Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(6): 246, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256373

RESUMO

Two-dimensional metal-organic framework (MOF) composites were produced by incorporating Fe-MOFs into reduced graphene oxide (rGO) nanosheets to form Fe-MOF/rGO composites by hydrothermal synthesis. SEM, TEM, XRD, XPS, and measurements of contact angles were used to characterize the composites. TEM studies revealed that the rod-like-shaped Fe-MOFs were extensively dispersed on the rGO sheets. Incorporating Fe-MOF into rGO significantly improves performance due to the large surface area, chemical stability, and high electrical conductivity. The response signals for the electrochemical sensing performance of Fe-MOF/rGO-modified electrodes to nitrofurazone (NFZ) were significantly enhanced. Differential pulse voltammetry was used to detect the NFZ, and the MOF/rGO sensor possesses a lower detection limit (0.77µM) with two dynamic ranges from 0.6-60 to 128-499.3 µM and high sensitivity (1.909 µA·mM-1·cm-2). Moreover, the anti-interference properties of the sensor were quite reproducible and stable. To understand the mechanism responsible for the enhanced sensing performance of the composite, grand canonical Monte Carlo calculations were performed for Fe-MOF/rGO composites with five unit cells of Fe-MOF and four layers of rGO. We attributed the improvement to the fact that the interface between the Fe-MOF and rGO absorbed increased NFZ molecules. The findings reported herein confirm that such Fe-MOF/rGO composites have significantly improved electrochemical performance and practical applicability of sensing nitrofurazone.

2.
RSC Adv ; 11(43): 26516-26522, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35479996

RESUMO

The electrochemical sensing applications of a series of water-stable 2D metal-organic framework (MOF)-modified screen-printed carbon electrodes (SPCEs) are reported. The MOF materials in this study are [M(bipy)(C4O4)(H2O)2]·3H2O, in which bipy = 4,4'-bipyridine and M = Mn, Fe, Co and Zn. The MOF materials are characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing that the MOFs have a layer-by-layer rod structure with a smooth surface. We use the nitrofurazone molecule as a probe to investigate the influence of the metal ions of MOFs on electrochemical sensing ability. Cyclic voltammetry demonstrated that the Mn-MOF electrode of interest delivered stronger signals than that of other electrodes. Through first-principles calculations, we also revealed that the change in the spin polarization of divalent metal ions passing from the free ion state to the MOF environment appeared to be significantly correlated with the enhancement in the peak response current. The theoretical and experimental results consistently indicate that Mn-MOF has the smallest bandgap and good sensitivity among these MOF materials. Accordingly, we proposed a simple model to illustrate this observation and disclosed the importance of the electron configuration of the transition metal constructing the MOF materials used in improving electrochemical sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA