Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Condens Matter ; 33(3): 035001, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33078711


Technological applications involving 2D MoS2 require transfer of chemical vapor deposition (CVD) grown material from its original substrate and subsequent lithographic processes. Inevitably, those steps contaminate the surface of the 2D material with polymeric residues affecting the electronic and optical properties of the MoS2. Annealing in forming gas is considered an efficient treatment to partially remove such residues. However, hydrogen also interacts with MoS2 creating or saturating sulfur vacancies. Sulfur vacancies are known to be at the origin of n-doping evident in the majority of as-grown MoS2 samples. In this context, investigating the impact of thermal annealing in forming gas on the electronic and optical properties of MoS2 monolayer is technologically important. In order to address this topic, we have systematically studied the evolution of CVD grown MoS2 monolayer using Raman spectroscopy, photoluminescence, x-ray photoelectron spectroscopy and transport measurements through a series of thermal annealing in forming gas at temperatures up to 500 °C. Efficient removal of the polymeric residues is demonstrated at temperatures as low as 200 °C. Above this value, carrier density modulation is identified by photoluminescence, x-ray photoelectron spectroscopy and electrical characterization and is correlated to the creation of sulfur vacancies. Finally, the degradation of the MoS2 single layer is verified with annealing at or above 350 °C through Raman and photocurrent measurements.

Regen Biomater ; 5(5): 293-301, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30338127


Hydrogels have been extensively used in the field of biomedical applications, offering customizable natural, synthetic or hybrid materials, particularly relevant in the field of tissue engineering. In the bioelectronics discipline, hydrogels are promising mainly as sensing platforms with or without encapsulated cells, showing great potential in healthcare and medicine. However, to date there is little data in the literature which characterizes the electrical properties of tissue engineering materials which are relevant to bioelectronics. In this work, we present electrical characterization of alginate hydrogels, a natural polysaccharide, using a four-probe method similar to electrical impedance spectroscopy. The acquired conductance data show distinct frequency-dependent features that change as a function of alginate and crosslinker concentration reflecting ion kinetics inside the measured sample. Furthermore, the presence of NIH 3T3 fibroblasts encapsulated in the hydrogels matrix was found to alter the artificial tissue's electrical properties. The method used provides valuable insight to the frequency-dependent electrical response of the resulting systems. It is hoped that the outcome of this research will be of use in the development of cell/electronic interfaces, possibly toward diagnostic biosensors and therapeutic bioelectronics.

Nano Lett ; 15(11): 7503-7, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26479681


Shubnikov-de Haas oscillations were studied under high magnetic field in Bi2Se3 nanostructures grown by chemical vapor transport, for different bulk carrier densities ranging from 3 × 10(19) cm(-3) to 6 × 10(17) cm(-3). The contribution of topological surface states to electrical transport can be identified and separated from bulk carriers and massive two-dimensional electron gas. Band bending is investigated, and a crossover from upward to downward band bending is found at low bulk density as a result of a competition between bulk and interface doping. These results highlight the need to control electrical doping both in the bulk and at interfaces in order to study only topological surface states.