pulmonary CD4+T development and aggravate allergen-induced asthma symptoms in the offspring. In fetuses, PCE significantly suppressed A2AR-PKA signaling, upregulated Beclin1-LC3II autophagy, promoted Bcl10 degradation, reduced A20 expression, and inhibited CD4+T thymopoiesis. Similar results were also observed in 4 µM caffeine-treated thymocytes in vitro. Moreover, inhibiting A2AR by antagonist (SCH 58261) performed the same downstream biological effects as caffeine treatment, and autophagy inhibitor (BafilomycinA1) clearly abolished the caffeine-induced Bcl10 degradation and A20 suppression. In conclusion, our findings, for the first time, showed that PCE could attenuate CD4+T thymopoiesis and suppress pulmonary CD4+T development by directly enhancing autophagy in thymocytes, and provided a firm experimental evidence that PCE is a risk factor for postnatal asthma.

17.
Diabetes ; 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796027

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes. We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at over 400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding p=6.9×10-6) with replication at Bonferroni corrected p<8.6×10-4 Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (p=2.5×10-4). Hypomethylation of the same CpG was also associated with risk for new-onset type 2 diabetes (p=0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for type 2 diabetes. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.

18.
J Am Heart Assoc ; 8(4): e011021, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30764690

RESUMO

Background Recent evidence suggests that racial/ethnic differences in circulating levels of free or bioavailable 25-hydroxy vitamin D (25[ OH ]D) rather than total 25( OH )D may explain apparent racial disparities in cardiovascular disease ( CVD ). We prospectively examined black-white differences in the associations of total, free, and bioavailable 25( OH )D, vitamin D-binding protein, and parathyroid hormone levels at baseline with incident CVD (including nonfatal myocardial infarction, nonfatal stroke, and CVD death) in postmenopausal women. Methods and Results We conducted a case-cohort study among 79 705 postmenopausal women, aged 50 to 79 years, who were free of CVD at baseline in the WHI-OS (Women's Health Initiative Observational Study). A subcohort of 1300 black and 1500 white participants were randomly chosen as controls; a total of 550 black and 1500 white women who developed incident CVD during a mean follow-up of 11 years were chosen as cases. We directly measured total 25( OH )D, vitamin D-binding protein, albumin, parathyroid hormone, and calculated free and bioavailable 25( OH )D. Weighted Cox proportional hazards models were used to examine their associations with CVD risk. Although vitamin D-binding protein and total, free, and bioavailable 25( OH )D were not significantly associated with CVD risk in black or white women, a significant positive association between parathyroid hormone and CVD risk persisted in white women (hazard ratio comparing the highest quartile with the lowest, 1.37; 95% CI , 1.06-1.77) but not in black women (hazard ratio comparing the highest quartile with the lowest, 1.12; 95% CI, 0.79-1.58), independent of total, free, and bioavailable 25( OH )D or vitamin D-binding protein. Conclusions Circulating levels of vitamin D biomarkers are not related to CVD risk in either white or black women. Higher parathyroid hormone levels may be an independent risk factor for CVD in white women.

19.
Toxicol Lett ; 304: 30-38, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30605750

RESUMO

Clinical study showed that smoking during pregnancy deceased the thymus size in newborns. However, the long-term effect remains unclear. This study was aimed to observe the effects of prenatal nicotine exposure (PNE) on the development of thymus and the T-lymphocyte subpopulation in mice offspring from the neonatal to adulthood. Both the thymus weight and cytometry data indicated that PNE caused persistent thymic hypoplasia in male offspring from neonatal to adult period and transient changes in female offspring from neonatal to prepuberal period. Flow cytometry analysis disclosed a permanent decreased proportion and number of mature CD4 single-positive (SP) T cells in thymus of both sex. In addition, the PNE male offspring showed a more serious thymus atrophy in the ovalbumin (OVA)-sensitized model. Moreover, increased autophagic vacuole and elevated mRNA expression of Beclin 1 were noted in PNE fetal thymus. In conclusion, PNE offspring showed thymus atrophy and CD 4 SP T cell reduction at different life stages. Mechanically, PNE induced excessive autophagy in fetal thymocytes might be involved in these changes. All the results provided evidence for elucidating the PNE-induced programmed immune diseases.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Doenças do Sistema Imunitário/induzido quimicamente , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Timócitos/efeitos dos fármacos , Timo/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Feminino , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/patologia , Masculino , Exposição Materna , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Fenótipo , Gravidez , Timócitos/imunologia , Timócitos/metabolismo , Timócitos/patologia , Timo/imunologia , Timo/metabolismo , Timo/patologia
20.
Aging (Albany NY) ; 11(2): 303-327, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669119

RESUMO

It was unknown whether plasma protein levels can be estimated based on DNA methylation (DNAm) levels, and if so, how the resulting surrogates can be consolidated into a powerful predictor of lifespan. We present here, seven DNAm-based estimators of plasma proteins including those of plasminogen activator inhibitor 1 (PAI-1) and growth differentiation factor 15. The resulting predictor of lifespan, DNAm GrimAge (in units of years), is a composite biomarker based on the seven DNAm surrogates and a DNAm-based estimator of smoking pack-years. Adjusting DNAm GrimAge for chronological age generated novel measure of epigenetic age acceleration, AgeAccelGrim.Using large scale validation data from thousands of individuals, we demonstrate that DNAm GrimAge stands out among existing epigenetic clocks in terms of its predictive ability for time-to-death (Cox regression P=2.0E-75), time-to-coronary heart disease (Cox P=6.2E-24), time-to-cancer (P= 1.3E-12), its strong relationship with computed tomography data for fatty liver/excess visceral fat, and age-at-menopause (P=1.6E-12). AgeAccelGrim is strongly associated with a host of age-related conditions including comorbidity count (P=3.45E-17). Similarly, age-adjusted DNAm PAI-1 levels are associated with lifespan (P=5.4E-28), comorbidity count (P= 7.3E-56) and type 2 diabetes (P=2.0E-26). These DNAm-based biomarkers show the expected relationship with lifestyle factors including healthy diet and educational attainment.Overall, these epigenetic biomarkers are expected to find many applications including human anti-aging studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA