Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.495
Filtrar
1.
Int J Biol Sci ; 20(6): 2297-2309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617545

RESUMO

Background: Tyrosine kinase with immunoglobulin and EGF-like domains 1 (TIE1) is known as an orphan receptor prominently expressed in endothelial cells and participates in angiogenesis by regulating TIE2 activity. Our previous study demonstrated elevated TIE1 expression in cervical cancer cells. However, the role of TIE1 in cervical cancer progression, metastasis and treatment remains elusive. Methods: Immunohistochemistry staining for TIE1 and Basigin was performed in 135 human cervical cancer tissues. Overexpressing vectors and siRNAs were used to manipulate gene expression in tumor cells. Colony formation, wound healing, and transwell assays were used to assess cervical cancer cell proliferation and migration in vitro. Subcutaneous xenograft tumor and lung metastasis mouse models were established to examine tumor growth and metastasis. Co-Immunoprecipitation and Mass Spectrometry were applied to explore the proteins binding to TIE1. Immunoprecipitation and immunofluorescence staining were used to verify the interaction between TIE1 and Basigin. Cycloheximide chase assay and MG132 treatment were conducted to analyze protein stability. Results: High TIE1 expression was associated with poor survival in cervical cancer patients. TIE1 overexpression promoted the proliferation, migration and invasion of cervical cancer cells in vitro, as well as tumor growth and metastasis in vivo. In addition, Basigin, a transmembrane glycoprotein, was identified as a TIE1 binding protein, suggesting a pivotal role in matrix metalloproteinase regulation, angiogenesis, cell adhesion, and immune responses. Knockdown of Basigin or treatment with the Basigin inhibitor AC-73 reversed the tumor-promoting effect of TIE1 in vitro and in vivo. Furthermore, we found that TIE1 was able to interact with and stabilize the Basigin protein and stimulate the Basigin-matrix metalloproteinase axis. Conclusion: TIE1 expression in cervical cells exerts a tumor-promoting effect, which is at least in part dependent on its interaction with Basigin. These findings have revealed a TIE2-independent mechanism of TIE1, which may provide a new biomarker for cervical cancer progression, and a potential therapeutic target for the treatment of cervical cancer patients.


Assuntos
Neoplasias Pulmonares , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Basigina , Adesão Celular , Células Endoteliais , Neoplasias do Colo do Útero/genética
2.
ACS Chem Neurosci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634698

RESUMO

Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.

3.
Nanoscale ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597919

RESUMO

Prussian blue nanoparticles exhibit the potential to be employed in bioanalytical applications due to their robust stability, peroxidase-like catalytic functionality, straightforward synthesis, and biocompatibility. An efficient approach is presented for the synthesis of nucleic acid-modified Prussian blue nanoparticles (DNA-PBNPs), utilizing nanoparticle porosity to adsorb nucleic acids (polyT). This strategic adsorption leads to the exposure of nucleic acid sequences on the particle surface while retaining catalytic activity. DNA-PBNPs further couple with functional nucleic acid sequences and aptamers through complementary base pairing to act as transducers in biosensors and amplify signal acquisition. Subsequently, we integrated a copper ion-dependent DNAzyme (Cu2+-DNAzyme) and a vascular endothelial growth factor aptamer (VEGF aptamer) onto screen-printed electrodes to serve as recognition elements for analytes. Significantly, our approach leverages DNA-PBNPs as a superior alternative to traditional enzyme-linked antibodies in electrochemical biosensors, thereby enhancing both the efficiency and adaptability of these devices. Our study conclusively demonstrates the application of DNA-PBNPs in two different biosensing paradigms: the sensitive detection of copper ions and vascular endothelial growth factor (VEGF). These results indicate the promising potential of DNA-modified Prussian blue nanoparticles in advancing bioanalytical sensing technologies.

4.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612912

RESUMO

Leaf rolling is regarded as an important morphological trait in wheat breeding. Moderate leaf rolling is helpful to keep leaves upright and improve the photosynthesis of plants, leading to increased yield. However, studies on the identification of genomic regions/genes associated with rolling leaf have been reported less frequently in wheat. In this study, a rolling leaf mutant, T73, which has paired spikelets, dwarfism, and delayed heading traits, was obtained from a common wheat landrace through ethyl methanesulfonate mutagenesis. The rlT73 mutation caused an increase in the number of epidermal cells on the abaxial side and the shrinkage of bulliform cells on the adaxial side, leading to an adaxially rolling leaf phenotype. Genetic analysis showed that the rolling leaf phenotype was controlled by a single recessive gene. Further Wheat55K single nucleotide polymorphism array-based bulked segregant analysis and molecular marker mapping delimited rlT73 to a physical interval of 300.29-318.33 Mb on the chromosome arm 1BL in the Chinese Spring genome. We show that a point mutation at the miRNA165/166 binding site of the HD zipper class III transcription factor on 1BL altered its transcriptional level, which may be responsible for the rolling leaf phenotype. Our results suggest the important role of rlT73 in regulating wheat leaf development and the potential of miRNA-based gene regulation for crop trait improvement.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Triticum/genética , Mutação , Cromossomos
5.
J Dent Sci ; 19(2): 1087-1095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618132

RESUMO

Background/purpose: Healthy states of human microbiota depend on a stable community of symbiotic microbes irrespective of external challenges from the environment. Thus, long-term stability of the oral microbiota is of importance, particularly for older patient populations. Materials and methods: We used next-generation sequencing (NGS) to examine the tongue microbiota of 18 individuals receiving long-term care over a 10-month period. Results: Beta diversity analysis demonstrated temporal stability of the tongue microbiota, as microbial compositions from all time points were indistinguishable from each other (P = 0.0887). However, significant individual variation in microbial composition (P = 0.0001) was observed, underscoring the presence of a unique microbial profile for each patient. Conclusion: The temporal dynamics of tongue microbiota exhibit long-term stability, providing diagnostic implications for oral diseases within older patient populations.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 203-207, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605622

RESUMO

The concentration of end-tidal carbon dioxide is one of the important indicators for evaluating whether the human respiratory system is normal. Accurately detecting of end-tidal carbon dioxide is of great significance in clinical practice. With the continuous promotion of the localization of end-tidal carbon dioxide monitoring technology, its application in clinical practice in China has become increasingly widespread in recent years. The study is based on the non-dispersive infrared method and comprehensively elaborates on the detection principle, gas sampling methods, key technologies, and technological progress of end-tidal carbon dioxide detection technology. It comprehensively introduces the current development status of this technology and provides reference for application promotion and further improvement.


Assuntos
Dióxido de Carbono , Humanos , Dióxido de Carbono/análise , Monitorização Fisiológica , China
7.
Artigo em Inglês | MEDLINE | ID: mdl-38579246

RESUMO

OBJECTIVES: To assess the current practice of pulmonary metastasectomy at 15 European Centres. Short- and long-term outcomes were analysed. METHODS: Retrospective analysis on patients ≥18 years, who underwent curative-intent pulmonary metastasectomy (01/2010-12/2018). Data was collected on a purpose-built database (REDCap). Exclusion criteria were: previous lung/extra-pulmonary metastasectomy, pneumonectomy, non-curative intent, and evidence of extrapulmonary recurrence at the time of lung surgery. RESULTS: A total of 1,647 patients (mean age 59.5 (SD = 13.1) years; 56.8% males) were included. The most common primary tumour was colorectal adenocarcinoma. The mean disease-free interval was 3.4 (SD = 3.9) years. Relevant comorbidities were observed in 53.8% patients, with a higher prevalence of metabolic disorders (32.3%). Video-assisted thoracic surgery was the chosen approach in 54.9% cases. Wedge resections were the most common operation (67.1%). Lymph node dissection was carried out in 41.4% cases. The median number of resected lesions was 1 (interquartile range 25-75%= 1-2), ranging from 1 to 57. The mean size of the metastases was 18.2 (SD = 14.1) mm, with a mean negative resection margin of 8.9 (SD = 9.4) mm. A R0 resection of all lung metastases was achieved in 95.7% cases. Thirty-day postoperative morbidity was 14.5%, with the most frequent complications being respiratory (5.6%). Thirty-day mortality was 0.4%. Five-year overall survival and recurrence-free survival were 62.0% and 29.6%, respectively. CONCLUSIONS: Pulmonary metastasectomy is a low-risk procedure that provides satisfactory oncological outcomes and patient survival. Further research should aim at clarifying the many controversial aspects of its daily clinical practice.

8.
Am J Nucl Med Mol Imaging ; 14(1): 72-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500744

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most common type of epithelial ovarian cancer with insidious onset, rapid growth, and invasive spread. Here, we reported the diagnosis and treatment of a 53-year-old patient with a history of hysterectomy aided by the 68Ga-FAPI PET/MR scan. The patient was first presented to the local hospital with a lump on the left side of the neck with a biopsy suggesting metastatic cancer. Pelvic ultrasonography revealed two irregular masses. After admission, tumor markers, pathology consultation of the biopsy, and the 68Ga-FAPI PET/MR scan were administered. The biopsy of the lump suggested poorly differentiated adenocarcinoma and CA125 was elevated at 530.6 U/ml. The 68Ga-FAPI PET/MR scan showed several abnormal lymph nodes and two soft tissue masses with borders of dispersed restriction displaying internally uneven signals depicted by slightly elongated T1 and T2 signals within the pelvic cavity suggesting that pelvic mass could be the primary lesion. The patient received cytoreductive surgery including bilateral adnexectomy, omentectomy, and appendectomy. Post-surgical pathology suggested left and right HGSOC with left fallopian tube invasion. The patient completed six courses of first-line chemotherapy and remained progression-free for 14 months up to date. To conclude, 68Ga-FAPI PET/MR aids in primary tumor determination and tumor burden assessment and provides a guide for the management of late-stage HGSOC patients.

10.
Arthritis Res Ther ; 26(1): 60, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433222

RESUMO

OBJECTIVE: This meta-analysis aims to explore the potential link between vaccines and systemic lupus erythematosus (SLE). METHODS: We systematically searched PubMed, Cochrane Library, and Embase for observational studies from inception to September 3, 2023, using medical subject headings (MeSH) and keywords. Study quality was assessed using the NOS scale. Statistical analyses were conducted using STATA software (version 14.0). Publication bias was evaluated using funnel plots and Egger's regression. RESULTS: The meta-analysis incorporated 17 studies, encompassing 45,067,349 individuals with follow-up periods ranging from 0.5 to 2 years. The pooled analysis revealed no significant association between vaccinations and an increased risk of SLE [OR = 1.14, 95% CI (0.86-1.52), I2 = 78.1%, P = 0.348]. Subgroup analyses indicated that HBV vaccination was significantly associated with an elevated risk of SLE [OR =2.11, 95% CI (1.11-4.00), I2 = 63.3%, P = 0.02], HPV vaccination was slightly associated with an increased risk of SLE [OR = 1.43, 95% CI (0.88-2.31), I2 = 72.4%, P = 0.148], influenza vaccination showed no association with an increased risk of SLE [OR = 0.96, 95% CI (0.82-1.12), I2 = 0.0%, P = 0.559], and COVID-19 vaccine was marginally associated with a decreased risk of SLE [OR = 0.44, 95% CI (0.18-1.21), I2 = 91.3%, P = 0.118]. CONCLUSIONS: This study suggests that vaccinations are not linked to an increased risk of SLE. Our meta-analysis results provide valuable insights, alleviating concerns about SLE risk post-vaccination and supporting further vaccine development efforts.


Assuntos
Lúpus Eritematoso Sistêmico , Vacinação , Humanos , Vacinas contra COVID-19 , Lúpus Eritematoso Sistêmico/epidemiologia , Vacinação/efeitos adversos , Vacinas contra Influenza , Estudos Observacionais como Assunto
11.
Heliyon ; 10(6): e27074, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509958

RESUMO

Objective: Obesity has become a global health issue and a risk factor for hyperuricemia. However, the associations between obesity and hyperuricemia are sometimes confounding. In the present study, we performed mendelian randomization (MR) analysis to study their relationship and investigate the underlying mechanism by network pharmacology. Method: Body mass index (BMI) and uric acid related to single nucleotide polymorphism were selected as instrumental variables for MR analysis. Three robust analytical methods are used for bidirectional MR analysis such as inverse-variance weighting, weighted median and MR-Egger regression. Then, we further performed sensitivity analysis to evaluate the horizontal pleiotropy, heterogeneities, and stability. The targets related to obesity and hyperuricemia were collected, screened and further conducted for Kyoto Encyclopedia of Genes and Genomes pathway enrichment to explore the mechanism of obesity and hyperuricemia using network pharmacology. Results: The positive causality was indicated between BMI and hyperuricemia based on inverse variance-weighted analysis [odds ratio:1.23, 95% confidence interval: 1.11 to 1.30 for each standard deviation increase in BMI (4.6 kg/m2)]. Conversely, hyperuricemia did not influence BMI. 235 intersected targets from obesity and hyperuricemia were collected. Insulin resistance were the top 1 key target. The mechanism between obesity and hyperuricemia are associated with important pathways including adipocytokine signaling pathway, insulin resistance and cholesterol metabolism et al. Conclusions: Our MR analysis supported the causal association between obesity and hyperuricemia based on availablegenome-wide association analysis summary statistics. Obesity leads to hyperuricemia via insulin resistance, which is a key link in the huge network pathways using network pharmacology.

12.
J Periodontol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523602

RESUMO

BACKGROUND: This study aimed to investigate the contribution of myeloid differentiation primary-response gene 88 (MyD88) on the differentiation of T helper type 17 (Th17) and regulatory T (Treg) cells and the emerging subgingival microbiota dysbiosis in Porphyromonas gingivalis-induced experimental periodontitis. METHODS: Alveolar bone loss, infiltrated inflammatory cells, immunostained cells for tartrate-resistant acid phosphatase (TRAP), the receptor activator of nuclear factor-kB ligand (RANKL), and osteoprotegerin (OPG) were quantified by microcomputerized tomography and histological staining between age- and sex-matched homozygous littermates (wild-type [WT, Myd88+/+] and Myd88-/- on C57BL/6 background). The frequencies of Th17 and Treg cells in cervical lymph nodes (CLNs) and spleen were determined by flow cytometry. Cytokine expression in gingival tissues, CLNs, and spleens were studied by quantitative polymerase chain reaction (qPCR). Analysis of the composition of the subgingival microbiome and functional annotation of prokaryotic taxa (FAPROTAX) analysis were performed. RESULTS: P. gingivalis-infected Myd88-/- mice showed alleviated bone loss, TRAP+ osteoclasts, and RANKL/OPG ratio compared to WT mice. A significantly higher percentage of Foxp3+CD4+ T cells in infected Myd88-/- CLNs and a higher frequency of RORγt+CD4+ T cells in infected WT mice was noted. Increased IL-10 and IL-17a expressions in gingival tissue at D14-D28 then declined in WT mice, whereas an opposite pattern was observed in Myd88-/- mice. The Myd88-/- mice exhibited characteristic increases in gram-positive species and species having probiotic properties, while gram-negative, anaerobic species were noted in WT mice. FAPROTAX analysis revealed increased aerobic chemoheterotrophy in Myd88-/- mice, whereas anaerobic chemoheterotrophy was noted in WT mice after P. gingivalis infection. CONCLUSIONS: MyD88 plays an important role in inflammation-induced bone loss by modulating the dynamic equilibrium between Th17/Treg cells and dysbiosis in P. gingivalis-induced experimental periodontitis.

13.
Cancer Med ; 13(6): e7121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515309

RESUMO

BACKGROUND: The current utilization of neurokinin-1 receptor antagonists (NK1RAs) and the impact of updated guidelines on prescription patterns of antiemetic drugs among Chinese patients receiving highly emetogenic chemotherapy (HEC) remain undetermined. This study aims to analyze the present situation of Chinese cancer patients using antiemetic drugs and assess the appropriateness of antiemetic regimens. METHODS: Prescription data were collected between January 2015 and December 2020 from cancer patients receiving cisplatin-based chemotherapy at 76 hospitals in six major cities in China. Trends in the use of antiemetic drugs, prescribing patterns and adherence to antiemetic guidelines were assessed. RESULTS: Among the 108,611 patients included in this study, 6 classes and 17 antiemetic drugs were identified as monotherapy or combination therapy in 93,872 patients (86.4%), whereas 14,739 patients (13.6%) were administered no antiemetic treatment. 5-hydroxytryptamine 3 receptor antagonists (5-HT3RAs) and glucocorticoids were the two most frequently used classes of antiemetics, followed by metoclopramide. NK1RAs were underused across the six cities, only 9332 (8.6%) and 1655 (1.5%) cisplatin-based treatments were prescribed aprepitant and fosaprepitant, respectively. Prescriptions of olanzapine and lorazepam were very low throughout the study period. In prescribing patterns of antiemetic drugs, dual combination regimens were the most common (40.0%), followed by triple combination therapy and monotherapy (25.8% and 15.1%, respectively). Overall, the adherence to antiemetic guidelines for patients undergoing cisplatin-based regimens was only 8.1% due to inadequate prescription of antiemetic drugs. Finally, our study also revealed that 5-HT3RAs and glucocorticoids were overprescribed in 8.8% and 1.6% of patients, respectively. CONCLUSIONS: The current study reveals suboptimal utilization of recommended antiemetic drugs for managing cisplatin-based HEC-induced nausea and vomiting in China. Improving the management of CINV is crucial, and these findings provide valuable insights into optimizing antiemetic drug practices.


Assuntos
Antieméticos , Antineoplásicos , Neoplasias , Humanos , Antieméticos/uso terapêutico , Cisplatino/efeitos adversos , Estudos Retrospectivos , Serotonina/efeitos adversos , Antineoplásicos/efeitos adversos , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Neoplasias/tratamento farmacológico
14.
Int J Biol Macromol ; 264(Pt 2): 130470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453124

RESUMO

LKB1 (liver kinase B1) is a key upstream kinase of AMPK and plays an important role in various cellular activities. While the function and mechanism of LKB1 have been widely reported in the study of tumor, there are few reports on its role in bacterial infectious diseases, especially in shrimp. In the present study, molecular characterization revealed that LvLKB1 has an open reading frame (ORF) of 1266 bp encoding 421 amino acids with a molecular weight of about 48 KDa, including the kinase region, N-terminal regulatory domain and C-terminal regulatory domain. LvLKB1 in hepatopancreas and hemocytes was significantly upregulated after infection with Vibrio alginolyticus (V. alginolyticus). After silencing LvLKB1 gene in Litopenaeus vannamei (L. vannamei) and artificially infecting V. alginolyticus, the survival rate of L. vannamei was significantly decreased. Subsequently, it was found that the expression of inflammatory factors in hepatopancreas and hemocytes of shrimp was up-regulated, and the expression of lipid oxidation factors was decreased after silencing LKB1, leading to the phenomenon of lipid accumulation in hepatopancreas. In order to explore the mechanism, autophagy levels of shrimp were detected after silencing LKB1, which showed that autophagy levels in hepatopancreas and hemocytes were significantly reduced. Further studies conclusively showed that silencing LvLKB1 inhibited AMPK phosphorylation induced by V. alginolyticus infection, thereby activating TOR pathway and inhibiting autophagy in shrimp. These results indicate that LvLKB1 regulates autophagy through AMPK/TOR signaling pathway to alleviate the damage caused by V. alginolyticus infection.


Assuntos
Penaeidae , Vibrioses , Animais , Vibrio alginolyticus/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Autofagia , Lipídeos , Penaeidae/microbiologia , Imunidade Inata/genética , Hemócitos/metabolismo , Proteínas de Artrópodes/química
15.
J Alzheimers Dis ; 98(3): 941-955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489185

RESUMO

Background: As a prodromal stage of dementia, significant emphasis has been placed on the identification of modifiable risks of mild cognitive impairment (MCI). Research has indicated a correlation between exposure to air pollution and cognitive function in older adults. However, few studies have examined such an association among the MCI population inChina. Objective: We aimed to explore the association between air pollution exposure and MCI risk from the Hubei Memory and Aging Cohort Study. Methods: We measured four pollutants from 2015 to 2018, 3 years before the cognitive assessment of the participants. Logistic regression models were employed to calculate odds ratios (ORs) to assess the relationship between air pollutants and MCI risk. Results: Among 4,205 older participants, the adjusted ORs of MCI risk for the highest quartile of PM2.5, PM10, O3, and SO2 were 1.90 (1.39, 2.62), 1.77 (1.28, 2.47), 0.56 (0.42, 0.75), and 1.18 (0.87, 1.61) respectively, compared with the lowest quartile. Stratified analyses indicated that such associations were found in both males and females, but were more significant in older participants. Conclusions: Our findings are consistent with the growing evidence suggesting that air pollution increases the risk of mild cognitive decline, which has considerable guiding significance for early intervention of dementia in the older population. Further studies in other populations and broader geographical areas are warranted to validate these findings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Disfunção Cognitiva , Demência , Masculino , Feminino , Humanos , Idoso , Estudos de Coortes , Estudos de Casos e Controles , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Disfunção Cognitiva/epidemiologia , China/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise
16.
Int Heart J ; 65(2): 318-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556339

RESUMO

This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS: Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1ß, IL-6, and TGF-ß, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS: Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS: This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.


Assuntos
Citratos , Hipertensão Pulmonar , Ratos , Animais , Masculino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/induzido quimicamente , Monocrotalina/efeitos adversos , Ratos Sprague-Dawley , Remodelação Vascular , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Artéria Pulmonar , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Modelos Animais de Doenças
17.
mBio ; : e0034824, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530034

RESUMO

A critical determinant for early post-entry events, the HIV-1 capsid (CA) protein forms the conical core when it rearranges around the dimeric RNA genome and associated viral proteins. Although mutations in CA have been reported to alter innate immune sensing of HIV-1, a direct link between core stability and sensing of HIV-1 nucleic acids has not been established. Herein, we assessed how manipulating the stability of the CA lattice through chemical and genetic approaches affects innate immune recognition of HIV-1. We found that destabilization of the CA lattice resulted in potent sensing of reverse transcription products when destabilization per se does not completely block reverse transcription. Surprisingly, due to the combined effects of enhanced reverse transcription and defects in nuclear entry, two separate CA mutants that form hyperstable cores induced innate immune sensing more potently than destabilizing CA mutations. At low concentrations that allowed the accumulation of reverse transcription products, CA-targeting compounds GS-CA1 and lenacapavir measurably impacted CA lattice stability in cells and modestly enhanced innate immune sensing of HIV. Interestingly, innate immune activation observed with viruses containing unstable cores was abolished by low doses of lenacapavir. Innate immune activation observed with both hyperstable and unstable CA mutants was dependent on the cGAS-STING DNA-sensing pathway and reverse transcription. Overall, our findings demonstrate that CA lattice stability and reverse transcription are finely balanced to support reverse transcription and minimize cGAS-STING-mediated sensing of the resulting viral DNA. IMPORTANCE: In HIV-1 particles, the dimeric RNA genome and associated viral proteins and enzymes are encased in a proteinaceous lattice composed of the viral capsid protein. Herein, we assessed how altering the stability of this capsid lattice through orthogonal genetic and chemical approaches impacts the induction of innate immune responses. Specifically, we found that decreasing capsid lattice stability results in more potent sensing of viral reverse transcription products, but not the genomic RNA, in a cGAS-STING-dependent manner. The recently developed capsid inhibitors lenacapavir and GS-CA1 enhanced the innate immune sensing of HIV-1. Unexpectedly, due to increased levels of reverse transcription and cytosolic accumulation of the resulting viral cDNA, capsid mutants with hyperstable cores also resulted in the potent induction of type I interferon-mediated innate immunity. Our findings suggest that HIV-1 capsid lattice stability and reverse transcription are finely balanced to minimize exposure of reverse transcription products in the cytosol of host cells.

18.
ACS Appl Mater Interfaces ; 16(10): 12773-12780, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437709

RESUMO

Tin halide perovskites are rising as promising candidates for next-generation optoelectronic materials due to their good optoelectronic properties and relatively low toxicity. However, the high defect density and the easy oxidation of Sn2+ have limited their optoelectronic performance. Herein, we report the treatment of the FASnI3 (formamidinium tin, FA) perovskite film by a bifunctional cesium fluoride (CsF) additive, which improves the film quality and significantly enhances the photoelectric performance. The responsivity of the perovskite-based photodetector (PD) with an optimal CsF concentration of 15% is over 60 times larger than that of the PD without CsF. It indicates that both the Cs substitution and the fluoride anion additive from CsF inhibit the oxidation of Sn2+, optimize the crystal growth, and passivate the defects, demonstrating the dual roles of the CsF additive in improving the photoelectric performance. This work offers valuable insights into the additive selection for developing high-quality tin-based perovskite films and devices.

19.
Rev Invest Clin ; 76(1): 45-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442372

RESUMO

Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks receptors for targeted therapy. Deeper insight into the molecular mechanisms regulating TNBC metastasis is urgently needed. The epithelial-mesenchymal transition process facilitates the metastasis of neighboring epithelial tumor cells. Protein kinase, membrane-associated tyrosine/threonine 1 (PKMYT1), a member of the Wee family of protein kinases, is upregulated in BC, and its high expression predicts poor prognosis in BC patients. Notch signaling activation is a pathognomonic feature of TNBC. PKMYT1 has been found to induce EMT in non-small cell lung cancer by activating Notch signaling. However, whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling remains unknown. Objectives: The objective of this study was to investigate whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling. Methods: Fifty cases of surgically resected BC samples (tumor and adjacent non-tumor tissue samples) were collected from patients diagnosed with BC. We measured the expression of PKMYT1 in clinical samples with real-time quantitative polymerase chain reaction (RT-qPCR). For in vitro analysis, RT-qPCR and Western blotting were conducted to evaluate PKMYT1 expression in TNBC cells. Then, the viability, migration, and invasion of TNBC cells were detected by cell counting kit-8 assays, wound healing assays, and Transwell assays. The EMT event was examined by evaluating the levels of EMT-associated proteins. For in vivo analysis, xenograft models in nude mice were established to explore PKMYT1 roles. E-cadherin and Ki67 expression in xenograft models were estimated by immunohistochemistry staining. Hematoxylin and eosin staining was performed to assess tumor metastasis. The underlying mechanisms by which PKMYT1 affected the malignant phenotypes of TNBC cells were explored by Western blotting measuring the pathway-associated proteins. Results: PKMYT1 was upregulated in BC tissues and cells, and its knockdown prevented cell proliferation, migration, invasion, and EMT event in TNBC. Mechanistically, Notch signaling was inactivated by PKMYT1 depletion, and Notch activation abolished the PKMYT1 silencing-induced inhibition in the malignant phenotypes of TNBC cells. For in vivo analysis, PKMYT1 knockdown inhibited tumorigenesis and metastasis of TNBC. Conclusion: PKMYT1 promotes EMT, proliferation, migration, and invasion of TNBC cells and facilitates tumor growth and metastasis by activating Notch signaling.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Proteínas de Membrana/metabolismo , Camundongos Nus , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
20.
Small ; : e2309842, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1 -weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...