Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.383
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33471497

RESUMO

3D monolithic reactor has shown great promise for varied heterogeneous catalysis reactions including water treatment, energy generation and storage, and clean fuel production. As a natural porous material, macroporous wood is regarded as an excellent support for inorganic catalyst due to its abundant polar functional groups and channels. On the other hand, a metal organic framework (MOF) has been widely used as heterogeneous catalyst due to its high specific surface area and large amount of microporosities. Combining macroporous wood and a microporous MOF is expected to produce a high-performance 3D reactor and is demonstrated here for Fischer-Tropsch synthesis. The carbonized MOF/wood reactor retains the original cellular structure with over 180 000 channels/cm2. When being decorated with hexagonal-shaped core-shell Co@C nanoparticles aggregates derived from Co-MOF, the MOF/wood reactor resembles a multi-cylinders reactor for Fischer-Tropsch synthesis. Because of the unique combination of macro- and microporous hierarchical structure, the 3D MOF/wood reactor demonstrates exceptional performance under high gas hourly space velocity (81.2% CO conversion and 48.5% C5+ selectivity at 50 L·h-1·gcat-1 GHSV). This validates that MOF/wood can serve as a multi-cylinders and high-power reactor for catalytic reactions, which is expected to be applicable for environmental and energy applications.

2.
Analyst ; 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33475106

RESUMO

Inert metals are of much importance and play a key role in modern industrial manufacturing. The analytical techniques of inert metals remain challenging. In particular, the mass spectrometry of inert metal elements is yet to be further developed, which also limits the contemporary conceptual in situ analysis of inert metals. As the representative element, the mass spectral detection of palladium is critical and of far-reaching significance. Herein, we developed a mass spectrometry method, which can be used for the high-speed and in situ analysis of palladium, and even for other inert metals. Combining the line ion trap mass spectrometer with the versatile ambient ionization source, a novel kilowatt microwave plasma torch (MPT) can be used to obtain the fully characteristic MPT mass spectra of palladium. Detailed multistage tandem mass spectra show that the general form of target ions is [M(O2)x(NO)mNy(NO2)n]- for the negative ion mode and [M(H2O)x(NO2)y(N2)m]+ for the positive ion mode. Moreover, the formation and evolution of these palladium complex ions were reasonably derived based on the analysis of MPT background mass spectra. This mass spectrometric technique is also suitable for the determination of the palladium-containing solution in the sub-trace level. Semi-quantitative results showed that the detecting ability for palladium in the negative mode is better than that of the positive mode. Under the negative ion mode, the limit of detection (LOD) for m/z 259 were evaluated to be 0.5 µg L-1 under the optimized conditions of the negative mode, with the linear range of 1-100 µg·L-1 (R2 ≥ 0.9985) and the relative standard deviation (RSD, n = 11) being in the range of 1.20%-5.98% (refer to Table S3). Our experimental data showed that MPT-MS was a promising technique for providing another alternative in the on-site analysis of liquid samples and other intimate relevant fields, as the supplement of ICP-MS for the detection of inert metal elements. On the other hand, this work will also certainly promote the more broad applications of platinum-group elements (PGE) in modern science and industry.

3.
PLoS Genet ; 17(1): e1009174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33406121

RESUMO

Outbreaks of locust plagues result from the long-term accumulation of high-density egg production. The migratory locust, Locusta migratoria, displays dramatic differences in the egg-laid number with dependence on population density, while solitarious locusts lay more eggs compared to gregarious ones. However, the regulatory mechanism for the egg-laid number difference is unclear. Herein, we confirm that oosorption plays a crucial role in the regulation of egg number through the comparison of physiological and molecular biological profiles in gregarious and solitarious locusts. We find that gregarious oocytes display a 15% higher oosorption ratio than solitarious ones. Activinß (Actß) is the most highly upregulated gene in the gregarious terminal oocyte (GTO) compared to solitarious terminal oocyte (STO). Meanwhile, Actß increases sharply from the normal oocyte (N) to resorption body 1 (RB1) stage during oosorption. The knockdown of Actß significantly reduces the oosorption ratio by 13% in gregarious locusts, resulting in an increase in the egg-laid number. Based on bioinformatic prediction and experimental verification, microRNA-34 with three isoforms can target Actß. The microRNAs display higher expression levels in STO than those in GTO and contrasting expression patterns of Actß from the N to RB1 transition. Overexpression of each miR-34 isoform leads to decreased Actß levels and significantly reduces the oosorption ratio in gregarious locusts. In contrast, inhibition of the miR-34 isoforms results in increased Actß levels and eventually elevates the oosorption ratio of solitarious locusts. Our study reports an undescribed mechanism of oosorption through miRNA targeting of a TGFß ligand and provides new insights into the mechanism of density-dependent reproductive adaption in insects.

4.
ACS Nano ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448788

RESUMO

Compressible and superelastic 3D printed monoliths have shown great promise in various applications including energy storage, soft electronics, and sensors. Although such elastic monoliths have been constructed using some limited materials, most notably graphene, it has not yet been achieved in nature's most abundant material, cellulose, partly due to the strong hydrogen-bonding network within cellulose. Here, we report a 3D-printed cellulose nanofibril monolith that demonstrates superb elasticity (over 91% strain recovery after 500 cycles of compressive test), compressibility (up to 90% compressive strain), and pressure sensitivity (0.337 kPa-1) at 43% relative humidity. Such a high-performance CNF monolith is achieved through both hierarchical architecture design by 3D printing and freeze-drying and incorporation of hygroscopic salt for water absorption. The facile and efficient design strategy for a highly flexible CNF monolith is expected to expand to materials beyond cellulose and can realize much broader applications in flexible sensors, thermal insulation, and many other fields.

5.
Acc Chem Res ; 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33440942

RESUMO

ConspectusThe unprecedented development of inorganic nanostructure synthesis has paved the way toward their broad applications in areas such as food science, agroforestry, energy conversion, and biomedicine. The precise manipulation of the nucleation and subsequent growth has been recognized as the central guiding principle for controlling the size and morphology of the nanostructures. However, conventional colloid syntheses based on direct precipitation reactions still have limitations in their versatility and extendibility. The crystal structure of a material determines the limited number of possible morphologies that its nanostructures can adopt. Further, as nucleation and growth kinetics are sensitive to not only the nature of the precipitation reactions but also ligands and ripening effect, rigorous control of reaction conditions must be established for every specific synthesis. In addition, multiple experimental parameters are entangled with each other, thereby requiring rigorous control of all reaction conditions. As a result, it is usually challenging to extend a synthetic recipe from one material to another. As an alternative method, the direct transformation of existing nanostructures into target ones has become an effective and robust approach capable of creating various complex nanostructures that are otherwise challenging to obtain using conventional methods. To this end, an in-depth understanding of nanoscale transformation toward the synthesis of inorganic nanostructures with diverse properties and applications is highly desirable.In this Account, we aim to reveal the critical effect of the interfacial diffusion on controlled nanoscale transformation. We first discuss how the interdiffusion rates determine the morphology and properties of bimetallic nanostructures. While equal interdiffusion rates lead to perfect mixing and generate fully alloyed nanostructures, interdiffusion at unequal rates creates vacancies in the fast diffusion side, which may cause dramatic morphological transformation to the nanostructures. Then, we introduce interfacial reactions, including the Kirkendall cavitation process, elimination reaction, and solid-state reaction, to promote the unbalanced interdiffusion and generalize nanoscale transformations in materials of various compositions, morphologies, and crystal structures. Finally, we discuss the use of capping ligands to inhibit the diffusion of atoms on one side of the interface in order to enable selective etching or transformation of the nanostructures. By modifying the nanostructured surface with specific capping ligands, the diffusion of surface atoms is restricted. When nanoparticles undergo chemical reactions (such as etching or heating), the outward diffusion of substances dominates, thereby successfully achieving chemical and morphological transformations. We believe that controlled interfacial diffusion can effectively manipulate nanoscale transformations, thus providing new strategies for the custom synthesis of multifunctional nanomaterials for various specific applications.

6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(1): 130-136, 2021 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-33448211

RESUMO

Objective: To review the effect of obesity on the effectiveness of posterior lumbar fusion in patients with lumbar degenerative diseases (LDD). Methods: The related literature at home and abroad was extensively reviewed. And the difficulty of operation, risk of complications, and long-term effectiveness of posterior lumbar fusion for obese patients with LDD were summarized. Results: Although some relevant literature suggest that the posterior lumbar fusion for obese patients is difficult and the risk of postoperative complications is high, the overall research results do not suggest that obesity is a risk factor for the implementation of posterior lumbar fusion. By assessing the physical condition of patients and strictly grasping the surgical indications, obese patients can obtain good surgical efficacy. Conclusion: Posterior lumbar fusion is an effective method for the treatment of LDD in obese patients. However, relevant studies need to be completed to further evaluate the safety and efficacy of posterior lumbar fusion for obese patients.


Assuntos
Fusão Vertebral , Humanos , Vértebras Lombares/cirurgia , Região Lombossacral , Obesidade/complicações , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Resultado do Tratamento
7.
Funct Integr Genomics ; 21(1): 125-138, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33415515

RESUMO

Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play vital roles in the tumorigenesis of esophageal squamous cell carcinoma (ESCC). Nevertheless, the mechanism and regulatory network associated with this process remain largely unknown. In this study, we performed a comprehensive analysis of the expression of mRNAs, lncRNAs, and circRNAs by RNA-seq. A total of 3265 mRNAs, 1084 lncRNAs, and 38 circRNAs were found to be differentially expressed. Among these, 269 mRNAs were found to encode transcription factors (TFs). Functional enrichment analysis indicated that the dysregulated TFs are associated with the Hedgehog, Jak-STAT, TGF-beta, and MAPK signaling pathways. Furthermore, we constructed co-expression networks to screen the core lncRNAs and circRNAs involved in the regulation of transcription factors in these four pathways. Finally, we constructed a competing endogenous RNA (ceRNA) network of ESCC based on the abovementioned pathways. Our findings provide important insight into the role of lncRNAs and circRNAs in ESCC; the differentially expressed lncRNAs and circRNAs may represent potential targets for ESCC diagnosis and therapy.

8.
Carbohydr Polym ; 254: 117416, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357900

RESUMO

Chitosan was modified by substituting alkynyl silver on chitosan (Ag-CS) through a two-step chemical modification to form a novel antimicrobial coating material. The physicochemical property, antimicrobial activity, cytotoxicity, and potential food applications of Ag-CS were systematically investigated. The Ag-CS presented a smooth sheet structure, and demonstrated stronger antimicrobial effects than either silver acetate (AgOAc) or silver nitrate (AgNO3) against both Gram positive and Gram negative bacteria strains. Ag-CS also demonstrated a controlled release of Ag for over 5 days, whereas AgOAc or AgNO3 infused chitosan released over 90 % Ag within 4 h. Ag-CS coating on shrimps significantly extended their shelf-life. Overall, our results revealed that the newly developed Ag-CS antimicrobial coating material possesses strong antimicrobial efficacies with a sustained Ag release property, and its ability to slow down the spoilage rate of shrimps indicates its potential in the improvement of food quality and shelf life.

9.
Addict Biol ; 26(1): e12875, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32031744

RESUMO

The development of opioid addiction involves DNA methylation. Accordingly, the DNA demethylation, induced by ten-eleven translocation (Tet) enzymes, may represent a novel approach to prevent opioid addiction. The present study examined the role of TET1 and TET3 in the development of morphine-seeking behavior in rats. We showed that 1 day of morphine self-administration (SA) training upregulated TET3 but not TET1 expression in the hippocampal CA1. With 7 days of morphine SA training, the expression of TET3 in the CA1 returned to the baseline level, while the TET1 expression was downregulated. No change of TET1 and TET3 in the nucleus accumbens shell was observed in morphine SA trained rats, or in the yoked morphine rats, or in rats trained for saccharin SA. Furthermore, we found that knocking down TET3 expression in the CA1 accelerated the acquisition of morphine SA, while overexpression of the catalytic domain of TET1 in the CA1 attenuated the acquisition. Together, these findings suggest that TET1 and TET3 in the CA1 are important epigenetic modulators involved in the morphine-seeking behavior and provide a new strategy in the treatment of opioid addiction.

10.
Transl Oncol ; 14(2): 100991, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33333369

RESUMO

Tumor antigens (TAs) can initiate host immune responses and produce TA-associated autoantibody (TAAbs), potential cancer biomarkers. Sputum is directly generated from the upper and lower airways, and thus can be used as a surrogate sample for the diagnosis of lung cancer based on molecular analysis. To develop sputum TAAb biomarkers for the early detection of lung cancer, the leading cause of cancer death, we probed a protein microarray containing more than 9,000 antigens with sputum supernatants of a discovery set of 30 lung cancer patients and 30 cancer-free smokers. Twenty-eight TAs with higher reactivity in sputum of lung cancer cases vs. controls were identified. The diagnostic significance of TAAbs against the TAs was determined by enzyme-linked immunosorbent assays (ELISAs) in sputum of the discovery set and additional 166 lung cancer patients and 213 cancer-free smokers (validation set). Three sputum TAAbs against DDX6, ENO1, and 14-3-3ζ were developed as a biomarker panel with 81% sensitivity and 83% specificity for diagnosis of lung cancer, regardless of stages, locations, and histological types of lung tumors. This study provides the first evidence that sputum TAAbs could be used as biomarkers for the early detection of lung cancer.

11.
Am J Cancer Res ; 10(11): 3920-3934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294277

RESUMO

Colorectal cancers (CRC) with microsatellite instability (MSI) or mismatch repair-deficiency (dMMR), but without detectable MMR germline mutations are termed Lynch-like syndrome (LLS). We assess the clinicopathologic and molecular characteristics of LLS tumors and the proportion in LLS, which remain poorly investigated in China. We enrolled 404 CRC patients with surgery in our institution from 2014 to 2018. LLS tumors were detected by a molecular stratification based on MMR protein expression, MLH1 methylation and MMR gene mutation. LLS tumors were profiled for germline mutations in 425 cancer-relevant genes. Among 42 MMR-deficient tumors, 7 (16.7%) were attributable to MLH1 methylation and 7 (16.7%) to germline mutations, leaving 28 LLS cases (66.6%). LLS tumors were diagnosed at a mean age of 60.7 years, had an almost equivalent ratio among rectum, left colon and right colon, and had high rates of lymph node metastases (50%, 4/28 N2). Most MMR gene mutations (88.2%, 15/17) in LLS tumors were variants of unknown significance (VUS). Two novel frameshift mutations were detected in ATM and ARID1A, which are emerging as candidate responsible genes for LLS. In this study, 28 (66.6%) MMRd tumors were classified as LLS, which were significantly higher than reports of western countries. LLS tumors were more likely to carry lymph node metastases. However, it's hard to differentiated LLS tumors from LS through family history, tumor location, histological type of tumors, immunohistochemistry (IHC) for MMR proteins and MSI analysis.

12.
EMBO Mol Med ; : e12710, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33369227

RESUMO

Aberrant expression of mitochondrial proteins impairs cardiac function and causes heart disease. The mechanism of regulation of mitochondria encoded protein expression during cardiac disease, however, remains underexplored. Here, we show that multiple pathogenic cardiac stressors induce the expression of miR-574 guide and passenger strands (miR-574-5p/3p) in both humans and mice. miR-574 knockout mice exhibit severe cardiac disorder under different pathogenic cardiac stresses while miR-574-5p/3p mimics that are delivered systematically using nanoparticles reduce cardiac pathogenesis under disease insults. Transcriptomic analysis of miR-574-null hearts uncovers family with sequence similarity 210 member A (FAM210A) as a common target mRNA of miR-574-5p and miR-574-3p. The interactome capture analysis suggests that FAM210A interacts with mitochondrial translation elongation factor EF-Tu. Manipulating miR-574-5p/3p or FAM210A expression changes the protein expression of mitochondrial-encoded electron transport chain (ETC) genes but not nuclear-encoded mitochondrial ETC genes in both human AC16 cardiomyocyte cells and miR-574-null murine hearts. Together, we discovered that miR-574 regulates FAM210A expression and modulates mitochondrial-encoded protein expression, which may influence cardiac remodeling in heart failure.

13.
Br J Neurosurg ; : 1-9, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33377806

RESUMO

OBJECTIVE: The aim of this study was to determine whether obesity affects the operation, complications and outcomes after open posterior lumbar spinal fusion surgery for the treatment of low back pain and leg pain. METHODS: A meta-analysis of studies that compared the outcome of posterior lumbar spinal fusion in obese and non-obese patients. A total of 16 studies were included. RESULTS: There was no difference in pain and functional outcomes. Posterior lumbar spinal fusion in obese patients resulted in a statistically significant increase in intra-operative blood loss (weighted mean difference 40.93, 95% confidence interval (CI) 15.97-65.90, n = 243, and p=.001), longer duration of surgery (weighted mean difference -1.64, 95% CI -4.12 to 0.84, n = 1460, and p=.19), more complications (odds ratio: 1.59, 95% CI 1.24-2.05, n = 339, and p<.001) and extend length of stay (weighted mean difference 0.31, 95% CI 0.07-0.55, n = 1408, and p=.01). CONCLUSIONS: Obese patients experience more blood loss, longer duration of surgery, more complications and extended length of stay, but their back and leg pain and functional outcomes are similar to non-obese patients. Based on these results, obesity is not a contraindication to open posterior lumbar spinal fusion surgery.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33382420

RESUMO

CONTEXT: Extreme insulin resistance is caused by genetic defects intersecting with the insulin action pathway or by the insulin receptor antibodies. Insulin autoimmune syndrome (IAS) is not considered one of the causes of extreme insulin resistance. OBJECTIVE: To expand the current knowledge of extreme insulin resistance and to propose the diagnostic criteria and management strategy of a novel type of extreme insulin resistance. DESIGN, PARTICIPANTS AND MAIN OUTCOME MEASURES: A patient with IAS never experienced hypoglycaemia but had persistent hyperglycaemia and extreme insulin resistance with treatment with 200 U of intravenous insulin per day. Immunoreactive insulin (IRI), free insulin and total insulin were measured. The ratio of free insulin to total insulin (insulin-free ratio, IFR) was calculated. RESULTS: Extreme insulin resistance has not been reported to be caused by IAS. At admission, IRI and free insulin were undetectable in our patient; total insulin was more than 20160 pmol/l; and the IFR was lower than 0.03% (control: 90.9%). After adding 500 U porcine insulin to the precipitate containing insulin antibodies, the IRI was still undetectable. Since the patient started glucocorticoid therapy, the free insulin has gradually increased to 11.16 pmol/l, the total insulin has decreased to 5040 pmol/l, and the IFR has increased to 18.26%. Intravenous insulin was stopped, with good glycaemic control. CONCLUSIONS: High-affinity insulin autoantibodies with a large capacity can induce a novel type of extreme insulin resistance characterized by extremely high total insulin and very low free insulin levels. The IFR can be used to evaluate therapeutic effects.

15.
Am J Cancer Res ; 10(10): 3194-3211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163265

RESUMO

Cytochrome P450 3A5 (CYP3A5) maintains primary roles in toxic metabolism, catalyzes redox reaction, and contributes to chemotherapeutic resistance. However, the mechanism of CYP3A5 in carcinogenesis remains largely undefined. Here, we investigated a novel role of CYP3A5 inhibiting the metastasis in lung adenocarcinoma (LUAD) via ATOH8/Smad1 axis. We found that CYP3A5 was generally down-regulated in LUAD by RT-PCR, western blot and immunohistochmeistry (IHC) in tissues and cell lines. Low expression of CYP3A5 was significantly associated with poor prognosis of LUAD patients. Functionally, ectopic expression of CYP3A5 could substantially inhibit the migration and invasion in vitro. Consistently, up-regulation of CYP3A5 dramatically suppressed metastatic ability in vivo. Mechanistically, high-throughput phosphorylation chip indicated that CYP3A5 significantly decreased the phosphorylation of Smad1, resulting in suppression of metastasis. Furthermore, bioinformatics analysis and co-immunoprecipitation (Co-IP) experiments uncovered that CYP3A5 interacted with ATOH8, and the interaction, in turn, mediated in-activation in the Smad1 pathway. The combined IHC panel, including CYP3A5 and phosphorylation of Smad1, exhibited a better prognostic value for LUAD patients than any of these components individually. Taken together, CYP3A5 repressed activation of Smad1 to inhibit LUAD metastasis via interacting with ATOH8, indicating a novel potential mechanism of CYP3A5 in LUAD progression.

16.
Front Microbiol ; 11: 587175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224124

RESUMO

Staphylococcus aureus is one of the predominant causes of periprosthetic joint infections (PJIs). Bacterial adhesion and biofilm formation are important factors in the pathogenesis of PJIs. S. aureus biofilm formation is regulated by several factors, including S. aureus regulator A (SarA). Previous studies have found that SarA mutants have limited ability to develop biofilms. In this study, we identified a SarA-targeting antibiofilm compound, ZINC00990144, and evaluated its efficacy and toxicity. According to static biofilm assay, the antibiofilm ability of the compound was concentration dependent. ZINC00990144 reduced biofilm in multiple strains by 40-86% at a concentration of 11.5 µM. Additionally, ZINC00990144 inhibited biofilm formation on different orthopedic implant materials including Titanium and UHMWPE disc. Furthermore, quantitative polymerase chain reaction results demonstrated that ZINC00990144 upregulated the expression of S. aureus exoproteases to inhibit the formation of biofilms. Moreover, ZINC00990144 prevented biofilm formation when exposed to sub-inhibitory doses of vancomycin, which is known to promote biofilm formation. CCK-8 results demonstrated ZINC00990144 has no significant effect on cell viability at concentration of 11.5 µM or below. Finally, we verified the antibiofilm function of the compound in vivo using implant infection mice model with/without exposure to sub-inhibitory vancomycin. In conclusion, ZINC00990144 acts by modulating between biofilm and planktonic state of S. aureus instead of being bactericidal. Therefore, it has the potential to be used in combination with other antibiotics to prevent PJIs.

17.
Front Genet ; 11: 602863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193749

RESUMO

Hainan is a tropical island in southern China with abundant mosquito species, putting Hainan at risk of mosquito-borne virus disease outbreaks. The population genetic diversity of most mosquito species on Hainan Island remains elusive. In this study, we report the diversity of mosquito species and the genetic diversity of the predominant species on Hainan. Field populations of adults or larvae were collected from 12 regions of Hainan Island in 2018 and 2019. A fragment of the mitochondrial cytochrome c oxidase subunit I (coxI) gene was sequenced from 1,228 mosquito samples and used for species identification and genetic diversity analysis. Twenty-three known mosquito species from the genera Aedes, Armigeres, Culex, Mansonia, and Anopheles and nine unconfirmed mosquito species were identified. Aedes albopictus, Armigeres subalbatus, and Culex pipiens quinquefasciatus were the most prevalent mosquito species on Hainan. The regions north of Danzhou, Tunchang, and Qionghai exhibited high mosquito diversity (26 species). The order of the total haplotype diversity and nucleotide diversity of the populations from high to low was as follows: Culex tritaeniorhynchus, Ar. subalbatus, Culex pallidothorax, Culex gelidus, Ae. albopictus, and C. p. quinquefasciatus. Tajima's D and Fu's F s tests showed that Ae. albopictus, C. p. quinquefasciatus, C. tritaeniorhynchus, and C. gelidus had experienced population expansion, while the Ar. subalbatus and C. pallidothorax populations were in genetic equilibrium. Significant genetic differentiation existed in the overall populations of Ae. albopictus, Ar. subalbatus, C. p. quinquefasciatus, and C. pallidothorax. The Ae. albopictus populations on Hainan were characterized by frequent gene exchange with populations from Guangdong and four other tropical countries, raising the risk of viral disease outbreaks in these regions. Two subgroups were reported in the Ar. subalbatus populations for the first time. Our findings may have important implications for vector control on Hainan Island.

18.
IEEE J Transl Eng Health Med ; 8: 2700609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178499

RESUMO

BACKGROUND: Some parameters have been extracted from photoplethysmography (PPG) with a good relativity with nociception, but without encouraging results in qualifying the balance of nociception-anti-nociception (NAN). The features of PPG have not been thoroughly depicted and more prospective univariate parameters deserve to be explored. The aim of this study was to investigate the ability of parameters derived from catacrotic phase of PPG to grade the level of analgesia. METHODS: 45 patients with ASA I or II were randomized to receive a remifentanil effect-compartment target controlled infusion (Ceremi) of 0, 1, or 3 ng/ml, and a propofol effect-compartment target controlled infusion to maintain an acceptable level of hypnosis with state entropy (SE) at 40~60. Laryngeal mask airway (LMA) insertion was applied as a noxious stimulus. Five diastole-related parameters, namely diastolic interval (DI), diastolic slope (DS), the minimum slope during catacrotic phase (DSmin), the interval between DSmin and its nearest trough (DTI), and area difference ratio (ADR), were extracted. Pulse beat interval (PBI) was calculated as a reference parameter. RESULTS: LMA insertion elicited a significant variation in all parameters except ADR during Ceremi of 0 and 1 ng/ml. Compared to PBI (prediction probability ([Formula: see text]) = 0.796), the parameters of DI, DS, and DTI presented a better consistence with the level of anti-nociceptive medication, with [Formula: see text] of 0.825, 0.822, and 0.822 respectively. CONCLUSION: The features extracted from catacrotic phase of PPG, including DI, DS, and DTI, could provide a promising potential to qualify the balance of NAN.

19.
Cancer Manag Res ; 12: 11453-11462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204158

RESUMO

Background: Prostate cancer threatens the life and health of men in China. Desmocollin-2 (DSC2) is a member of DSC family, abnormal expression of which can affect the invasion and metastasis of tumor cells. The aim of this study was to investigate the role of DSC2 in prostate cancer. Materials and Methods: Regulating DSC2 expression in prostate cancer cells was conducted with transfection. The expression of DSC2, apoptosis-related proteins, cell cycle-related proteins and E-cadherin (E-cad)/ß-catenin pathway was detected by Western blot analysis. The proliferation, clone formation ability, migration, invasion and apoptosis of transfected cells were in turn detected by cell counting kit-8 (CCK-8) assay, clone formation assay, wound healing assay, transwell assay and flow cytometry analysis. Results: DSC2 expression was increased in prostate cancer cells compared with RWPE-1 cells. Inhibition of DSC2 promoted the proliferation, clone formation ability, migration and invasion while suppressed apoptosis of LNCaP cells and PC-3 cells. Inhibition of DSC2 affected the expression of apoptosis-related proteins and cell cycle-related proteins according to the changes of apoptosis and proliferation. Furthermore, inhibition of DSC2 up-regulated the expression of p-ß-catenin and EGFR while down-regulated the expression of E-cad. DSC2 overexpression exerted the opposite effect of inhibition of DSC2 on LNCaP cells and PC-3 cells. Conclusion: DSC2 expression was increased in prostate cancer cells. In addition, inhibition of DSC2 promoted the proliferation, clone formation ability, migration and invasion while suppressed apoptosis of LNCaP cells and PC-3 cells, which provided the fundamental basis for treatment of prostate cancer.

20.
Comput Struct Biotechnol J ; 18: 2826-2835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133424

RESUMO

Although genome-wide association studies (GWASs) have successfully identified thousands of risk variants for human complex diseases, understanding the biological function and molecular mechanisms of the associated SNPs involved in complex diseases is challenging. Here we developed a framework named integrative multi-omics network-based approach (IMNA), aiming to identify potential key genes in regulatory networks by integrating molecular interactions across multiple biological scales, including GWAS signals, gene expression-based signatures, chromatin interactions and protein interactions from the network topology. We applied this approach to breast cancer, and prioritized key genes involved in regulatory networks. We also developed an abnormal gene expression score (AGES) signature based on the gene expression deviation of the top 20 rank-ordered genes in breast cancer. The AGES values are associated with genetic variants, tumor properties and patient survival outcomes. Among the top 20 genes, RNASEH2A was identified as a new candidate gene for breast cancer. Thus, our integrative network-based approach provides a genetic-driven framework to unveil tissue-specific interactions from multiple biological scales and reveal potential key regulatory genes for breast cancer. This approach can also be applied in other complex diseases such as ovarian cancer to unravel underlying mechanisms and help for developing therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA