Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Mikrochim Acta ; 187(3): 160, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040773


An indirect aptamer-based SERS assay for insulin-like growth factor 2 receptor (IGF-IIR) protein was developed. The gold substrate and silver nanoparticles (AgNPs) were employed simultaneously to achieve double enhancement for SERS signals. Firstly, the five commercial SERS substrates including Enspectr, Ocean-Au, Ocean-AG, Ocean-SP and Q-SERS substrates were evaluated using 4-mercaptobenzoic acid (4-MBA). The Q-SERS substrate was selected based on low relative standard deviation (RSD, 8.6%) and high enhancement factor (EF, 8.7*105), using a 785 nm laser. The aptamer for IGF-IIR protein was designed to include two sequences: one grafted on gold substrate to specifically capture the IGF-IIR protein and a second one forming a 3' sticky bridge to capture SERS nanotags. The SERS nanotag was composed by AgNPs (20 nm), 4-MBA and DNA probes that can hybridize with the aptamer. Due to the steric-hindrance effect, when the aptamer doesn't combine with IGF-IIR protein, it only can capture the SERS nanotags. Therefore, there was a negative correlation between the concentration of IGF-IIR protein and the intensity of 4-MBA at 1076 cm-1. The detection limit reached to 141.2 fM and linear range was from 10 pM to 1 µM. The SERS aptasensor also exhibits a high reproducibility with an average RSD of 4.5%. The interference test was conducted with other four proteins to verify the accuracy of measuring. The study provides an approach to quantitative determination of proteins based on specific recognition and nucleic acid hybridization of aptamers, to establish sandwich structure for SERS enhancement. Graphical abstractSchematic representation of surface-enhanced Raman scattering (SERS) assay on insulin-like growth factor 2 receptor (IGF-IIR) protein by combining the aptamer modified gold substrate and 4-mercaptobenzoic acid (4-MBA) and DNA probe modified silver nanoparticles.

Aptâmeros de Nucleotídeos/química , Ouro/química , Nanopartículas Metálicas/química , Receptor IGF Tipo 2/genética , Prata/química , Análise Espectral Raman/métodos
Biomed Opt Express ; 10(8): 4290-4304, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31453011


Co-amorphous drugs have shown significant potential in improving the stability and bioavailability compared with single neat amorphous drugs. Here, we explored the molecular interactions of cimetidine, naproxen, indomethacin and their binary co-amorphous mixtures via Raman and terahertz (THz) spectroscopy. We used quench-cooled method to prepare the neat amorphous drugs and their binary co-amorphous mixtures and tested their thermodynamic properties through differential scanning calorimetry (DSC). Then, we found that the stability of co-amorphous drugs was stronger than their neat amorphous components. Furthermore, Raman spectroscopy was used to characterize the vibrational modes between different co-amorphous drugs. Generally, we found that the stability of co-amorphous drugs was better than their neat amorphous components for these samples we tested. Meanwhile, we complemented the detection of THz spectroscopy and found that crystalline and amorphous drugs could be better distinguished.

Analyst ; 144(8): 2803-2810, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30882113


Colistin is recognized as the last therapeutic option for multidrug-resistant Gram-negative bacteria infection. In addition, bacterial resistance to colistin could be transmitted between different species through plasmid-mediated mcr-1 gene transfer. Therefore, rapid screening of colistin-resistant isolates will play a key role in controlling the spread of resistance and improving patient outcomes. We developed a rapid method for the detection of colistin-resistance in Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa bacteria based on Raman spectroscopy and hierarchical cluster analysis. Bacteria were incubated with and without colistin using CAMHB as the liquid culture medium. They were then centrifuged and dried on a glass slide. Five Raman spectra of each of the samples were recorded and analyzed by the hierarchical cluster analysis method to determine whether the bacteria were resistant. To evaluate this method, 123 clinical bacterial isolates (42 isolates of E. coli, 41 isolates of A. baumannii and 40 isolates of P. aeruginosa) were tested. The detection sensitivity and specificity were 90.9% and 91.1%, respectively, compared with the reference broth microdilution method. The screening is easy to perform and can be completed in 1.5 h, suggesting that it holds great potential to be an initial screening method in countries and areas where colistin becomes the last resort antibiotic.

Acinetobacter baumannii/isolamento & purificação , Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/isolamento & purificação , Pseudomonas aeruginosa/isolamento & purificação , Análise Espectral Raman/métodos , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Análise por Conglomerados , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
Mikrochim Acta ; 186(2): 102, 2019 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-30637528


The article describes a SERS-based method for diagnosis of bacterial infections. Positively charged silver nanoparticles (AgNPs+) were employed for identification of methicillin-resistant Staphylococcus aureus (MRSA). It is found that AgNPs+ undergo self-assembly on the surface of bacteria via electrostatic aggregation. The assembled AgNPs+ are excellent SERS substrates. To prove the capability of SERS to differentiate between S. aureus and other microorganisms, six standard strains including S. aureus 29213, S. aureus 25923, C. albicans, B. cereus, E. coli, and P. aeruginosa were tested. To further demonstrate its applicability for the identification of MRSA in clinical samples, 52 methicillin-sensitive S. aureus (MSSA) isolates and 215 MRSA isolates were detected by SERS. The total measurement time (include incubation) is 45 min when using a 3 µL sample. The method gives a strongly enhanced Raman signal (at 730 cm-1 and 1325 cm-1) with good reproducibility and repeatability. It was successfully applied to the discrimination of the six strain microorganisms. The typical Raman peaks of S. aureus at 730, 1154, 1325, and 1457 cm-1 were observed, which were assigned to the bacterial cell wall components (730 cm-1- adenine, glycosidic ring mode, 1154 cm-1- unsaturated fatty acid, 1325 cm-1- adenine, polyadenine, and 1457 cm-1 for -COO- stretching). S. aureus was completely separated from other species by partial least squares discriminant analysis (PLS-DA). Moreover, 52 MSSA isolates and 215 MRSA isolates from clinical samples were identified by PLS-DA. The accuracy was almost 100% when compared to the standard broth microdilution method. A classification based on latent structure discriminant analysis provided spectral variability directly. Conceivably, the method offers a potent tool for the identification of bacteria and antibiotics resistance, and for studies on antibiotic-resistance in general. Graphical abstract Schematic of the surface-enhanced Raman scattering (SERS) measurements on Staphylococcus aureus (S. aureus) using positively charged silver nanoparticles (AgNPs+). AgNPs+ are adsorbed on the bacterial cell wall by electrostatic attraction. SERS spectra were analyzed by PLS-DA for the identification of Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus aureus (MSSA). MRSA isolates were divided into four groups, including R1, R2, R3, and R4. MSSA just includes group S.

Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Prata/química , Análise Espectral Raman/métodos , Análise Discriminante , Análise dos Mínimos Quadrados