Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.934
Filtrar
1.
J Cell Commun Signal ; 18(2): e12021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946718

RESUMO

lncRNA ZFAS1 was identified to facilitate thyroid cancer, but its role in medullary thyroid carcinoma (MTC) remains unknown. This study aimed to unravel the potential function of this lncRNA in MTC by investigating the involvement of the lncRNA ZFAS1 in a ceRNA network that regulates MTC invasion. Proliferation, invasion, and migration of cells were evaluated using EdU staining and Transwell assays. Immunoprecipitation (IP) assays, dual-fluorescence reporter, and RNA IP assays were employed to examine the binding interaction among genes. Nude mice were used to explore the role of lncRNA ZFAS1 in MTC in vivo. ZFAS1 and EPAS1 were upregulated in MTC. Silencing ZFAS1 inhibited MTC cell proliferation and invasion under hypoxic conditions, which reduced EPAS1 protein levels. UCHL1 knockdown increased EPAS1 ubiquitination. ZFAS1 positively regulated UCHL1 expression by binding to miR-214-3p. Finally, silencing ZFAS1 significantly repressed tumor formation and metastasis in MTC. LncRNA ZFAS1 promotes invasion of MTC by upregulating EPAS1 expression via the miR-214-3p/UCHL1 axis.

2.
Heliyon ; 10(11): e32161, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947488

RESUMO

Additive manufacturing (AM) has gained significant attention in recent years owing to its ability to fabricate intricate shapes and structures that are often challenging or unattainable using conventional manufacturing techniques. This high-quality development trend entails higher requirements for the structural design of 3D printers. In this study, polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) filaments were fed through a heated extrusion nozzle, which melted the material and deposited it onto a build platform. This study's objectives are high-gravitational material extrusion (HG-MEX) systems development, analyzing the high gravity influences on the flow behavior of materials during extrusion, and understanding the effects of gravitational on material flow and overall extrusion performance. HG-MEX systems have great potential for addressing various challenges in additive manufacturing, such as precise manufacturing. The highlight of the progress is that we developed an HG-MEX system and applied surface science to material extrusion in different gravity. We established a system and obtained results on different gravity, we analyzed the analogy between different gravity phenomena. We analyzed the interplay between the behavior of the fabricated parts and gravity. We analyzed high gravity effects on extrusion processes. The results confirmed the characteristics and feasibility of the developed system. The results suggest that a material extrusion line operating under 15 G conditions resulted in better printing quality compared to one operating under 1 G conditions. This observation implies that high gravity had a positive effect on the extrusion process, leading to improved material extrusion performance.

3.
Food Chem ; 458: 140233, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964093

RESUMO

To analyze the effect of various drying treatments (microwave drying (MD), hot air drying (HAD), vacuum drying (VD), and vacuum freeze drying (VFD)) on taste compounds in Penaeus vannamei, relevant indicators such as free amino acids, 5'-nucleotides, and organic acids were performed. Multidimensional infrared spectroscopy (MM-IR) results found that there were notable variations in taste properties of P. vannamei. There were 18 autocorrelation peaks in 3400-900 cm-1 were screened using second-derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR). Variations in functional groups were the major contributors to taste profiles. The TAV of glutamic acid (Glu), guanine (GMP), and inosinemonphosphate (IMP) were greater than one and had notable impacts on taste profiles. VD had the highest equivalent umami value, followed by VFD, HAD, and MD. This study may provide a theoretical guide for the production of dried P. vannamei products on an industrial scale.

4.
Small ; : e2403970, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984738

RESUMO

Self-assembly of nanoparticles into supercrystals represents a powerful approach to create unique and complex superstructures with fascinating properties and novel functions, but the complexity in spatial configuration, and the tunability in lattice structure are still quite limited compared to the crystals formed by atoms and molecules. Herein, shallowly concave gold nanoarrows with a unique concave-convex geometry are synthesized and employed as novel building blocks for shape-directed self-assembly of a wealth of complex 3D supercrystals with unprecedented configurations. The obtained diverse superstructures including six Interlocking-type supercrystals and three Packing-type supercrystals exhibit four types of Bravais lattices (i.e., tP, oI, tI, and oF) and six types of crystallographic space groups (i.e., Pmmm, I222, Pnnm, Ibam, I4/mmm, and Fmmm), which have not been documented in the mesoscale self-assembled systems. It has been revealed that the relative yield of different supercrystal structures is mainly determined by the packing density and deformability of the supercrystals, which are closely related to the tailored concavity of the nanoparticles and is affected by the particle concentration, thus allowing for programmable self-assembly into specific supercrystals through particle shape modulation. The concavity-enabled supercrystal engineering may open a new avenue toward unconventional nanoparticle superstructures with expanded complexity, tunability, and functionality.

5.
Acta Pharmacol Sin ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992121

RESUMO

Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.

6.
Theranostics ; 14(10): 4090-4106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994016

RESUMO

Purpose: Due to intrinsic defensive response, ferroptosis-activating targeted therapy fails to achieve satisfactory clinical benefits. Though p62-Keap1-Nrf2 axis is activated to form a negative feedback loop during ferroptosis induction, how p62 is activated remains largely unknown. Methods: MTS assay was applied to measure cell growth. Lipid ROS was detected with C11-BODIPY reagent by flow cytometer. Quantitative real-time PCR (qPCR) and western blotting were performed to determine mRNA and protein level. Immunofluorescence (IF) was performed to examine the distribution of proteins. Fluorescence recovery after photobleaching (FRAP) was adopted to evaluate p62 phase separation. Immunoprecipitation (IP), co-IP and Proximal ligation assay (PLA) were performed to detected protein posttranslational modifications and protein-protein interactions. Tumor xenograft model was employed to inspect in vivo growth of pancreatic cancer cells. Results: Upon ferroptosis induction, Nuclear Factor E2 Related Factor 2 (Nrf2) protein and its downstream genes such as HMOX1 and NQO1 were upregulated. Knockdown of p62 significantly reversed Nrf2 upregulation and Keap1 decrease after ferroptosis induction. Knockdown of either p62 or Nrf2 remarkably sensitized ferroptosis induction. Due to augmented p62 phase separation, formation of p62 bodies were increased to recruit Keap1 after ferroptosis induction. Protein arginine methyltransferase 6 (PRMT6) mediated asymmetric dimethylarginine (ADMA) of p62 to increase its oligomerization, promoting p62 phase separation and p62 body formation. Knockdown of p62 or PRMT6 notably sensitized pancreatic cancer cells to ferroptosis both in vitro and in vivo through suppressing Nrf2 signaling. Conclusion: During ferroptosis induction, PRMT6 mediated p62 ADMA to promote its phase separation, sequestering Keap1 to activate Nrf2 signaling and inhibit ferroptosis. Therefore, targeting PRMT6-mediated p62 ADMA could be a new option to sensitize ferroptosis for cancer treatment.


Assuntos
Arginina , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Animais , Arginina/metabolismo , Arginina/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Retroalimentação Fisiológica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Camundongos Nus , Transdução de Sinais , Separação de Fases , Proteínas de Ligação a RNA
7.
Medicine (Baltimore) ; 103(28): e38898, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996108

RESUMO

BACKGROUND: There are a growing number of studies on the effect of acupuncture on glial cells in the central nervous system; however, there are few related bibliometric analyses in this area. Therefore, the purpose of this bibliometric study was to visualize the literature on acupuncture-regulated glial cells. METHODS: On November 23, 2022, regular and review articles on acupuncture and glial cell-related research were retrieved from the Web of Science Core Collection database. The R package "bibliometrix" was used to summarize the main findings, count the occurrences of the top keywords, visualize the international collaboration network, and generate a 3-field plot. The VOSviewer software was used to conduct both co-authorship and co-occurrence analyses. CiteSpace was used to identify the best references and keywords with the highest citation rates. RESULTS: Overall, 348 publications on acupuncture and glial cells were included. The publications were primarily from China, Korea, and the United States of America. The majority of publications were found in relevant journals. Apart from "acupuncture" and "glial cells," the most frequently used keywords were "neuroinflammation," "hyperalgesia," and "pain." CONCLUSION: This bibliometric study mapped a fundamental knowledge structure comprising countries, institutions, authors, journals, and articles in the research fields of acupuncture and glial cells over the last 3 decades. These results provide a comprehensive perspective on the wider landscape of this research area.


Assuntos
Terapia por Acupuntura , Bibliometria , Neuroglia , Humanos , Terapia por Acupuntura/estatística & dados numéricos , Terapia por Acupuntura/métodos , Pesquisa Biomédica/estatística & dados numéricos
8.
Mil Med Res ; 11(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034405

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear. METHODS: We investigated the effects of clinical-grade hypoxia-preconditioned olfactory mucosa (hOM)-MSCs on neural functional recovery in both PD models and patients, as well as the preventive effects on mouse models of PD. To assess improvement in neuroinflammatory response and neural functional recovery induced by hOM-MSCs exposure, we employed single-cell RNA sequencing (scRNA-seq), assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) combined with full-length transcriptome isoform-sequencing (ISO-seq), and functional assay. Furthermore, we present the findings from an initial cohort of patients enrolled in a phase I first-in-human clinical trial evaluating the safety and efficacy of intraspinal transplantation of hOM-MSC transplantation into severe PD patients. RESULTS: A functional assay identified that transforming growth factor-ß1 (TGF-ß1), secreted from hOM-MSCs, played a critical role in modulating mitochondrial function recovery in dopaminergic neurons. This effect was achieved through improving microglia immune regulation and autophagy homeostasis in the SN, which are closely associated with neuroinflammatory responses. Mechanistically, exposure to hOM-MSCs led to an improvement in neuroinflammation and neural function recovery partially mediated by TGF-ß1 via activation of the anaplastic lymphoma kinase/phosphatidylinositol-3-kinase/protein kinase B (ALK/PI3K/Akt) signaling pathway in microglia located in the SN of PD patients. Furthermore, intraspinal transplantation of hOM-MSCs improved the recovery of neurologic function and regulated the neuroinflammatory response without any adverse reactions observed in patients with PD. CONCLUSIONS: These findings provide compelling evidence for the involvement of TGF-ß1 in mediating the beneficial effects of hOM-MSCs on neural functional recovery in PD. Treatment and prevention of hOM-MSCs could be a promising and effective neuroprotective strategy for PD. Additionally, TGF-ß1 may be used alone or combined with hOM-MSCs therapy for treating PD.


Assuntos
Modelos Animais de Doenças , Células-Tronco Mesenquimais , Mucosa Olfatória , Doença de Parkinson , Fator de Crescimento Transformador beta1 , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Células-Tronco Mesenquimais/métodos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Recuperação de Função Fisiológica , Fator de Crescimento Transformador beta1/metabolismo
9.
Acta Pharmacol Sin ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020084

RESUMO

Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.

10.
Skin Res Technol ; 30(7): e13853, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021270

RESUMO

BACKGROUND: Prior investigation has indicated a link between Hidradenitis suppurativa (HS) and cardiovascular diseases (CVDs), yet the causal relationship (CR) between these conditions remains unresolved. METHODS: This investigation utilized bidirectional Mendelian randomization (MR) analysis to determine the CR between HS and CVDs. Genetic instruments for both conditions were sourced from genome-wide association studies (GWAS). The GWAS summary data for CVD comprised coronary artery disease (CAD), myocardial infarction (MI), coronary atherosclerosis (CA), ischemic stroke (IS), and chronic heart failure (CHF). Four new approaches were added to the inverse variance weighted (IVW) method for the main analysis: weighted median, weighted MR-Egger, simple mode, and weighted mode. The validity of the causal conclusions was verified by sensitivity tests that included leave-one-out analysis, heterogeneity, and pleiotropy. RESULTS: HS and CAD (OR = 1.024; 95%CI: 1.002-1.046, P = 0.033), MI (OR = 1.001; 95%CI: 1.000-1.002, P = 0.033), and CA (OR = 1.001; 95%CI: 1.000-1.002, P = 0.022) were identified to have a positive CR, according to the IVW analysis. Conversely, no significant association was identified between HS and either IS or CHF. Furthermore, the bidirectional analysis indicated no reverse causation between these diseases. CONCLUSION: The findings of this study suggest a potential CR between HS and CAD, MI, and CA. Additional research is warranted to elucidate the biological mechanisms underlying these associations.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Hidradenite Supurativa , Análise da Randomização Mendeliana , Humanos , Hidradenite Supurativa/genética , Doenças Cardiovasculares/genética , Polimorfismo de Nucleotídeo Único
11.
Sci Total Environ ; 948: 174619, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002584

RESUMO

Although coking process is the important source of polycyclic aromatic hydrocarbons (PAHs) in the environment, the generation and emission of PAHs during this process is unclear. It is crucial to clarify the formation mechanism of PAHs in coal pyrolysis during the coking process for effectively identifying and controlling the emission of these organic pollutants. In this study, the combination of laboratory simulation and field sampling was used to analyze the mechanism of PAHs formation and emission in coking process. The release of PAHs from the pyrolysis process of coal blends used in coking plants was 1778.20 ± 111.95 µg · g-1, which was much higher than the content of free PAHs in raw coal (76.50 ± 12.46 µg · g-1). 3-ring PAHs were the most abundant components of free PAHs and pyrolysis-generated PAHs. PAH formation during pyrolysis of coal blends was primarily attributed to the cracking of the macromolecular structure of coal, with minimal influence of free PAHs in blended coal. The emission of PAHs from coal-charging was higher (62.93 ± 17.75 µg · m-3) than that from pushing of coke (11.79 ± 1.91 µg · m-3·, PC) and combustion of coke oven gas (5.53 ± 1.20 µg · m-3, CG), and was mainly related to free PAHs in coal. In contrast, the characteristics of PAHs in the flue gas of PC and CG were similar to those from blended coal pyrolysis. PAHs in fugitive emission from coke oven were primarily affected by flue gas leakage and were mainly related to coal pyrolysis and free PAHs in blended coal.

12.
Int J Biol Macromol ; 272(Pt 2): 132934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862320

RESUMO

Guar gum (GG) as a polymer biopolymer is widely used in the field of bio-based packaging. However, its poor mechanical properties, barrier properties and high viscosity greatly hinder its use as an effective packaging material. Therefore, this study introduced CPTES to improve the mechanical (16.58-27.39 MPa) and tensile properties (26.80 %-30.67 %). The FTIR and XRD results indicated a strong interaction between the biofilm fractions modified by CPTES, CPTES bound to the hydroxyl groups on GG and formed a dense polysiloxane network through adsorption and grafting. OM and AFM reflect a denser and flatter film structure on the surface of the G30 film, which has the best film formation. Based on this, the pH of the solution was further adjusted to reach an alkaline environment, disrupting the intermolecular binding through electrostatic repulsion. The rheological behavior indicates that the viscosity and viscoelasticity of film solution gradually decrease with the increase in pH. OM and AFM results show that the G30/8 film has the best compact properties, while the nonporous compact film structure further improves the mechanical, barrierand and thermodynamic properties of the film. Accordingly, the findings of this study had a certain value for regulating the low viscoelasticity of GG emulsion and enhancing the stability of film formation.


Assuntos
Galactanos , Mananas , Gomas Vegetais , Gomas Vegetais/química , Galactanos/química , Mananas/química , Concentração de Íons de Hidrogênio , Viscosidade , Silanos/química , Reologia , Resistência à Tração
13.
PLoS One ; 19(6): e0298124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885218

RESUMO

This study aimed to develop a novel Gelatin silver oxide material for releasing nitric oxide bionanocomposite wound dressing with enhanced mechanical, chemical, and antibacterial properties for the treatment of diabetic wounds. The gelatin- silver oxide nanoparticles (Ag2O-NP) bio nanocomposite was prepared using chitosan and gelatin polymers incorporated with silver oxide nanoparticles through the freeze-drying method. The samples were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Results showed that the Ag2O-NP nanoparticles increased porosity, decreased pore size, and improved elastic modulus. The Ag2O-NP wound dressing exhibited the most effective antibacterial properties against Staphylococcus aureus and Escherichia coli. Among the samples, the wound dressing containing silver oxide nanoparticles demonstrated superior physical and mechanical properties, with 48% porosity, a tensile strength of 3.2 MPa, and an elastic modulus of 51.7 MPa. The fabricated wound dressings had a volume ratio of empty space to total volume ranging from 40% to 60%. In parallel, considering the complications of diabetes and its impact on the vascular system, another aspect of the research focused on developing a per2mediated wound dressing capable of releasing nitric oxide gas to regenerate damaged vessels and accelerate diabetic wound healing. Chitosan, a biocompatible and biodegradable polymer, was selected as the substrate for the wound dressing, and beta-glycerophosphate (GPß), tripolyphosphate (TPP), and per2mediated alginate (AL) were used as crosslinkers. The chitosan-alginate (CS-AL) wound dressing exhibited optimal characteristics in terms of hole count and uniformity in the scanning electron microscope test. It also demonstrated superior water absorption (3854%) and minimal air permeability. Furthermore, the CS-AL sample exhibited an 80% degradation rate after 14 days, indicating its suitability as a wound dressing. The wound dressing was loaded with S-nitrosoglutathione (GSNO) powder, and the successful release of nitric oxide gas was confirmed through the grease test, showing a peak at a wavelength of 540 nm. Subsequent investigations revealed that the treatment of human umbilical vein endothelial cells (HUVECs) with high glucose led to a decrease in the expression of PER2 and SIRT1, while the expression of PER2 increased, which may subsequently enhance the expression of SIRT1 and promote cell proliferation activity. However, upon treatment of the cells with the modified materials, an increase in the expression of PER2 and SIRT1 was observed, resulting in a partial restoration of cell proliferative activity. This comprehensive study successfully developed per2-mediated bio-nanocomposite wound dressings with improved physical, mechanical, chemical, and antibacterial properties. The incorporation of silver oxide nanoparticles enhanced the antimicrobial activity, while the released nitric oxide gas from the dressing demonstrated the ability to mitigate vascular endothelial cell damage induced by high glucose levels. These advancements show promising potential for facilitating the healing process of diabetic wounds by addressing complications associated with diabetes and enhancing overall wound healing.


Assuntos
Bandagens , Escherichia coli , Gelatina , Óxido Nítrico , Compostos de Prata , Cicatrização , Gelatina/química , Cicatrização/efeitos dos fármacos , Óxido Nítrico/metabolismo , Compostos de Prata/química , Compostos de Prata/farmacologia , Humanos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Nanopartículas Metálicas/química , Porosidade , Pé Diabético/terapia , Pé Diabético/tratamento farmacológico , Nanopartículas/química , Óxidos
14.
Math Biosci Eng ; 21(4): 5068-5091, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38872527

RESUMO

In this paper, the dynamic behaviors and control strategies of a rumor propagation model are studied in multi-lingual environment. First, an S2E2I2R rumor propagation model is proposed, which incorporates a non-smooth inhibition mechanism. Meanwhile, the existence and stability of the equilibrium are analyzed, grounded in the spreader threshold of the government intervention. Finally, the optimal control and the event-triggered impulsive control strategies are proposed to mitigate the spread of rumors, and the comparison of their effectiveness is further presented by the numerical simulation and a practical case.

15.
Small Methods ; : e2301774, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874124

RESUMO

Diamond electrochemistry is primarily influenced by quantities of sp3-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices.

16.
Sensors (Basel) ; 24(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38894199

RESUMO

Pose estimation of metal parts plays a vital role in industrial grasping areas. It is challenging to obtain complete point clouds of metal parts because of their reflective properties. This study introduces an approach for recovering the 6D pose of CAD-known metal parts from images captured by a single RGB camera. The proposed strategy only requires RGB images without depth information. The core idea of the proposed method is to use multiple views to estimate the metal parts' pose. First, the pose of metal parts is estimated in the first view. Second, ray casting is employed to simulate additional views with the corresponding status of the metal parts, enabling the calculation of the camera's next best viewpoint. The camera, mounted on a robotic arm, is then moved to this calculated position. Third, this study integrates the known camera transformations with the poses estimated from different viewpoints to refine the final scene. The results of this work demonstrate that the proposed method effectively estimates the pose of shiny metal parts.

17.
Natl Sci Rev ; 11(7): nwae190, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38938275

RESUMO

Heterogeneous catalysis promises to accelerate sulfur-involved conversion reactions in lithium-sulfur batteries. Solid-state Li2S dissociation remains as the rate-limiting step because of the weakly matched solid-solid electrocatalysis interfaces. We propose an electrochemically molecular-imprinting strategy to have a metal sulfide (MS) catalyst with imprinted defects in positions from which the pre-implanted Li2S has been electrochemically removed. Such tailor-made defects enable the catalyst to bind exclusively to Li atoms in Li2S reactant and elongate the Li-S bond, thus decreasing the reaction energy barrier during charging. The imprinted Ni3S2 catalyst shows the best activity due to the highest defect concentration among the MS catalysts examined. The Li2S oxidation potential is substantially reduced to 2.34 V from 2.96 V for the counterpart free of imprinted vacancies, and an Ah-level pouch cell is realized with excellent cycling performance. With a lean electrolyte/sulfur ratio of 1.80 µL mgS -1, the cell achieves a benchmarkedly high energy density beyond 500 Wh kg-1.

18.
Micromachines (Basel) ; 15(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38930673

RESUMO

The ever-growing prominence and widespread acceptance of organic light-emitting diodes (OLEDs), particularly those employing thermally activated delayed fluorescence (TADF), have firmly established them as formidable contenders in the field of lighting technology. TADF enables achieving a 100% utilization rate and efficient luminescence through reverse intersystem crossing (RISC). However, the effectiveness of TADF-OLEDs is influenced by their high current density and limited device lifetime, which result in a significant reduction in efficiency. This comprehensive review introduces the TADF mechanism and provides a detailed overview of recent advancements in the development of host-free white OLEDs (WOLEDs) utilizing TADF. This review specifically scrutinizes advancements from three distinct perspectives: TADF fluorescence, TADF phosphorescence and all-TADF materials in host-free WOLEDs. By presenting the latest research findings, this review contributes to the understanding of the current state of host-free WOLEDs, employing TADF and underscoring promising avenues for future investigations. It aims to serve as a valuable resource for newcomers seeking an entry point into the field as well as for established members of the WOLEDs community, offering them insightful perspectives on imminent advancements.

19.
J Soc Psychol ; : 1-14, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38944847

RESUMO

Although there have been studies in the past that have highlighted the important role of leader traits in motivating employee innovation behavior, leader perfectionism has been scarcely investigated in this context. This study attempts to explore whether leader perfectionism directed toward employees can facilitate or hinder employee innovation behavior. Based on the transactional model of stress, we propose and test a moderated mediation model using data from a multi-wave, multi-source survey of 334 leader-employee questionnaires. The results show that, for employees with high self-efficacy, leader perfectionism has a positive effect on their challenge stress, which in turn promotes employee innovation behavior; Meanwhile, for employees with low self-efficacy, leader perfectionism has a positive effect on their hindrance stress, thereby discouraging employee innovation behavior. This study has significant theoretical and practical implications as it highlights the underlying relationship between leader perfectionism and employee innovation behavior.

20.
Food Chem ; 458: 140239, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38944929

RESUMO

Due to increasing food safety issues, developing intelligent, on-site, and visual methods for detecting fish freshness has attracted significant attention. Here, we have prepared a benzo[h]chromene derivative BCN that can visually detect 12 biogenic amines (BAs) with high sensitivity. The mechanism for recognizing cadaverine (Cad) is that the probe reacts with Cad to produce a Schiff base derivative, which alters the charge distribution within the molecule, resulting in significant colorimetric and fluorescence changes. The sensing label BCN/FPS was prepared by loading the probe BCN on filter paper, and a visual detection platform was constructed by combining it with a smartphone. By monitoring the correspondence between label color and TVB-N content, a working curve of (R + B)/(R + B + G) with TVB-N content was obtained, enabling visual evaluation of salmon freshness using only a mobile phone. In addition, based on the good solubility and processability of BCN, its application in fluorescent dyes including impregnating dyes, printing inks, coatings, and flexible films has been explored, which opens up new directions for the application of BCN. Therefore, BCN has the potential for real-time monitoring of meat freshness and preparation of fluorescent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA