Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.349
Filtrar
1.
J Hazard Mater ; 476: 134992, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38959834

RESUMO

Iron (hydr)oxides, as natural geosorbents, play a crucial role in retaining toxic heavy metals, and their aging process greatly influences heavy metals distributions and migration in soil systems. However, limited attention has been given to the interaction between heavy metals and crystalline-aged goethite. In this study, we investigated the sorption behavior and sorption mechanism of cadmium (Cd) with freshly synthesized or aged goethite. We quantified the total Cd sorption load, as well as the proportion of Cd with different sorption strengths on minerals. It has been found that in different aged goethite samples, approximately 71.3-84.7 % of Cd is strongly bound (bidentate inner-sphere complexes) and 16.0 % to 26.4 % of Cd is weakly bound (electrostatic adsorption and partially through monodentate inner-sphere complexes) by goethite. This observation is consistent with the distribution characteristics of Cd species fitted by the charge distribution and multisite surface complexation model. Additionally, the total Cd load and strongly bound Cd content on goethite aged at pH 7.5 decreased with extended aging time. Upon combining the mineral characterization analysis and surface hydroxyl density calculation, we found that the morphology transformation and the deterioration in sorption ability on goethite results from a condensation process through a surface hydroxyl oxolation reaction on the {110} facet between adjacent goethite crystals during the aging process at pH 7.5. This condensation process causes goethite to lose many hydroxyl sites, which is the dominant reason for the decrease in inner-sphere complexed Cd. The amount of weakly bound Cd decreases slightly with aging, because the decrease in inner-sphere complexed Cd is not conducive to balancing the positively charged mineral surface, resulting in a slight reduction in the amount of Cd adsorbed through electrostatic attractions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38990750

RESUMO

Brain decoding that classifies cognitive states using the functional fluctuations of the brain can provide insightful information for understanding the brain mechanisms of cognitive functions. Among the common procedures of decoding the brain cognitive states with functional magnetic resonance imaging (fMRI), extracting the time series of each brain region after brain parcellation traditionally averages across the voxels within a brain region. This neglects the spatial information among the voxels and the requirement of extracting information for the downstream tasks. In this study, we propose to use a fully connected neural network that is jointly trained with the brain decoder to perform an adaptively weighted average across the voxels within each brain region. We perform extensive evaluations by cognitive state decoding, manifold learning, and interpretability analysis on the Human Connectome Project (HCP) dataset. The performance comparison of the cognitive state decoding presents an accuracy increase of up to 5% and stable accuracy improvement under different time window sizes, resampling sizes, and training data sizes. The results of manifold learning show that our method presents a considerable separability among cognitive states and basically excludes subject-specific information. The interpretability analysis shows that our method can identify reasonable brain regions corresponding to each cognitive state. Our study would aid the improvement of the basic pipeline of fMRI processing.

3.
Plant Commun ; : 101038, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38993115

RESUMO

Comparative metabolomics plays a crucial role in investigating gene function, exploring metabolite evolution, and accelerating crop genetic improvement. However, a systematic platform for comparing intra- and cross-species metabolites is currently lacking. Here, we report the Plant Comparative Metabolome Database (PCMD; http://yanglab.hzau.edu.cn/PCMD), a multilevel comparison database based on predicted metabolic profiles in 530 plant species. PCMD serves as a platform for comparing metabolite characteristics at various levels, including species, metabolites, pathways, and biological taxonomy. The database also provides a series of user-friendly online tools, such as Species-comparison, Metabolites-enrichment, and ID conversion, enabling users to perform comparisons and enrichment analyses of metabolites across different species. In addition, PCMD establishes a unified system based on existing metabolite-related databases by standardizing metabolite numbering. PCMD is the most species-rich comparative plant metabolomics database currently available, and a case study demonstrated its capability to provide new insights into understanding plant metabolic diversity.

4.
Acta Pharmacol Sin ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987389

RESUMO

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

5.
Int J Biol Macromol ; 275(Pt 2): 133521, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960267

RESUMO

Flame resistance is required for the deployment of bio-based materials, especially those forming cellular structures that endow thermal insulation. This study proposes a one-pot strategy to prepare cellular lignocellulosic composites with excellent flame resistance. Lignocellulosic microfibers were used as the substrate onto which a flame-retardant complex consisting of P-containing phytic acid (PA) and N-containing polyethyleneimine (PEI) was formed. Following the prediction of ab initio molecular dynamics simulation, PA and PEI are integrated onto MF-CTMP following a single-step complexation assembly triggered by pH effects. The PA-PEI modified MF-CTMP can be readily transformed into a composite solid foam by dewatering a wet foam followed by oven drying. At the expense of a slightly reduced thermal insulation (thermal conductivity increase from 33.6 ± 0.6 to 40.0 ± 0.6 mW/(m·K)) the presence of PA-PEI complexes significantly improved the mechanical performance of the foam and uniquely endows it with flame resistance. Compared to unmodified MF-CTMP foams, the composite foams showed significant improvement in the Young's, specific compression, and flexural moduli (increased by 13.5, 5.5, and 7.3 folds, respectively), a high oxygen index (up to 40.8 %) and self-extinguishing effects. The results suggest the suitability of the introduced lignocellulosic foam as an alternative to traditional synthetic polymer-based counterparts as well as inorganic matter for insulation, particularly relevant to the building sector.

6.
Inorg Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014892

RESUMO

Ring contraction of metallacyclobutadiene to metallacyclopropene is rare because of the increasing strain from a four-membered ring to a three-membered one. Here we demonstrate a new series of reactions of metallabenzocyclobutadiene to metallabenzocyclopropene via density functional theory calculations. The results suggest that these reactions are thermodynamically favorable ranging from -17.4 to -29.4 kcal mol-1, and a low reaction barrier (10.3 kcal mol-1) is achieved when the metal center is Ru and the ligands are one cyanide and one chloride. Further analysis suggests that a strengthened binding energy helps stabilize the transition state in the protonation process. The aromaticity during the reaction was investigated using the electron density of delocalized bonds (EDDB), isomerization stabilization energy, and isodesmic reactions. The EDDB shows that the π-conjugation is disrupted in the intermediate, and then σ-aromaticity is generated and dominant in the products. Our findings could be helpful for experimentalists in developing novel ring contraction reactions driven by aromaticity.

7.
Cell Death Discov ; 10(1): 334, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043648

RESUMO

Previous studies revealed that MIR155HG possessed an oncogenic role in many types of tumors including lung adenocarcinoma (LUAD), along with higher expression in tumors. However, in our study, we observed a positive correlation between MIR155HG expression and overall survival across different cohorts. The transferred PBMC on the NCG mouse model abrogated the tumor intrinsic oncogenic role of MIR155HG in LUAD. Upregulation of MIR155HG positively correlated with CD8+ T cell infiltration both in vitro and in vivo, as well as LUAD tissues. Mechanistically, we revealed that MIR155HG increased the cytokine CCL5 expression at the transcriptional level, which depended on the interaction between MIR155HG and YBX1 protein, a novel transcription factor of CCL5, resulting in the more protein stability of YBX1 through dampening ubiquitination. Additionally, we also observed that MIR155 could increase PD-L1 expression to hamper the activity of recruited CD8+ T cells, which could be rescued through PD-L1 mAb addition. Finally, we uncovered that patients with high MIR155HG expression had a higher response rate to immunotherapy, and the combination of MIR155HG overexpression and PD-L1 mAb increased the efficacy of PD-L1 mAb. Together, our study provides a novel biomarker and potential combination treatment strategy for patients who received immunotherapy.

8.
J Neurosci Methods ; : 110222, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038718

RESUMO

BACKGROUND: The field of neonatal sleep analysis is burgeoning with devices that purport to offer alternatives to polysomnography (PSG) for monitoring sleep patterns. However, the majority of these devices are limited in their capacity, typically only distinguishing between sleep and wakefulness. This study aims to assess the efficacy of a novel wearable electroencephalographic (EEG) device, the LANMAO Sleep Recorder, in capturing EEG data and analyzing sleep stages, and to compare its performance against the established PSG standard. METHODS: The study involved concurrent sleep monitoring of 34 neonates using both PSG and the LANMAO device. Initially, the study verified the consistency of raw EEG signals captured by the LANMAO device, employing relative spectral power analysis and Pearson correlation coefficients (PCC) for validation. Subsequently, the LANMAO device's integrated automated sleep staging algorithm was evaluated by comparing its output with expert-generated sleep stage classifications. RESULTS: Analysis revealed that the PCC between the relative spectral powers of various frequency bands during different sleep stages ranged from 0.28 to 0.48. Specifically, the correlation for delta waves was recorded at 0.28. The automated sleep staging algorithm of the LANMAO device demonstrated an overall accuracy of 79.60%, Cohen kappa of 0.65, and F1 Score of 76.93%. Individual accuracy for Wake at 87.20%, NREM at 85.70%, and REM Sleep at 81.30%. CONCLUSION: While the LANMAO Sleep Recorder's automated sleep staging algorithm necessitates further refinement, the device shows promise in accurately recording neonatal EEG during sleep. Its potential for minimal invasiveness makes it an appealing option for monitoring sleep conditions in newborns, suggesting a novel approach in the field of neonatal sleep analysis.

9.
Mil Med Res ; 11(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034405

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear. METHODS: We investigated the effects of clinical-grade hypoxia-preconditioned olfactory mucosa (hOM)-MSCs on neural functional recovery in both PD models and patients, as well as the preventive effects on mouse models of PD. To assess improvement in neuroinflammatory response and neural functional recovery induced by hOM-MSCs exposure, we employed single-cell RNA sequencing (scRNA-seq), assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) combined with full-length transcriptome isoform-sequencing (ISO-seq), and functional assay. Furthermore, we present the findings from an initial cohort of patients enrolled in a phase I first-in-human clinical trial evaluating the safety and efficacy of intraspinal transplantation of hOM-MSC transplantation into severe PD patients. RESULTS: A functional assay identified that transforming growth factor-ß1 (TGF-ß1), secreted from hOM-MSCs, played a critical role in modulating mitochondrial function recovery in dopaminergic neurons. This effect was achieved through improving microglia immune regulation and autophagy homeostasis in the SN, which are closely associated with neuroinflammatory responses. Mechanistically, exposure to hOM-MSCs led to an improvement in neuroinflammation and neural function recovery partially mediated by TGF-ß1 via activation of the anaplastic lymphoma kinase/phosphatidylinositol-3-kinase/protein kinase B (ALK/PI3K/Akt) signaling pathway in microglia located in the SN of PD patients. Furthermore, intraspinal transplantation of hOM-MSCs improved the recovery of neurologic function and regulated the neuroinflammatory response without any adverse reactions observed in patients with PD. CONCLUSIONS: These findings provide compelling evidence for the involvement of TGF-ß1 in mediating the beneficial effects of hOM-MSCs on neural functional recovery in PD. Treatment and prevention of hOM-MSCs could be a promising and effective neuroprotective strategy for PD. Additionally, TGF-ß1 may be used alone or combined with hOM-MSCs therapy for treating PD.


Assuntos
Modelos Animais de Doenças , Células-Tronco Mesenquimais , Mucosa Olfatória , Doença de Parkinson , Fator de Crescimento Transformador beta1 , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Células-Tronco Mesenquimais/métodos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Recuperação de Função Fisiológica , Fator de Crescimento Transformador beta1/metabolismo
10.
Sci Rep ; 14(1): 15671, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977728

RESUMO

The study aims to explore the central genes that Kawasaki disease (KD) and Obesity (OB) may jointly contribute to coronary artery disease. Investigating single-cell datasets (GSE168732 and GSE163830) from a comprehensive gene expression database, we identified characteristic immune cell subpopulations in KD and OB. B cells emerged as the common immune cell characteristic subgroup in both conditions. Subsequently, we analyzed RNA sequencing datasets (GSE18606 and GSE87493) to identify genes associated with B-cell subpopulations in KD and OB. Lastly, a genome-wide association study and Mendelian randomization were conducted to substantiate the causal impact of these core genes on myocardial infarction. Quantitative real-time PCR (qRT-PCR) to validate the expression levels of hub genes in KD and OB. The overlapping characteristic genes of B cell clusters in both KD and OB yielded 70 shared characteristic genes. PPI analysis led to the discovery of eleven key genes that significantly contribute to the crosstalk. Employing receiver operating characteristic analysis, we evaluated the specificity and sensitivity of these core genes and scored them using Cytoscape software. The inverse variance weighting analysis suggested an association between TNFRSF17 and myocardial infarction risk, with an odds ratio of 0.9995 (95% CI = 0.9990-1.0000, p = 0.049). By employing a single-cell combined transcriptome data analysis, we successfully pinpointed central genes associated with both KD and OB. The implications of these findings extend to shedding light on the increased risk of coronary artery disease resulting from the co-occurrence of OB and KD.


Assuntos
Linfócitos B , Estudo de Associação Genômica Ampla , Síndrome de Linfonodos Mucocutâneos , Obesidade Infantil , Transcriptoma , Síndrome de Linfonodos Mucocutâneos/genética , Humanos , Obesidade Infantil/genética , Linfócitos B/metabolismo , Linfócitos B/imunologia , Criança , Perfilação da Expressão Gênica , Masculino , Feminino , Análise da Randomização Mendeliana , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/etiologia , Pré-Escolar , Infarto do Miocárdio/genética , Análise de Célula Única
11.
Int Urol Nephrol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028495

RESUMO

OBJECTIVES: To investigate the role of pyroptosis in diabetic nephropathy (DN) and identify potential biomarkers for diagnosis. METHODS: We analyzed the GEO dataset GSE96804 to identify differentially expressed genes (DEGs) related to pyroptosis in DN. The CIBERSORT method was used to assess M1 macrophage infiltration in the samples. Using weighted gene co-expression network analysis (WGCNA), we identified gene modules associated with M1 macrophages. The least absolute shrinkage and selection operator (LASSO) method was then applied to screen for key genes. The intersection of key genes identified by LASSO and the gene modules obtained from WGCNA resulted in the identification of ten hub genes as potential biomarkers for DN. RESULTS: A total of 366 DEGs were identified, with 310 genes associated with pyroptosis. Increased M1 macrophage infiltration was observed in DN patients. Ten hub genes were identified as potential DN biomarkers: ECM1, LRP2BP, ALKBH7, CDH10, DUSP1, HSPA1A, LPL, NFIL3, PDK4, and TMEM150C. CONCLUSIONS: This study highlights the importance of pyroptosis in DN pathophysiology and identifies 10 hub genes as potential biomarkers. These findings may contribute to improved diagnosis and treatment of DN.

12.
Front Psychol ; 15: 1373844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984289

RESUMO

Background: During the critical formative years of college, active participation in sports not only helps to alleviate stress, but also promotes the development of healthy habits. Although the multifaceted benefits of exercise have been widely recognized, there is a relative dearth of research on the relationship between personality traits, particularly college students' self-oriented perfectionism (SOP), and exercise participation. Methods: A questionnaire survey of 374 college students was conducted using the snowball sampling method. SPSS 26.0 and Mplus 8.3 were employed in this study to analyze the correlations between the variables, and on this basis, the effect of SOP on exercise participation was examined. The study also used 5,000 bootstrap samples and a 95% bias-corrected confidence interval to test the significance of the mediating effects. Results: Correlation analysis showed that SOP was positively correlated with exercise participation. Harmonious passion and obsessive passion were positively correlated with SOP, and exercise participation. Further, the results of structural equation analysis revealed that SOP increased exercise participation. Harmonious passion and obsessive passion positively mediated the effect between SOP and exercise participation, respectively. Conclusion: This study provides new perspectives to better understand college students' exercise participation, emphasizing the importance of SOP and its influence on exercise participation through harmonious and obsessive passions. These findings have important implications for the development of effective exercise promotion strategies.

13.
Chaos ; 34(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980380

RESUMO

Neural networks are popular data-driven modeling tools that come with high data collection costs. This paper proposes a residual-based multipeaks adaptive sampling (RMAS) algorithm, which can reduce the demand for a large number of samples in the identification of stochastic dynamical systems. Compared to classical residual-based sampling algorithms, the RMAS algorithm achieves higher system identification accuracy without relying on any hyperparameters. Subsequently, combining the RMAS algorithm and neural network, a few-shot identification (FSI) method for stochastic dynamical systems is proposed, which is applied to the identification of a vegetation biomass change model and the Rayleigh-Van der Pol impact vibration model. We show that the RMAS algorithm modifies residual-based sampling algorithms and, in particular, reduces the system identification error by 76% with the same sample sizes. Moreover, the surrogate model accurately predicts the first escape probability density function and the P bifurcation behavior in the systems, with the error of less than 1.59×10-2. Finally, the robustness of the FSI method is validated.

14.
J Am Chem Soc ; 146(28): 19286-19294, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38956888

RESUMO

As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.

15.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39007599

RESUMO

The interaction between T-cell receptors (TCRs) and peptides (epitopes) presented by major histocompatibility complex molecules (MHC) is fundamental to the immune response. Accurate prediction of TCR-epitope interactions is crucial for advancing the understanding of various diseases and their prevention and treatment. Existing methods primarily rely on sequence-based approaches, overlooking the inherent topology structure of TCR-epitope interaction networks. In this study, we present $GTE$, a novel heterogeneous Graph neural network model based on inductive learning to capture the topological structure between TCRs and Epitopes. Furthermore, we address the challenge of constructing negative samples within the graph by proposing a dynamic edge update strategy, enhancing model learning with the nonbinding TCR-epitope pairs. Additionally, to overcome data imbalance, we adapt the Deep AUC Maximization strategy to the graph domain. Extensive experiments are conducted on four public datasets to demonstrate the superiority of exploring underlying topological structures in predicting TCR-epitope interactions, illustrating the benefits of delving into complex molecular networks. The implementation code and data are available at https://github.com/uta-smile/GTE.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Humanos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Redes Neurais de Computação , Biologia Computacional/métodos , Ligação Proteica , Epitopos/química , Epitopos/imunologia , Algoritmos , Software
16.
Tob Induc Dis ; 222024.
Artigo em Inglês | MEDLINE | ID: mdl-38873181

RESUMO

INTRODUCTION: Healthcare workers are integral to public smoking cessation; however, their own smoking behavior can create a significant obstacle to intervening in patients' cessation efforts. Conversely, their success in quitting can enhance their ability to support patients. Research on smoking behavior, particularly smoking cessation among Chinese psychiatric professionals is limited. This study addresses this gap by examining the factors associated with smoking cessation in this population, providing insights for targeted tobacco control policies. METHODS: A cross-sectional survey was conducted, targeting psychiatric professionals including psychiatrists and psychiatric nurses, in 41 tertiary psychiatric hospitals in China. From January to March 2021, a WeChat-based questionnaire was distributed to collect demographic, occupational, and health-behaviors (including smoking) data. Statistical analyses, including the chi-squared test and adjusted binary logistic regression analysis, were conducted to identify the factors associated with smoking cessation. RESULTS: Among the 12762 psychiatric professionals who participated in the survey, 11104 (87.0%) were non-smokers, 1196 (9.4%) were current smokers, and 462 (3.6%) were ex-smokers. Several factors were found to be associated with smoking cessation. Women had a higher prevalence of ex-smokers than men (AOR=1.88; 95% CI: 1.332-2.666, p<0.001). Compared to East China, the prevalence of ex-smokers among participants in Central and Northeast China was lower. Older age (≥50 years), higher level of education (Master's degree or higher), and non-drinkers, showed a higher likelihood of being ex-smokers. Notably, compared to current smokers, ex-smokers reported a lower prevalence of burnout (AOR=0.70; 95% CI: 0.552-0.892, p=0.004). CONCLUSIONS: Smoking cessation interventions or health promotion programs should also focus on gender, age, education level, region, alcohol use, and burnout to effectively address smoking cessation within this specific professional group.

17.
Carbohydr Polym ; 341: 122305, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876711

RESUMO

In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.

18.
Nutrients ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892715

RESUMO

NASH (non-alcoholic steatohepatitis) is a severe liver disease characterized by hepatic chronic inflammation that can be associated with the gut microbiota. In this study, we explored the therapeutic effect of Gynostemma pentaphyllum extract (GPE), a Chinese herbal extract, on methionine- and choline-deficient (MCD) diet-induced NASH mice. Based on the peak area, the top ten compounds in GPE were hydroxylinolenic acid, rutin, hydroxylinoleic acid, vanillic acid, methyl vanillate, quercetin, pheophorbide A, protocatechuic acid, aurantiamide acetate, and iso-rhamnetin. We found that four weeks of GPE treatment alleviated hepatic confluent zone inflammation, hepatocyte lipid accumulation, and lipid peroxidation in the mouse model. According to the 16S rRNA gene V3-V4 region sequencing of the colonic contents, the gut microbiota structure of the mice was significantly changed after GPE supplementation. Especially, GPE enriched the abundance of potentially beneficial bacteria such as Akkerrmansia and decreased the abundance of opportunistic pathogens such as Klebsiella. Moreover, RNA sequencing revealed that the GPE group showed an anti-inflammatory liver characterized by the repression of the NF-kappa B signaling pathway compared with the MCD group. Ingenuity Pathway Analysis (IPA) also showed that GPE downregulated the pathogen-induced cytokine storm pathway, which was associated with inflammation. A high dose of GPE (HGPE) significantly downregulated the expression levels of the tumor necrosis factor-α (TNF-α), myeloid differentiation factor 88 (Myd88), cluster of differentiation 14 (CD14), and Toll-like receptor 4 (TLR4) genes, as verified by real-time quantitative PCR (RT-qPCR). Our results suggested that the therapeutic potential of GPE for NASH mice may be related to improvements in the intestinal microenvironment and a reduction in liver inflammation.


Assuntos
Microbioma Gastrointestinal , Gynostemma , Hepatopatia Gordurosa não Alcoólica , Extratos Vegetais , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Camundongos , Gynostemma/química , Extratos Vegetais/farmacologia , Masculino , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
19.
Front Physiol ; 15: 1392454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938744

RESUMO

The mechanisms underlying the occurrence and development of atherosclerosis (AS) are diverse, among which endoplasmic reticulum stress (ERS) is an important mechanism that should not be overlooked. However, up to now, there has been no bibliometric study on the relationship between ERS and AS. To understand the research progress in ERS and AS, this paper conducted a statistical analysis of publications in this field using bibliometrics. A total of 1,035 records were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and the R package "bibliometric" were used to analyze the spatiotemporal distribution, countries, authors, institutions, journals, references, and keywords of the literature, and to present the basic information of this field through visualized maps, as well as determine the collaboration relationships among researchers in this field. This field has gradually developed and stabilized over the past 20 years. The current research hotspots in this field mainly include the relationship between ERS and AS-related cells, the mechanisms by which ERS promotes AS, related diseases, and associated cytokines, etc. Vascular calcification, endothelial dysfunction, NLRP3 inflammasome, and heart failure represent the frontier research in this field and are becoming new research hotspots. It is hoped that this study will provide new insights for research and clinical work in the field of ERS and AS.

20.
Environ Sci Technol ; 58(26): 11447-11458, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899977

RESUMO

Mine tailings are extremely oligotrophic environments frequently contaminated with elevated As and Sb, making As(III) and Sb(III) oxidation potentially important energy sources for the tailing microbiome. Although they have been proposed to share similar metabolic pathways, a systemic comparison of the As(III) and Sb(III) oxidation mechanisms and energy utilization efficiencies requires further elucidation. In this study, we employed a combination of physicochemical, molecular, and bioinformatic analyses to compare the kinetic and genetic mechanisms of As(III) and Sb(III) oxidation as well as their respective energy efficiencies for fueling the key nutrient acquisition metabolisms. Thiobacillus and Rhizobium spp. were identified as functional populations for both As(III) and Sb(III) oxidation in mine tailings by DNA-stable isotope probing. However, these microorganisms mediated As(III) and Sb(III) oxidation via different metabolic pathways, resulting in preferential oxidation of Sb(III) over As(III). Notably, both As(III) and Sb(III) oxidation can facilitate nitrogen fixation and phosphate solubilization in mine tailings, with Sb(III) oxidation being more efficient in powering these processes. Thus, this study provided novel insights into the microbial As(III) and Sb(III) oxidation mechanisms and their respective nutrient acquisition efficiencies, which may be critical for the reclamation of mine tailings.


Assuntos
Oxirredução , Antimônio/metabolismo , Mineração , Arsênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA