Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.854
Filtrar
1.
Cancer Discov ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563585

RESUMO

Glioblastoma (GBM) exhibits profound metabolic plasticity for survival and therapeutic resistance, while the underlying mechanisms remain unclear. Here, we show that GBM stem cells (GSCs) reprogram the epigenetic landscape by producing substantial amounts of phosphocreatine (PCr). This production is attributed to the elevated transcription of brain-type creatine kinase (CKB), mediated by Zinc finger E-box binding homeobox 1 (ZEB1). PCr inhibits the poly-ubiquitination of the chromatin regulator bromodomain containing protein 2 (BRD2) by outcompeting the E3 ubiquitin ligase SPOP for BRD2 binding. Pharmacological disruption of PCr biosynthesis by cyclocreatine leads to BRD2 degradation and a decrease in its targets' transcription, which inhibits chromosome segregation and cell proliferation. Notably, cyclocreatine treatment significantly impedes tumor growth and sensitizes tumors to a BRD2 inhibitor in mouse GBM models without detectable side effects. These findings highlight that high production of PCr is a druggable metabolic feature of GBM and a promising therapeutic target for GBM treatment.

2.
J Cancer ; 15(9): 2829-2836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577611

RESUMO

Background: Recent studies have shown that young patients with gastric cancer are at a more advanced stage and have poor survival, but the cause is still unclear. The prognosis of gastric cancer is closely related to LNM, but the relationship between age and LNM in early gastric cancer (EGC) is currently unclear. Therefore, we aimed to study the relationship between age and the risk of LNM in EGC. Materials and Methods: We screened out patients with EGC who underwent surgery from the SEER research database from 1975 to 2016, and retrospectively analyzed the proportion of LNM in different age groups. We grouped age into 18-39, 40-49, 50-59, 60-69, 70-79, and ≥ 80 years old, and used univariate analysis and multivariate logistic regression to analyze the correlation between age and LNM. Results: We included 9231 patients with EGC, with LNM rates of 20.3%, 23.3%, 21.0%, 19.8%, 18.1%, and 13.2% in the age groups of 18-39 years old (2.3%), 40-49 (6.1%), 50-59 years old (15.7%), 60-69 years old (24.8%), 70-79 years old (27.2%) and ≥80 years old (23.9%), respectively. We found that when older than 39 years old, the risk of LNM and postoperative survival time of EGC patients decrease (p<0.001). Multivariate analysis results showed that age, tumor size, the number of retrieved lymph nodes (rN), tumor grade, and tumor location were related to LNM. Conclusions: This study found that age in patients with EGC was inversely related to the risk of LNM, and positively correlated with postoperative survival. For older patients with EGC, endoscopic treatment is more appropriate. For young patients with EGC, LNM should be considered when choosing endoscopic treatment.

3.
Eur J Neurol ; : e16296, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588211

RESUMO

BACKGROUND AND PURPOSE: The ratio of serum uric acid (SUA) to serum creatinine (SCr), representing normalized SUA for renal function, is associated with functional outcome in acute ischaemic stroke (AIS) patients. However, its effect on AIS patients undergoing mechanical thrombectomy (MT) remains unknown. This study aimed to investigate the influence of the SUA/SCr ratio on clinical outcome in MT-treated AIS patients. METHODS: Acute ischaemic stroke patients who underwent MT were continuously enrolled from January 2018 to June 2023. Upon admission, SUA and SCr levels were recorded within the initial 24 h. Stroke severity was determined using the National Institutes of Health Stroke Scale (NIHSS) score. Clinical outcome included poor functional outcome (modified Rankin Scale score >2) at 90 days, symptomatic intracranial haemorrhage and death. RESULTS: Amongst 734 patients, 432 (58.8%) exhibited poor functional outcome at 90 days. The SUA/SCr ratio exhibited a negative correlation with NIHSS score (ρ = -0.095, p = 0.010). Univariate analysis revealed a significant association between SUA/SCr ratio and poor functional outcome. After adjusting for confounders, the SUA/SCr ratio remained an independent predictor of functional outcome (adjusted odds ratio 0.348, 95% confidence interval 0.282-0.428, p < 0.001). Receiver operating characteristic curve analysis highlighted the ability of the SUA/SCr ratio to predict functional outcome, with a cutoff value of 3.62 and an area under the curve of 0.757 (95% confidence interval 0.724-0.788, p < 0.001). CONCLUSION: The SUA/SCr ratio is correlated with stroke severity and may serve as a predictor of 90-day functional outcome in AIS patients undergoing MT.

4.
Nanomaterials (Basel) ; 14(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607179

RESUMO

Rheumatoid arthritis (RA) severely affects patients' quality of life and is commonly treated with glucocorticosteroids injections, like dexamethasone, which may have side effects. This study aimed to create a novel low dose of twin-drug hydrogel containing dexamethasone and diclofenac and explore its potential as a drug delivery system for an enhanced anti-inflammatory effect. Its characterization involved rheology, transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, the hydrogel demonstrated thixotropic properties. The hydrogel exhibited no cytotoxicity against RAW 264.7 macrophages. Furthermore, the hydrogel demonstrated a significant anti-inflammatory efficacy by effectively downregulating the levels of NO, TNF-α, and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The co-delivery approach, when intra-articularly injected in adjuvant-induced arthritis (AIA) rats, significantly alleviated chronic inflammation leading to reduced synovitis, delayed bone erosion onset, and the downregulation of inflammatory cytokines. The biocompatibility and adverse effect evaluation indicated good biological safety. Furthermore, the hydrogel demonstrated efficacy in reducing NF-κB nuclear translocation in LPS-induced RAW 264.7 macrophages and inhibited p-NF-kB, COX-2, and iNOS expression both in RAW 264.7 macrophages and the joints of AIA rats. In conclusion, the findings indicate that the hydrogel possesses potent anti-inflammatory activity, which effectively addresses the limitations associated with free forms. It presents a promising therapeutic strategy for the management of RA.

5.
Diabetes Metab Syndr Obes ; 17: 1553-1562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601039

RESUMO

Background: Total cerebral small vessel disease (CSVD) burden score is an important predictor of vascular cognitive impairment (VCI). However, few predictive models of VCI in type 2 diabetes mellitus (T2DM) patients have included the total CSVD burden score, especially in the early stage of VCI. Objective: To develop and validate a nomogram that includes the total CSVD burden score to predict mild VCI in patients with T2DM. Methods: A total of 322 eligible participants with T2DM who were divided into mild and normal cognitive groups were enrolled in this retrospective study. Demographic data, laboratory data and imaging markers of CSVD were collected. The total CSVD burden score was calculated by combining the different CSVD markers. Step-backward multivariable logistic regression analysis with the Akaike information criterion was applied to select significant predictors and develop a best-fit predictive nomogram. The performance of the nomogram was assessed in terms of discriminative ability, calibrated ability, and clinical usefulness. Results: The nomogram model consisted of five variables: age, education, hemoglobin A1c level, serum homocysteine level, and total CSVD burden score. A nomogram with these variables showed good discriminative ability (area under the receiver operating characteristic curve was 0.801 in internal verification). In addition, the Hosmer-Lemeshow test (χ2 =9.226, P=0.417) and bootstrap-corrected calibration plot indicated that the nomogram had good calibration. The Brier score of the predictive model was 0.178. Decision curve analysis demonstrated that when the threshold probability ranged between 16% and 98%, the use of the nomogram to predict mild VCI in patients with T2DM provide a greater net benefit. Conclusions: The nomogram, composed of age, education, stroke, HbA1c level, Hcy level, and total CSVD burden score, had good predictive accuracy and may provide clinicians with a practical tool for predicting the risk of mild VCI in T2DM patients.

6.
Front Microbiol ; 15: 1380805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601927

RESUMO

Introduction: Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods: In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results: The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion: This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.

7.
Acta Pharm Sin B ; 14(4): 1814-1826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572113

RESUMO

Efficient translation mediated by the 5' untranslated region (5' UTR) is essential for the robust efficacy of mRNA vaccines. However, the N1-methyl-pseudouridine (m1Ψ) modification of mRNA can impact the translation efficiency of the 5' UTR. We discovered that the optimal 5' UTR for m1Ψ-modified mRNA (m1Ψ-5' UTR) differs significantly from its unmodified counterpart, highlighting the need for a specialized tool for designing m1Ψ-5' UTRs rather than directly utilizing high-expression endogenous gene 5' UTRs. In response, we developed a novel machine learning-based tool, Smart5UTR, which employs a deep generative model to identify superior m1Ψ-5' UTRs in silico. The tailored loss function and network architecture enable Smart5UTR to overcome limitations inherent in existing models. As a result, Smart5UTR can successfully design superior 5' UTRs, greatly benefiting mRNA vaccine development. Notably, Smart5UTR-designed superior 5' UTRs significantly enhanced antibody titers induced by COVID-19 mRNA vaccines against the Delta and Omicron variants of SARS-CoV-2, surpassing the performance of vaccines using high-expression endogenous gene 5' UTRs.

8.
Brain Behav ; 14(3): e3442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450968

RESUMO

BACKGROUND: The association of systolic blood pressure (SBP) and ischemic stroke outcome has recently been proved to be varied at different time points within 72 h after acute ischemic stroke onset; however, the specific status of how SBP affects prognosis at different time points within 72 h after endovascular treatment (EVT) among patients with large vessel occlusion (LVO) remains unclear. METHODS: Consecutive LVO patients treated with EVT were enrolled in our study. BP data were collected at eight time points (1, 2, 4, 8, 16, 24, 48, and 72 h post-EVT). Outcome measure of interest was functional dependence, which was defined as mRS >2 at 90 days. RESULTS: A total of 406 LVO patients treated with EVT from 2016 to 2022 were included. At 16 h after EVT, the relationship between SBP and functional dependence showed a nonlinear association. At other time points after EVT, SBP had linear relationships with functional dependence. Furthermore, higher SBP, as either a linear or quadratic term, had an adverse effect on functional outcome. In addition, three SBP trajectories were observed, and the high-to-low group was independently associated with functional dependence. CONCLUSION: Taken together, higher SBP within the first 72 h after EVT has a time-dependent association with adverse clinical outcomes. Optimal blood pressure management during the first 72 h after EVT may be important to improve clinical outcome.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , AVC Isquêmico , Humanos , Pressão Sanguínea
9.
Plant Physiol ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431524

RESUMO

Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that one gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.

10.
Opt Lett ; 49(6): 1611, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489463

RESUMO

This publisher's note contains a correction to Opt. Lett.49, 674 (2024)10.1364/OL.509981.

11.
Heliyon ; 10(6): e27597, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38500998

RESUMO

Background: /aims: Atherosclerosis (AS) is the common pathological basis of a variety of cardiovascular diseases (CVD), and has become the main cause of human death worldwide, and the incidence is increasing and younger trend. Ginsenoside Rb1 (Rb1), an important monomer component of the traditional Chinese herb ginseng, known for its ability to improve blood lipid disorders and anti-inflammatory. In addition, Rb1 was proved to be an effective treatment for AS. However, the effect of Rb1 on AS remains to be elucidated. The aim of this study was to investigate the mechanisms of Rb1 in ameliorating AS induced by high-fat diet (HFD). Materials and methods: In this study, we developed an experimental AS model in Sprague-Dawley rats by feeding HFD with intraperitoneal injection of vitamin D3. The potential therapeutic mechanism of Rb1 in AS rats was investigated by detecting the expression of inflammatory factors, microbiome 16S rRNA gene sequencing, short-chain fatty acids (SCFAs) targeted metabolomics and untargeted metabolomics. Results: Rb1 could effectively alleviate the symptoms of AS and suppress the overexpression of inflammation-related factors. Meanwhile, Rb1 altered gut microbial composition and concentration of SCFAs characterized by Bacteroidetes, Actinobacteria, Lactobacillus, Prevotella, Oscillospira enrichment and Desulfovibrio depletion, accompanied by increased production of acetic acid and propionic acid. Moreover, untargeted metabolomics showed that Rb1 considerably improved faecal metabolite profiles, particularly arachidonic acid metabolism and primary bile acid biosynthesis. Conclusion: Rb1 ameliorated the HFD-induced AS, and the mechanism is related to improving intestinal metabolic homeostasis and inhibiting systemic inflammation by regulating gut microbiota.

12.
Zool Res ; 45(2): 367-380, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485506

RESUMO

Osteoporosis is a prevalent metabolic bone disease. While drug therapy is essential to prevent bone loss in osteoporotic patients, current treatments are limited by side effects and high costs, necessitating the development of more effective and safer targeted therapies. Utilizing a zebrafish ( Danio rerio) larval model of osteoporosis, we explored the influence of the metabolite spermine on bone homeostasis. Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption. Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity. Notably, spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae. At the molecular level, Rac1 was identified as playing a pivotal role in mediating the anti-osteoporotic effects of spermine, with P53 potentially acting downstream of Rac1. These findings were confirmed using mouse ( Mus musculus) models, in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions, suggesting strong potential as a bone-strengthening agent. This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development, highlighting pivotal molecular mediators. Given their efficacy and safety, human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.


Assuntos
Osteoporose , Doenças dos Roedores , Humanos , Camundongos , Animais , Peixe-Zebra , Espermina/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Osteoporose/veterinária , Prednisolona/efeitos adversos , Glucocorticoides , Doenças dos Roedores/induzido quimicamente , Doenças dos Roedores/tratamento farmacológico
13.
BMC Mol Cell Biol ; 25(1): 10, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523262

RESUMO

BACKGROUND: OP9 mouse stromal cell line has been widely used to induce differentiation of human embryonic stem cells (hESCs) into hematopoietic stem/progenitor cells (HSPCs). However, the whole co-culture procedure usually needs 14-18 days, including preparing OP9 cells at least 4 days. Therefore, the inefficient differentiation system is not appreciated. We aimed to optimize the culture conditions to improve differentiation efficiency. METHODS: In the experimental group, we set six different densities of OP9 cells and just cultured them for 24 h before co-culture, and in the control group, OP9 cells were cultured for 4 days to reach an overgrown state before co-culture. Then we compared the hematopoietic differentiation efficiency among them. RESULTS: OP9 cells were randomly assigned into two groups. In the experimental group, six different plated numbers of OP9 cells were cultured for 1 day before co-culture with hESCs. In contrast, in the control group, OP9 cells were cultured for 4 days at a total number of 3.1 × 104 cells/cm2 in a 6-well plate to reach an overgrown state before co-culture. Hematopoietic differentiation was evaluated with CD34 immunostaining, and compared between these two groups. We could not influence the differentiation efficiency of OP9 cells with a total number of 10.4 × 104 cells/cm2 in a 6-well plate which was cultured just for 1 day, followed by co-culture with hESCs. It reached the same differentiation efficiency 5 days earlier than the control group. CONCLUSION: The peak of CD34 + cells appeared 2 days earlier compared to the control group. A total number of 1.0 × 106 cells in a 6-well plate for OP9 cells was appropriate to have high differentiation efficiency.


Assuntos
Células-Tronco Hematopoéticas , Células Estromais , Animais , Camundongos , Humanos , Células Estromais/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Células Cultivadas
14.
Int Immunopharmacol ; 132: 111889, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531202

RESUMO

Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.

15.
Mol Neurobiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509397

RESUMO

Neuropathic pain (NPP) is a common type of chronic pain. Glial cells, including astrocytes (AS), are believed to play an important role in the progression of NPP. AS cells can be divided into various types based on their expression profiles, among which A1 and A2 types have clear functions. A1-type AS cells are neurotoxic, while A2-type AS cells exert neuroprotective functions. Some types of lysophosphatidic acid receptors (LPAR) have been shown to play a role in NPP. However, it remains unclear how AS cells and LPAR6 affect the occurrence and progression of NPP. In this study, we established a mouse model of chronic constriction injury (CCI) to simulate NPP. It was found that the expression of LPAR6 in AS cells of the spinal dorsal horn was increased in the CCI model, and the thresholds of mechanical and thermal pain were elevated after knocking out LPAR6, indicating that LPAR6 and AS cells participated in the occurrence of NPP. The experiment involved culturing primary AS cells and knocking down LPAR6 by Lentivirus. The results showed that the NF-κB signal pathway was activated and the number of A1-type AS cells increased in the CCI model. However, LPAR6 knockdown inhibited the NF-κB signal pathway and A1-type AS cells. The results of the mRNA sequencing and immunoprecipitation test indicate an interaction between LPAR6 and ROCK2. Inhibiting ROCK2 by Y-27632 increased mechanical and thermal pain thresholds and alleviated NPP at the molecular level. The study presents evidence that LPAR6 activates the NF-κB pathway through ROCK2 and contributes to the progression of NPP by increasing A1-type AS and decreasing A2-type AS. This suggests that LPAR6 could be a potential therapeutic target for alleviating NPP. Clinical applications that are successful can offer new therapeutic options, enhance the quality of life for patients, and potentially uncover new mechanisms for pain modulation.

16.
BMC Endocr Disord ; 24(1): 40, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504196

RESUMO

PURPOSE: Previous observational studies have revealed a potential link between non-alcoholic fatty liver disease (NAFLD) and gestational diabetes mellitus (GDM), but their causal relationship remains unclear. Thus, this study aimed to examine whether a causal link exists between genetically determined NAFLD and GDM. METHODS: Utilizing publicly accessible genome-wide association studies (GWAS), a two-sample bidirectional Mendelian randomization (MR) analysis was conducted. The GWASs data pertaining to NAFLD and GDM were obtained from the UK Biobank Consortium and FinnGen database in primary analysis, respectively. The random-effects inverse variance weighted (IVW) method was utilized as primary analysis method. Several sensitivity analyses were utilized to verify the robustness of the results. Additionally, we also analyzed the causal effect of potential shared influencing factors on these two conditions. RESULTS: The result of the IVW method showed that there was no significant causal relationship between genetically determined NAFLD and GDM (OR = 0.98, 95% CI: 0.90-1.07, P = 0.691). Similarly, our reverse MR analysis failed to detect a significant causal effect of GDM on NAFLD (OR = 1.14, 95% CI: 0.97-1.36, P = 0.118). Sensitivity analyses further confirmed the robustness of the results. Moreover, we found that genetically determined body mass index, waist-to-hip ratio, triglycerides, and television viewing time may be positively correlated with NAFLD and GDM, while high-density lipoprotein cholesterol and apolipoprotein A-I may both be negatively correlated with NAFLD and GDM. CONCLUSIONS: The current bidirectional MR study failed to provide sufficient genetic evidence for the causal relationship between NAFLD and GDM.


Assuntos
Diabetes Gestacional , Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Gravidez , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Índice de Massa Corporal
17.
Heliyon ; 10(6): e27804, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510037

RESUMO

Background: Polyphyllin, a natural compound derived primarily from the Paris genus, manifests its anticancer properties. Extensive research on its therapeutic potential in cancers has been reported. However, there is no systematical analysis of the general aspects of research on polyphyllin by bibliometric analysis. The aim of this study is to visualize emerging trends and hotspots and predict potential research directions in this field. Methods: In this study, we collected relevant research articles from the Web of Science Core Collection Bibliometrics. Using R-bibliometrix, we analyzed the research status, hotspots, frontiers, and development trends of polyphyllin in high-incidence cancers. To conduct a comprehensive visual analysis, CiteSpace and VOSviewer were used for visual analysis of authors, countries, institutions, keywords, and co-cited references within the published articles. Results: A total of 257 articles focusing on the research of polyphyllin in high-incidence cancers were retrieved from the WOSCC database, covering the period from 2005 to 2023. The analysis revealed a consistent increasing trend in annual publications during this timeframe. Notably, China emerged as the most productive country, with Tianjin University leading the institutions. The Journal of Ethnopharmacology stood out as the most prominent journal in this field, while Gao WY emerged as the most prolific author. Polyphyllin VI, polyphyllin II, and polyphyllin VII have emerged as the latest research hotspots. Additionally, the investigation of autophagy and its associated mechanisms has gained significant attention as a novel research direction. Conclusion: This study presents a novel visualization of the research on polyphyllin saponins in the field of highly prevalent cancers using bibliometric analysis. The investigation of polyphyllin D has emerged as a primary focus in this field, with lung cancer, breast cancer, and liver cancer being the key areas of current research. Lastly, polyphyllin saponins show potential application in the field of cancer.

18.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543028

RESUMO

The burgeoning demand for miniaturized energy storage devices compatible with the miniaturization trend of electronic technologies necessitates advancements in micro-supercapacitors (MSCs) that promise safety, cost efficiency, and high-speed charging capabilities. However, conventional aqueous MSCs face a significant limitation due to their inherently narrow electrochemical potential window, which restricts their operational voltage and energy density compared to their organic and ionic liquid counterparts. In this study, we introduce an innovative aqueous NaCl/H2O/EG hybrid gel electrolyte (comprising common salt (NaCl), H2O, ethylene glycol (EG), and SiO2) for Ti3C2Tx MXene MSCs that substantially widens the voltage window to 1.6 V, a notable improvement over traditional aqueous system. By integrating the hybrid electrolyte with 3D-printed MXene electrodes, we realized MSCs with remarkable areal capacitance (1.51 F cm-2) and energy density (675 µWh cm-2), significantly surpassing existing benchmarks for aqueous MSCs. The strategic formulation of the hybrid electrolyte-a low-concentration NaCl solution with EG-ensures both economic and environmental viability while enabling enhanced electrochemical performance. Furthermore, the MSCs fabricated via 3D printing technology exhibit exceptional flexibility and are suitable for modular device integration, offering a promising avenue for the development of high-performance, sustainable energy storage devices. This advancement not only provides a tangible solution to the challenge of limited voltage windows in aqueous MXene MSCs but also sets a new precedent for the design of next-generation MSCs that align with the needs of an increasingly microdevice-centric world.

19.
Nutr Res ; 126: 1-10, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555686

RESUMO

Maternal nutritional deficiencies during pregnancy result in birth defects and elevate the risk of cardiovascular diseases and metabolic diseases. Accumulating evidence suggests that deficiency of copper, a fundamental trace element involved in several pivotal physiological processes, promotes the onset of multiple diseases, notably heart and liver diseases. Yet, exploration into the effects of maternal copper deficiency (CuD) on offspring is still limited. In this study, we hypothesized that maternal CuD induced cardiomyopathy and liver injury in offspring through the activation of autophagy. We established a maternal CuD mouse model by feeding pregnant C57BL/6 mice with a CuD diet until the end of the experiment. Echocardiography, histological analysis, western blotting, and quantitative polymerase chain reaction were performed on offspring at postnatal day 14. We found that maternal CuD caused growth retardation and early postnatal death in the offspring. Furthermore, our results revealed that CuD induced cardiac systolic dysfunction, cardiac hypertrophy, hepatic steatosis, and liver injury. Moreover, higher expression of LC3 and lower expression of p62 were observed in the heart tissues and liver tissues of CuD mice compared with the control group, indicating that CuD induced autophagy activation. In conclusion, maternal CuD caused severely deleterious effects on the heart and liver of the offspring via activating autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...