Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.077
Filtrar
1.
J Colloid Interface Sci ; 606(Pt 1): 600-606, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34411831

RESUMO

Excellent photocatalysts are highly desirable for clean energy and pollutant treatment. Carbon dots (CDs)-based composite photocatalysts have been widely studied and utilized in catalytic fields. However, the preparation of the photocatalysts with high catalytic activity still faces a great challenge. Herein, white-light-driven CDs-based porous europium micro-networks (CDs@P-Eu-MNs) composite photocatalysts are prepared by a facile in-situ growth strategy. CDs can affect the morphology and produce a large number of porous structures of CDs@P-Eu-MNs. Importantly, the introduction of CDs not only increases the light absorption, but also promotes the separation of photogenerated charge carriers, and thus improve photocatalytic performance of CDs@P-Eu-MNs composites. CDs@P-Eu-MNs show the highest photocurrent density, which can be used for the highly-efficient photodegradation of rhodamine 6G dyes with almost 95% degradation rate under low power white light (20 W) without any radical generating agents such as H2O2. Therefore, this new and efficient CDs@P-Eu-MNs photocatalyst will have a great application prospect in water pollution treatment.


Assuntos
Carbono , Európio , Catálise , Peróxido de Hidrogênio , Porosidade
2.
Sci Total Environ ; : 151251, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34728194

RESUMO

Climate change causes ocean warming and acidification, which threaten coral reef ecosystems. Ocean warming and acidification cause bleaching and mortality, and decrease calcification in adult corals, leading to changes in the composition of coral communities; however, their interactive effects on coral larvae are not comprehensively understood. To examine the underlying molecular mechanisms of larval responses to elevated temperature and pCO2, we examined the physiological performance and protein expression profiles of Pocillopora damicornis at two temperatures (29 and 33 °C) and pCO2 levels (500 and 1000 µatm) for 5 d. Extensive physiological and proteomic changes were observed in coral larvae. The results indicated a significant decrease in net photosynthesis (PNET) and autotrophic capability (PNET/RD) of larvae exposed to elevated temperature but a marked increase in PNET and PNET/RD of larvae exposed to high pCO2 levels. Elevated temperature significantly reduced endosymbiont densities (to approximately 70%) and photochemical efficiency, indicating that warming impaired host-symbiont symbiosis. Expression of photosynthesis-related proteins, the photosystem (PS) I reaction center subunits IV and XI as well as oxygen-evolving enhancer 1, was downregulated at higher temperatures in symbionts, whereas expression of the PS I iron­sulfur center protein was increased under high pCO2 conditions. Furthermore, expression of phosphoribulokinase (involved in the Calvin cycle) and phosphoenolpyruvate carboxylase (related to the C4 pathway) was downregulated in symbionts under thermal stress; this finding suggests reduced carbon fixation at high temperatures. The abundance of carbonic anhydrase-associated proteins, which are predicted to exert biochemical roles in dissolved inorganic carbon transport in larvae, was reduced in coral host and symbionts at high temperatures. These results elucidate potential mechanisms underlying the responses of coral larvae exposed to elevated temperature and acidification and suggest an important role of symbionts in the response to warming and acidification.

3.
Cell Discov ; 7(1): 103, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34719679

RESUMO

Epidemiological studies have demonstrated that the genetic factors partly influence the development of same-sex sexual behavior, but most genetic studies have focused on people of primarily European ancestry, potentially missing important biological insights. Here, we performed a two-stage genome-wide association study (GWAS) with a total sample of 1478 homosexual males and 3313 heterosexual males in Han Chinese populations and identified two genetic loci (rs17320865, Xq27.3, FMR1NB, Pmeta = 8.36 × 10-8, OR = 1.29; rs7259428, 19q12, ZNF536, Pmeta = 7.58 × 10-8, OR = 0.75) showing consistent association with male sexual orientation. A fixed-effect meta-analysis including individuals of Han Chinese (n = 4791) and European ancestries (n = 408,995) revealed 3 genome-wide significant loci of same-sex sexual behavior (rs9677294, 2p22.1, SLC8A1, Pmeta = 1.95 × 10-8; rs2414487, 15q21.3, LOC145783, Pmeta = 4.53 × 10-9; rs2106525, 7q31.1, MDFIC, Pmeta = 6.24 × 10-9). These findings may provide new insights into the genetic basis of male sexual orientation from a wider population scope. Furthermore, we defined the average ZNF536-immunoreactivity (ZNF536-ir) concentration in the suprachiasmatic nucleus (SCN) as lower in homosexual individuals than in heterosexual individuals (0.011 ± 0.001 vs 0.021 ± 0.004, P = 0.013) in a postmortem study. In addition, compared with heterosexuals, the percentage of ZNF536 stained area in the SCN was also smaller in the homosexuals (0.075 ± 0.040 vs 0.137 ± 0.103, P = 0.043). More homosexual preference was observed in FMR1NB-knockout mice and we also found significant differences in the expression of serotonin, dopamine, and inflammation pathways that were reported to be related to sexual orientation when comparing CRISPR-mediated FMR1NB knockout mice to matched wild-type target C57 male mice.

4.
Front Genet ; 12: 709329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777458

RESUMO

Background: Colorectal cancer (CRC) ranks as the third most common malignancy worldwide but a reliable prognostic biomarker of CRC is still lack. Thus, the purpose of our study was to explore whether ferroptosis - related lncRNAs could predict the prognosis of CRC. Methods: The mRNA expression profiling of colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) patients in The Cancer Genome Atlas (TCGA) database were downloaded. Univariate Cox and multivariate Cox regression analyses was used to obtain prognostic differently expressed ferroptosis-related lncRNAs (DE-FLs) and a risk signature was developed. Quantitative polymerase chain reaction (q-PCR) was used to validated the different expressions of DE-FLs. The calibration curves, C-index and the receiver operating characteristic (ROC) curves were applied to evaluate the accuracy of nomogram. Gene set enrichment analyses (GSEA) were carried out to explore the biological mechanism between high- and low-risk group and the potential regulated pathway of prognostic DE-FLs in CRC. Results: Forty-nine DE-FLs were identified between CRC and normal tissue. Then, a 4-DE-FLs (AC016027.1, AC099850.3, ELFN1-AS1, and VPS9D1-AS1) prognostic signature model was generated. AC016027.1 was downregulated in CRC tissue; VPS9D1-AS1 and ELFN1-AS1 were upregulated by q-PCR. The model had a better accuracy presenting by 1-, 3-, and 5-years ROC curve (AUC ≥0.6), and identified survival probability (p < 0.05) well. Moreover, the risk signature could play as an independent factor of CRC (p < 0.05). Further, a nomogram including age, pathologic stage, T stage, and risk score with good prognostic capability (C-index = 0.789) was constructed. In addition, we found biological pathways mainly related to metabolism and apoptosis were down-regulated in high-risk group who with poor outcome. Finally, the functional enrichment showed prognostic DE-FLs may significantly impact bile secretion in CRC. Conclusion: A risk model and nomogram based on ferroptosis-related lncRNAs were created to predict 1-, 3-, and 5-years survival probability of CRC patients. Our data suggested that the prognostic lncRNAs could serve as valuable prognostic marker.

5.
Water Res ; 208: 117862, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34814021

RESUMO

Nitrate pollution is a critical environmental issue in need of urgent addressing. Electrochemical reduction is an attractive strategy for treating nitrate due to the environmental friendliness. However, it is still a challenge to achieve the simultaneous high activity and selectivity. Here we report the design of a porous tubular carbon membrane as the electrode deposited with catalysts, which provides a large triple-phase boundary area for nitrate removal reactions. The achieved nitrate removal rate is one order of magnitude higher than other literatures with high nitrate conversion and high selectivity of nitrogen. The carbon membrane itself had a limited catalytic property thus Cu-Pd bimetal catalysts were deposited inside the nano-pores to enhance the activity and selectivity. When Na2SO4 electrolyte was applied, the achieved single-pass removal of nitrate was increased from 55.15% (for blank membrane) to 97.12% by adding catalysts inside the membrane. In case of NaOH as the electrolyte, the single-pass nitrate removal efficiency, selectivity to nitrogen formation and nitrate removal rate was 90.66%, 96.40% and 1.47 × 10-3 mmol min-1 cm-2, respectively. Density functional theory studies demonstrate that the loading of bimetal catalysts compared with single metal catalysts enhances the adsorption of *NO3 on membrane surface favorable for N2 formation than NH3 on Cu-Pd surface. The application of catalytic carbon membrane nano-reactors can open new windows for nitrate removal due to the high reactor efficiency.

6.
Anal Chem ; 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809422

RESUMO

Determining the expression level of biomarkers is crucial for disease diagnosis. However, the low abundance of biomarkers in the early stage makes the detection extremely difficult by traditional aggregation-induced emission (AIE)-based fluorescent probes. Here, by tuning the intermolecular interaction, a two steps-based MP/NPs-SLIPS sensing system is designed for ultrasensitive detection of the tumor marker matrix metalloproteinase-2 (MMP-2). During the sensing process, aggregation of AIE residual could be intensified through the electrostatic absorption by negatively charged nanoparticles (NPs), as well as the confined space formed by the self-assembly of NPs to photonic crystals (PCs) on slippery lubricant-infused porous substrates (SLIPS). The fluorescent signals obviously increased with a strengthened aggregation degree, which contributes to improved sensitivity. Thus, the limit of detection is decreased to 3.7 ng/mL for MP/NPs-SLIPS sensing system, which could be used for detecting the MMP-2 secreted by tumor cells directly. This strategy also demonstrated its potential applications as high-throughput detection devices and will be of significance for the ultrasensitive analysis of biomarkers.

7.
Adv Mater ; : e2108410, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750892

RESUMO

Charge-governed ion transport is crucial to numerous industries, and the advanced membrane is the essential component. In nature, the efficient and selective ion transport is mainly governed by the charged ion channels located in cell membrane, indicating the architecture with functional differentiation. Inspired by this architecture, a membrane by ionic crosslinking sulfonated poly(arylene ether ketone) and imidazolium-functionalized poly(arylene ether sulfone) is designed and fabricated to make full use of the charges. This ionic crosslinking is designed to realize nanophase separation to aggregate the ion pathways in the membrane, which results in excellent ion selectivity and high ion conductivity. With the excellent ion transport behavior, ionic crosslinking membrane shows great potential in osmotic energy conversion, which maximum power density can be up to 16.72 W m-2 . This design of ionic crosslinking-induced nanophase separation offers a roadmap for ion transport promotion.

8.
Chin Med J (Engl) ; 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34802024

RESUMO

BACKGROUND: The past decade has witnessed an ever-increasing momentum of transcatheter aortic valve replacement (TAVR) and a subsequent paradigm shift in the contemporary management of severe aortic stenosis (AS). We conducted a multi-centric TAVR registry based on Chinese patients (the China Aortic valve tRanscatheter Replacement registrY [CARRY]) to delineate the clinical characteristics and outcomes of Chinese patients who underwent TAVR and compare the results between different valve types in different Chinese regions. METHODS: CARRY is an all-comer registry of aortic valve disease patients undergoing TAVR across China and was designed as an observational study that retrospectively included all TAVR patients at each participating site. Seven hospitals in China participated in the CARRY, and 1204 patients from April 2012 to November 2020 were included. Categorical variables were compared using the chi-squared test, and continuous variables were analyzed using a t test or analysis of variance (ANOVA) test. The Kaplan-Meier curve was used to estimate the risk of adverse events during follow-up. RESULTS: The mean age of the patients was 73.8 ±â€Š6.5 years and 57.2% were male. The median Society of Thoracic Surgeon-Predicted Risk of Mortality score was 6.0 (3.7-8.9). Regarding the aortic valve, the proportion of bicuspid aortic valve (BAV) was 48.5%. During the hospital stay, the stroke rate was 0.7%, and the incidence of high-degree atrioventricular block indicating permanent pacemaker implantation was 11.0%. The in-hospital all-cause mortality rate was 2.2%. After 1 year, the overall mortality rate was 4.5%. Compared to patients with tricuspid aortic valve (TAV), those with BAV had similar in-hospital complication rates, but a lower incidence of in-hospital mortality (1.4% vs. 3.3%) and 1 year mortality (2.3% vs. 5.8%). CONCLUSIONS: TAVR candidates in China were younger, higher proportion of BAV, and had lower rates of post-procedural complications and mortality than other international all-comer registries. Given the use of early generation valves in the majority of the population, patients with BAV had similar rates of complications, but lower mortality than those with TAV. These findings further propel the extension of TAVR in low-risk patients. TRIAL REGISTRATION: https://www.chictr.org.cn/ (No. ChiCTR2000038526).

9.
Acc Chem Res ; 54(22): 4154-4165, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34719227

RESUMO

The salinity gradient between seawater and river water has been identified as a promising, clean, renewable, and sustainable energy source that can be converted into electricity using ion-selective membranes in a reverse electrodialysis (RED) configuration. However, the major hindrance to current salinity gradient power (SGP) conversion is its poor energy efficiency due to the use of low-performance membrane processes, which affords power for neither miniaturized devices nor industrial-level applications. Nanofluidics, which combines strong confinement and surface charge effects at the nanoscale, contributes to novel transport properties, including excellent ion selectivity and high ion throughput; thus, nanofluidics may lead to technological breakthroughs and act as an emerging platform for harnessing SGP. Recently, two-dimensional (2D) materials have provided impressive energy extraction performance and further insight into fundamental transport mechanisms and theoretical feasibility. To reach the commercialization benchmark and real-world applications, an array of nanopores and channels that can be scaled up to industrial sizes is in high demand; additionally, it remains challenging to develop macroscale nanofluidic membranes that meet the "selectivity versus throughput" dual requirement. In the first section, we start with our understanding of the underlying mechanism of ion-channel interactions and transport characteristics in nanofluidic channel systems from the microscale to the macroscale. We review our recent efforts in this field by constructing a heterojunction with asymmetric ion transport behavior that generates rectification of the ion flux and creates an osmotic diode, which is composed of two nanofluidic layers with opposite polar charges and different chemical compositions. Another efficient way to improve the performance of the system is introducing charged functional materials intercalated into laminar 2D nanosheets. The intercalated nanofluidic material can be explained by two classical models to account for the synergistic effects that (i) improve the stability and mechanical properties of 2D materials with a fixed interlayer spacing and (ii) provide space charge for modulating ion diffusion; both of these effects contribute to its considerable energy conversion performance. Further, layer-by-layer membranes are superior to traditional membranes consisting of a simple stack because they retain their repulsion effect toward co-ions, largely strengthening the efficiency of ion separation and conversion. In particular, we highlight our views on the role of the 2D phase structure (e.g., semiconductor 2H phase and metallic 1T phase) in which the two phases differ from each other in physical and chemical properties, including ionic conductance, surface charge, and wetting, thereby presenting a state-of-the-art avenue for controlling ion transport. In view of the nature of 2D materials, we also report improved osmotic energy harvesting by exploiting the photoinduced heat gradient and electrons that increase ion mobility and surface charge, respectively. Finally, we point out specific research topics in which a combined project can certainly come into the limelight. For example, we discuss the combination of SGP with desalination systems and water splitting. We expect that this Account will stimulate further efforts toward functionalized 2D nanoporous materials and facilitate interdisciplinary efforts in chemistry, material engineering, environmental science, and nanotechnology.

10.
J Exp Clin Cancer Res ; 40(1): 351, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749766

RESUMO

BACKGROUND: Growing evidence shows that long non-coding RNAs (lncRNAs) play significant roles in cancer development. However, the functions of most lncRNAs in human gastric cancer are still not fully understood. Here, we explored the role of a novel c-Myc-activated lncRNA, LINC01050, in gastric cancer progression. METHODS: The expression of LINC01050 in the context of gastric cancer was assessed using The Cancer Genome Atlas datasets. Its functions in gastric cancer were investigated through gain- and loss-of-function experiments combined with the Cell Counting Kit-8 assays, colony-forming assays, Transwell assays, flow cytometry, Western blot analyses, and xenograft tumor and mouse metastasis models. Potential LINC01050 transcription activators were screened via bioinformatics and validated by chromatin immunoprecipitation and luciferase assays. The interaction between LINC01050 and miR-7161-3p and the targets of miR-7161-3p were predicted by bioinformatics analysis and confirmed by a luciferase assay, RNA immunoprecipitation, RNA pull-down, and rescue experiments. RESULTS: LINC01050 was significantly up-regulated in gastric cancer, and its high expression was positively correlated with a poor prognosis. The transcription factor c-Myc was found to directly bind to the LINC01050 promoter region and activate its transcription. Furthermore, overexpression of LINC01050 was confirmed to promote gastric cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and tumor growth in vivo. At the same time, its knockdown inhibited gastric cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro along with tumor growth and metastasis in vivo. Moreover, mechanistic investigations revealed that LINC01050 functions as a molecular sponge to absorb cytosolic miR-7161-3p, which reduces the miR-7161-3p-mediated translational repression of SPZ1, thus contributing to gastric cancer progression. CONCLUSIONS: Taken together, our results identified a novel gastric cancer-associated lncRNA, LINC01050, which is activated by c-Myc. LINC01050 may be considered a potential therapeutic target for gastric cancer.

12.
Eur J Histochem ; 65(4)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783233

RESUMO

The long non-coding FGD5-AS1 (LncFGD5-AS1) has been reported to be a novel carcinogenic gene and participant in regulating tumor progression by sponging microRNAs (miRNAs). However, the pattern of expression and the biological role of FGD5-AS1 in hepatocellular carcinoma (HCC) remains largely unknown. The expression level of FGD5-AS1 in tumor tissues and cell lines was measured by RT-qPCR. CCK-8, EdU, flow cytometry, wound healing, and transwell chamber assays were performed to investigate the role of FGD5-AS1 in cell proliferation, apoptosis, migration, and invasion in HCC. Dual luciferase reporter, and RNA pull-down assays were performed to identify the regulatory interactions among FGD5-AS1, miR-873-5p and GTP-binding protein 4 (GTPBP4). We found that the expression of FGD5-AS1 was upregulated in HCC tissues and cell lines. Moreover, the knockdown of FGD5-AS1 suppressed cell proliferation, migration and invasion, and induced apoptosis in HCC cells. Further studies demonstrated that FGD5-AS1 could function as a competitive RNA by sponging miR-873-5p in HCC cells. Moreover, GTPBP4 was identified as direct downstream target of miR-873-5p in HCC cells and FGD5-AS1mediated the effects of GTPBP4 by competitively binding with miR-873-5p. Taken together, this study demonstrated the regulatory role of FGD5-AS1 in the progression of HCC and identified the miR-873-5p/GTPBP4 axis as the direct downstream pathway. It represents a promising novel therapeutic strategy for HCC patients.

13.
Cell Death Dis ; 12(11): 1079, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34775496

RESUMO

Cetuximab is approved for the treatment of metastatic colorectal cancer (mCRC) with RAS wild-type. Nevertheless, the prognosis remains poor and the effectiveness of cetuximab is limited in KRAS mutant mCRC. Recently, emerging evidence has shown that ferroptosis, a newly discovered form of nonapoptotic cell death, is closely related to KRAS mutant cells. Here, we further investigated whether cetuximab-mediated regulation of p38/Nrf2/HO-1 promotes RSL3-induced ferroptosis and plays a pivotal role in overcoming drug resistance in KRAS mutant colorectal cancer (CRC). In our research, we used two KRAS mutant CRC cell lines, HCT116 and DLD-1, as models of intrinsic resistance to cetuximab. The viability of cells treated with the combination of RSL3 and cetuximab was assessed by the CCK-8 and colony formation assays. The effective of cetuximab to promote RSL3-induced ferroptosis was investigated by evaluating lipid reactive oxygen species accumulation and the expression of the malondialdehyde and the intracellular iron assay. Cetuximab therapy contributed to regulating the p38/Nrf2/HO-1 axis, as determined by western blotting and transfection with small interfering RNAs. Cetuximab promoted RSL3-induced ferroptosis by inhibiting the Nrf2/HO-1 in KRAS mutant CRC cells, and this was further demonstrated in a xenograft nude mouse model. Our work reveals that cetuximab enhances the cytotoxic effect of RSL3 on KRAS mutant CRC cells and that cetuximab enhances RSL3-induced ferroptosis by inhibiting the Nrf2/HO-1 axis through the activation of p38 MAPK.

14.
Front Oncol ; 11: 745590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745968

RESUMO

Epithelial ovarian cancer (EOC) has a poor prognosis and high mortality rate; patients are easy to relapse with standard therapies. So, there is an urgent need to develop novel drugs. In this study, differentially expressed genes (DEGs) of EOC were identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Enrichment and protein-protein interaction (PPI) analyses were performed. The drug candidate which has the possibility to treat EOC was predicted by Connectivity Map (CMAP) databases. Moreover, molecular docking was selected to calculate the binding affinity between drug candidate and hub genes. The cytotoxicity of drug candidates was assessed by MTT and colony formation analysis, the proteins coded by hub genes were detected by Western blots, and apoptosis analysis was evaluated by flow cytometry. Finally, 296 overlapping DEGs (|log 2 fold change|>1; q-value <0.05), which were principally involved in the cell cycle (p < 0.05), and cyclin-dependent kinase 1 (CDK1) were screened as the significant hub gene from the PPI network. Furthermore, the 21 drugs were extracted from CMAPs; among them, piperlongumine (PL) showed a lower CMAP score (-0.80, -62.92) and was regarded as the drug candidate. Furthermore, molecular docking results between PL and CDK1 with a docking score of -8.121 kcal/mol were close to the known CDK1 inhibitor (-8.24 kcal/mol). Additionally, in vitro experiments showed that PL inhibited proliferation and induced apoptosis via targeting CDK1 in EOC SKOV3 cells. Our results reveal that PL may be a novel drug candidate for EOC by inhibiting cell cycle.

16.
Adv Sci (Weinh) ; : e2103765, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34761548

RESUMO

Unidirectional liquid penetration plays an important role in many fields, such as microfluidic devices, biological medical, liquid printing, and oil/water separation. Although there are some progresses in the liquid unidirectional penetration using a variety of Janus membranes with anisotropic wettability, it still remains a great difficulty for single-layer Janus membranes with straight pore to balance spontaneous liquid penetration in positive direction and superior liquid resistance in the reverse direction. Herein, a liquid-assisted strategy for single-layer Janus membrane is developed, which can efficiently decrease the critical breakthrough pressure from superhydrophobic side to hydrophilic side and show little influence on that in the reverse direction. Consequently, unidirectional water penetration with high hydraulic pressure difference can be achieved. The Laplace pressure change along the thickness of the single-layer Janus membranes is further discussed, and the mechanism by which the auxiliary liquid decreases the critical breakthrough pressure is revealed. Furthermore, this Janus membrane with unidirectional water penetration "diode" performance can be used to prevent liquid backflow in intravenous transfusion. It is believed that this work can open an avenue for people to design single-layer Janus membrane with high pressure difference and find wide applications in unidirectional liquid transport.

17.
BMC Gastroenterol ; 21(1): 366, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620100

RESUMO

BACKGROUND: Gallbladder carcinoma (GBC) was the most common malignancy of biliary tract. Patients with malignancies frequently present with activated coagulation pathways, which might potentially related to tumor progression and prognosis. The purpose of the study was to investigate the clinical significance of preoperative serum fibrinogen levels and platelet counts in GBC patients. METHODS: The preoperative fasting serum fibrinogen levels and platelet counts of 58 patients with GBC were measured by AUV2700 automatic biochemical analyzer, as well as 60 patients with cholesterol polyps and 60 healthy volunteers. Kaplan-Meier survival analysis was applied to show the correction between fibrinogen levels and outcome after surgery. RESULTS: The fibrinogen levels of patients with GBC were significantly higher than healthy gallbladder and cholesterol polyp of gallbladder (p < 0.001 and p < 0.001, respectively). In GBC, fibrinogen levels were associated with tumor depth (p = 0.001), lymph node metastasis (p = 0.002), distant metastasis (p < 0.001) and Tumor Node Metastasis (TNM) stage (p < 0.001). The levels in TNM stage IV disease were significantly higher than stage III or stage I + II disease (p = 0.048 and p < 0.001, respectively), and in TNM stage III disease were significantly higher than stage I + II disease (p = 0.002). Furthermore, the overall survival was better in low fibrinogen level group than in high fibrinogen level group (p < 0.001). However, thrombocytosis was not significantly associated with overall survivals (p > 0.05) in multivariate analysis. CONCLUSIONS: The preoperative serum fibrinogen levels and platelet counts might be reliable biomarkers for the occurance of disease, tumor depth, lymph node metastasis, distant metastasis and advanced TNM stage in patients with GBC. The serum fibrinogen levels might be a prognostic factor to predict outcome for GBC patients suffering from surgery treatment. Anticoagulation therapy might be considered to control cancer progression in future studies.


Assuntos
Fibrinogênio , Neoplasias da Vesícula Biliar , Contagem de Plaquetas , Estudos de Casos e Controles , Fibrinogênio/análise , Neoplasias da Vesícula Biliar/sangue , Neoplasias da Vesícula Biliar/cirurgia , Humanos , Estimativa de Kaplan-Meier , Prognóstico
18.
Toxicol Appl Pharmacol ; 431: 115734, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606778

RESUMO

Emodin is the major anthraquinone component of many important traditional Chinese herbs, such as Rheum palmatum L. and Polygonum multiflorum Thunb. They have been popular health products but recently aroused concerns about their hepatotoxicity, which are believed to be arising from the contained anthraquinones, such as emodin. However, emodin exerts potent hepatoprotective ability, such as anti-fibrotic, anti-oxidative, and anti-inflammatory effects. In this study, 1H NMR based metabolomics approach, complemented with histopathological observation, biochemical measurements, western blotting analysis and real-time quantitative PCR (RT-qPCR), was applied to interpret the paradox of emodin (30 mg/kg, 10 mg/kg BW) using both healthy mice (male, ICR) and chronic CCl4-injured mice (0.1 mL/kg, 0.35% CCl4, 3 times a week for a month). Emodin exerted a weight loss property associated with its lipid-lowing effects, which helped alleviate CCl4-induced steatosis. Emodin effectively ameliorated CCl4-induced oxidative stress and energy metabolism dysfunction in mice liver via regulating glucose, lipid and amino acid metabolism, and inhibited excessive inflammatory response. In healthy mice, emodin only exhibited hepatoxicity on high-dosage by disturbing hepatic anti-oxidant homeostasis, especially GSH and xanthine metabolism. This integrated metabolomics approach identified the bidirectional potential of emodin, which are important for its rational use.

19.
Natl Sci Rev ; 8(1): nwaa166, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34691554

RESUMO

Knowledge of intrinsic wettability at solid/liquid interfaces at the molecular level perspective is significant in understanding crucial progress in some fields, such as electrochemistry, molecular biology and earth science. It is generally believed that surface wettability is determined by the surface chemical component and surface topography. However, when taking molecular structures and interactions into consideration, many intriguing phenomena would enrich or even redress our understanding of surface wettability. From the perspective of interfacial water molecule structures, here, we discovered that the intrinsic wettability of crystal metal oxide is not only dependent on the chemical components but also critically dependent on the crystal faces. For example, the [Formula: see text] crystal face of α-Al2O3 is intrinsically hydrophobic with a water contact angle near 90°, while another three crystal faces are intrinsically hydrophilic with water contact angles <65°. Based on surface energy analysis, it is found that the total surface energy, polar component and Lewis base portion of the hydrophobic crystal face are all smaller than the other three hydrophilic crystal faces indicating that they have different surface states. DFT simulation further revealed that the adsorbed interfacial water molecules on each crystal face hold various orientations. Herein, the third crucial factor for surface wettability from the perspective of the molecular level is presented, that is the orientations of adsorbed interfacial water molecules apart from the macro-level chemical component and surface topography. This study may serve as a source of inspiration for improving wetting theoretical models and designing controllable wettability at the molecular/atomic level.

20.
Natl Sci Rev ; 8(8): nwaa231, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34691706

RESUMO

Light-driven ion (proton) transport is a crucial process both for photosynthesis of green plants and solar energy harvesting of some archaea. Here, we describe use of a TiO2/C3N4 semiconductor heterojunction nanotube membrane to realize similar light-driven directional ion transport performance to that of biological systems. This heterojunction system can be fabricated by two simple deposition steps. Under unilateral illumination, the TiO2/C3N4 heterojunction nanotube membrane can generate a photocurrent of about 9 µA/cm2, corresponding to a pumping stream of ∼5500 ions per second per nanotube. By changing the position of TiO2 and C3N4, a reverse equivalent ionic current can also be realized. Directional transport of photogenerated electrons and holes results in a transmembrane potential, which is the basis of the light-driven ion transport phenomenon. As a proof of concept, we also show that this system can be used for enhanced osmotic energy generation. The artificial light-driven ion transport system proposed here offers a further step forward on the roadmap for development of ionic photoelectric conversion and integration into other applications, for example water desalination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...