Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(5): 1638-1647, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303942

RESUMO

The overall photocatalytic CO2 reduction reaction presents an eco-friendly approach for generating high-value products, specifically ethanol. However, ethanol production still faces efficiency issues (typically formation rates <605 µmol g-1 h-1). One significant challenge arises from the difficulty of continuously transporting CO2 to the catalyst surface, leading to inadequate gas reactant concentration at reactive sites. Here, we develop a mesoporous superhydrophobic Cu2O hollow structure (O-CHS) for efficient gas transport. O-CHS is designed to float on an aqueous solution and act as a nano fence, effectively impeding water infiltration into its inner space and enabling CO2 accumulation within. As CO2 is consumed at reactive sites, O-CHS serves as a gas transport channel and diffuser, continuously and promptly conveying CO2 from the gas phase to the reactive sites. This ensures a stable high CO2 concentration at reactive sites. Consequently, O-CHS achieves the highest recorded ethanol formation rate (996.18 µmol g-1 h-1) to the best of our knowledge. This strategy combines surface engineering with geometric modulation, providing a promising pathway for multi-carbon production.

2.
Nanoscale ; 16(8): 3977-3984, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345338

RESUMO

Carbon-based materials that process a wide bandgap, high mechanical performance, thermal stability and adjustable characteristics are in high demand. Auxeticity is one of the factors that helps enhances the mechanical performance. Based on this concept, two stable layered carbon-based materials, namely α-C2O and ß-C2O, are proposed. A new mechanism (multi-directional negative Poisson's ratio (NPR) effect) is induced, which is attributed to the interaction of modified pz orbitals between interfacial layers. This effect introduces high mechanical properties into materials. Besides, all layered materials are ultrawide bandgap semiconductors, which endows them comparable dielectric properties to those of diamond. Furthermore, α-BK-C2O would maintain its configuration over 2000 K, thereby guaranteeing extremely high thermodynamic stability. So far, these advantages suggested that these carbon-based layer materials could be used in nanoelectronics, especially in electromechanical devices.

3.
Phys Chem Chem Phys ; 25(46): 31628-31635, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37982294

RESUMO

Two-dimensional (2D) layered transition metal dichalcogenides such as MoS2 have been viewed as the most favorable candidates for replacing noble metals in catalyzing the hydrogen evolution reaction in water splitting owing to their earth abundance, superb chemical stability, and appropriate Gibbs free energy. However, due to its low number of catalytic sites and basal catalytic inertia, the pristine MoS2 displayed intrinsically unsatisfactory HER catalytic activity. Here, the hydrogen evolution catalytic activities of nanostructured MoS2 powder before and after plasma modification with nitrogen doping were experimentally compared, and the influence of treatment parameters on the hydrogen evolution catalytic performance of MoS2 has been studied. The feasibility of regulating hydrogen evolution catalytic activity by nitrogen doping of MoS2 was verified based on density functional theory calculations. Our work demonstrates a more convenient and faster way to develop cheap and efficient MoS2-based catalysts for electrochemical hydrogen evolution reactions. Additionally, theoretical studies reveal that N-doped MoS2 exhibits strong hybridization between Mo-d and N-p states, causing magnetism to evolve, as confirmed by experiments.

4.
ACS Appl Mater Interfaces ; 15(38): 44962-44973, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713588

RESUMO

Solid-state lithium batteries (SSBs) have been widely researched as next-generation energy storage technologies due to their high energy density and high safety. However, lithium dendrite growth through the solid electrolyte usually results from the catastrophic interface contact between the solid electrolyte and lithium metal. Herein, a gradient nitrogen-doping strategy by nitrogen plasma is introduced to modify the surface and subsurface of the garnet electrolyte, which not only etches the surface impurities (e.g., Li2CO3) but also generates an in situ formed Li3N-rich interphase between the solid electrolyte and lithium anode. As a result, the Li/LLZTON-3/Li cells show a low interfacial resistance (3.50 Ω cm2) with a critical current density of about 0.65 mA cm-2 at room temperature and 1.60 mA cm-2 at 60 °C, as well as a stable cycling life for over 1300 h at 0.4 mA cm-2 at room temperature. A hybrid solid-state full cell paired with a LiFePO4 cathode exhibits excellent cycling durability and rate performance at room temperature. These results demonstrate a rational strategy to enable lithium utilization in SSBs.

5.
Phys Chem Chem Phys ; 25(32): 21408-21415, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530583

RESUMO

Enriching the electronic properties of superhard materials is very important to extend their applications, and some superhard materials with metallic or superconducting characteristics have been designed via theoretical or experimental methods. However, their magnetic features have scarcely been studied, since most of them are limited to nonmagnetic ordering. Here, with the help of first-principles calculations, a series of C4N3 compounds are designed by stacking C4N3 sheets with different sequences. As expected, some of them exhibit both magnetic and superhard characteristics. Notably, all these compounds exhibit dynamic and mechanical stabilities, indicating that their dynamic and mechanical stabilities are independent of the stacking sequence. Among them, the ABC-stacked one is energetically favorable, and it exhibits antiferromagnetic ordering and has a hardness of ∼54.0 GPa, and the electronic calculations show that it is a semiconductor with a direct band gap of ∼1.20 eV. Besides, the magnetism of all magnetic C4N3 compounds is caused by the lower coordinated atoms, and the magnetic moments are located on three-fold C or two-fold coordinated N atoms. Additionally, the magnetic property is deeply dependent on the external pressure. This work opens a potential way to design magnetic superhard materials and can arouse their applications in the spintronic field.

6.
Materials (Basel) ; 16(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37445142

RESUMO

Benefiting from their high surface areas, excellent conductivity, and environmental-friendliness, porous carbon nanospheres (PCSs) are of particular attraction for the anodes of lithium-ion batteries (LIBs). However, the regulation of carbon nanospheres with controlled pore distribution and graphitization for delivering high Li+ storage behavior is still under investigation. Here, we provide a facile approach to obtain PCSs with different microstructures via modulating the carbonization temperatures. With the processing temperature of 850 °C, the optimized PCSs exhibit an increased surface area, electrical conductivity, and enhanced specific capacity (202 mA h g-1 at 2 A g-1) compared to the PCSs carbonized at lower temperatures. Additionally, PCSs 850 provide excellent cyclability with a capacity retention of 83% for 500 cycles. Such work can pave a new pathway to achieve carbon nanospheres with excellent performances in LIBs.

7.
Nanoscale Adv ; 5(11): 2979-2985, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260497

RESUMO

Based on the first-principles calculations, we investigated the ferroelectric properties of two-dimensional (2D) materials NbO2X (X = I, Br). Our cleavage energy analysis shows that exfoliating one NbO2I monolayer from its existing bulk counterpart is feasible. The phonon spectrum and molecular dynamics simulations confirm the dynamic and thermal stability of the monolayer structures for both NbO2I and NbO2Br. Total energy calculations show that the ferroelectric phase is the ground state for both materials, with the calculated in-plane ferroelectric polarizations being 384.5 pC m-1 and 375.2 pC m-1 for monolayers NbO2I and NbO2Br, respectively. Moreover, the intrinsic Curie temperature TC of monolayer NbO2I (NbO2Br) is as high as 1700 K (1500 K) from Monte Carlo simulation. Furthermore, with the orbital selective external potential method, the origin of ferroelectricity in NbO2X is revealed as the second-order Jahn-Teller effect. Our findings suggest that monolayers NbO2I and NbO2Br are promising candidate materials for practical ferroelectric applications.

8.
Chemistry ; 29(40): e202300658, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37195897

RESUMO

The overall photocatalytic CO2 reduction reaction (PCRR), which uses solar energy to convert CO2 and H2 O into chemical feedstocks or fuels without sacrificial reagents, plays a momentous role in CO2 utilization and solar energy conversion. However, significant challenges remain in achieving efficient conversion. Researchers have explored various strategies to realize the overall PCRR efficiently. In this Review, we first explain the criteria for evaluating the overall PCRR and then summarize the following strategies developed over the past decade to promote it: self-driving material development, Z-scheme heterojunction construction, cocatalyst loading, heteroatom doping, surface vacancy creation, and carrier-material matching. Finally, we discuss essential future research directions in the field. Through this comprehensive Review, we aim to provide strategic guidance for the development of efficient overall PCRR systems.

9.
Phys Chem Chem Phys ; 25(20): 13913-13922, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184027

RESUMO

Electrocatalysts for the oxygen reduction reaction (ORR) are extremely crucial for advanced energy conversion technologies, such as fuel cell batteries. A promising ORR catalyst usually should have low overpotentials, rich catalytic sites and low cost. In the past decade, single-atom catalyst (SAC) TM-N4 (TM = Fe, Co, etc.) embedded graphene matrixes have been widely studied for their promising performance and low cost for ORR catalysis, but the effect of coordination on the ORR activity is not fully understood. In this work, we will employ density functional theory (DFT) calculations to systematically investigate the ORR activity of 40 different 3d transition metal single-atom catalysts (SACs) supported on nitrogen-doped graphene supports, ranging from vanadium to zinc. Five different nitrogen coordination configurations (TM-NxC4-x with x = 0, 1, 2, 3, and 4) were studied to reveal how C/N substitution affects the ORR activity. By looking at the stability, free energy diagram, overpotential, and scaling relationship, our calculation showed that partial C substitution can effectively improve the ORR performance of Mn, Co, Ni, and Zn-based SACs. The volcano plot obtained from the scaling relationship indicated that the substitution of N by C could distinctively affect the potential-limiting step in the ORR, which leads to the enhanced or weakened ORR performance. Density of states and d-band center analysis suggested that this coordination-tuned ORR activity can be explained by the shift of the d-band center due to the coordination effect. Finally, four candidates with optimal ORR activity and dynamic stability were proposed from the pool: NiC4, CoNC3, CrN4, and ZnN3C. Our work provides a feasible designing strategy to improve the ORR activity of graphene-based TM-N4 SACs by tuning the coordination environment, which may have potential implication in the high-performance fuel cell development.

10.
Materials (Basel) ; 16(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110052

RESUMO

Extensive research has been conducted on the development of high-rate and cyclic stability anodes for lithium batteries (LIBs) due to their high energy density. Molybdenum disulfide (MoS2) with layered structure has garnered significant interest due to its exceptional theoretic Li+ storage behavior as anodes (670 mA h g-1). However, achieving a high rate and long cyclic life of anode materials remains a challenge. Herein, we designed and synthesized a free-standing carbon nanotubes-graphene (CGF) foam, then presented a facile strategy to fabricate the MoS2-coated CGF self-assembly anodes with different MoS2 distributions. Such binder-free electrode possesses the advantages of both MoS2 and graphene-based materials. Through rational regulation of the ratio of MoS2, the MoS2-coated CGF with uniformly distributed MoS2 exhibits a nano pinecone-squama-like structure that can accommodate the large volume change during the cycle process, thereby significantly enhancing the cycling stability (417 mA h g-1 after 1000 cycles), ideal rate performance, and high pseudocapacitive behavior (with a 76.6% contribution at 1 mV s-1). Such a neat nano-pinecone structure can effectively coordinate MoS2 and carbon framework, providing valuable insights for the construction of advanced anode materials.

11.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903739

RESUMO

Layered transition metal dichalcogenides (TMDs) provide a favorable research platform for the advancement of spintronics and valleytronics because of their unique spin-valley coupling effect, which is attributed to the absence of inversion symmetry coupled with the presence of time-reversal symmetry. To maneuver the valley pseudospin efficiently is of great importance for the fabrication of conceptual devices in microelectronics. Here, we propose a straightforward way to modulate valley pseudospin with interface engineering. An underlying negative correlation between the quantum yield of photoluminescence and the degree of valley polarization was discovered. Enhanced luminous intensities were observed in the MoS2/hBN heterostructure but with a low value of valley polarization, which was in stark contrast to those observed in the MoS2/SiO2 heterostructure. Based on the steady-state and time-resolved optical measurements, we reveal the correlation between exciton lifetime, luminous efficiency, and valley polarization. Our results emphasize the significance of interface engineering for tailoring valley pseudospin in two-dimensional systems and probably advance the progression of the conceptual devices based on TMDs in spintronics and valleytronics.

12.
Phys Chem Chem Phys ; 25(12): 8631-8640, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36891910

RESUMO

Piezoelectric materials have been reported to possess catalytic activity under mechanical excitation, such as by ultrasonic waves or collisions. Energy band theory (EBT) is often used to explain the piezocatalytic phenomenon caused by the strain-induced charge separation, but the correlation between the piezoelectric polarization and catalytic activity has still not been fully understood in early theoretical studies with the EBT model. To reveal the intrinsic connection between the piezoelectric feature and surface catalytic activity, in this work, we employ first-principles Density Functional Theory (DFT) to investigate the prototype piezocatalyst BaTiO3 (001) surface (BTO). Our simulation shows that the thickness of BTO has a significant impact on the band structure, polarization charge distribution and the surface work function of both positively and negatively polarized sides. As the driving force of piezocatalysis, the electrostatic potential difference (piezopotential) of the two sides shows strong a correlation with the band structure change under the applied strain, which determines the theoretical catalytic activity of BaTiO3 (001) for water splitting. Finally, we reveal the piezoelectric effects on the surface adsorption energy of H and OH species, which provide a new insight into the mechanism of piezocatalysis. Our work provides a new and in-depth physical insight into the fundamental mechanism of piezocatalysis, which may have important implications for the application of piezocatalysts in water treatment and renewable energy technologies.

13.
J Colloid Interface Sci ; 640: 78-90, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841174

RESUMO

In this work, a three-dimensional (3D) multifunctional Co/CoFeNC@N-CNF electrocatalyst was first synthesized by the pyrolysis of a CoFe bimetal-centred metal-organic framework (MOF) and bacterial cellulose (BC). The initial potential and half-wave potential of Co/CoFeNC@N-CNF can reach 0.99 V and 0.8 V. Low overpotentials of 320 mV and 155 mV are purely required for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) at a current density of 10 mA cm-2, respectively. The electrochemical performance of Co/CoFeNC@N-CNF exceeds most bimetal-MOF-derived electrocatalysts reported to date. The superior electrochemical performance is mainly due to abundant active sites, high-efficiency electrochemical performance, and high electron transport efficiency. In addition, the theoretical calculation results show that the synergistic effect of the CoFe bimetal can optimize the adsorption energy for intermediates of the oxygen reduction reaction (ORR), OER and HER. Furthermore, we assembled a mold and solid Zn-air battery using the catalyst as an air cathode catalyst, demonstrating the maximum power densities of 292 mW cm-2 and 178 mW cm-2. The 3D structure electrocatalysts derived from the MOF and bacterial cellulose provide an innovative and instructive approach for the design of diverse energy nanomaterials.

14.
Nanoscale ; 15(6): 2578-2585, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36688260

RESUMO

Atomically thin two-dimensional (2D) crystals have piqued the curiosity of researchers due to their unique features and potential applications, such as catalysis and ion batteries. One essential and desirable aspect of 2D materials is that they have a large photoreactive contact surface for optical absorption. Here, a 2D crystal is proposed that possesses a moderate adjustable indirect band gap of 1.95 eV (HSE06) and exhibits ultrahigh visible light harvesting with a absorption coefficient of up to 108 cm-1 in the ∼380 to 800 nm range of the visible light spectrum. Besides that, the indirect band gap can be converted to a direct one under biaxial strain. By means of density functional theory, the 2D Al2Te5 monolayer displays great stability and promise of experimental fabrication. These advantages will provide considerable application potential for future photovoltaics (PV) devices.

15.
Chemistry ; 29(8): e202202992, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36349874

RESUMO

Exploring highly active and robust self-supporting air electrodes is the key for flexible Zn-air batteries (FZABs). Therefore, we report a novel 3D structural bimetal-based self-supporting electrode consisting of hybrid Cu, Co nanoparticles co-modified nitrogen-doped carbon nanosheets on carbon cloth (Cu, Co NPs@NCNSs/CC), which displays excellent electrochemical activity and durability of the oxygen reduction/evolution reaction (ORR/OER). The Cu, Co NPs@NCNSs/CC exhibits a half-wave potential of 0.863 V toward ORR and an overpotential of 225 mV at 10 mA cm-2 toward OER, owing to its exposed bimetallic sites accelerating the kinetic reaction. In addition, the density functional theory calculation proves that the synergistic effect of CuCo sites favors ORR and OER. Hence, the FZABs based on Cu, Co NPs@NCNSs/CC achieve a larger open-circuit potential (1.45 V), higher energy density (130.10 mW cm-2 ), and outstanding cycling stability. All remarkable results demonstrate valuable enlightenment for seeking advanced energy materials of portable and wearable electronics.

16.
Nanoscale ; 14(45): 17065-17071, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367305

RESUMO

Strain engineering has been extensively applied as a promising strategy in the regulation of physical and chemical properties of two-dimensional (2D) materials, which remarkably broadens their application prospects in flexible electronics and chip manufacturing. However, the difficulty in fixing a flexible substrate under compression and the challenge in adjusting the focal distance have hindered the in-depth investigation of compressive strain. Here, we fabricated a home-made strain loading device and proposed a compressive strain measurement method, via which the strain-dependent optical absorption properties of MoS2 monolayers under compression has been studied. According to the measured optical absorption spectra, the first blueshift and then redshift trend under compression was obviously observed. The reliability of the experimentally observed trend in peak position shift was theoretically verified by density functional theory calculation. Our work offers a feasible way to characterize optical properties of 2D materials under compressive strain and expands the space for the development of next-generation micro/nano-scale optoelectronic devices.

17.
Nanotechnology ; 34(4)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301681

RESUMO

Graphene nanomesh (GNM), an emerging graphene nanostructure with a tunable bandgap, has gained tremendous interests owing to its great potentials in the fields of high-performance field-effect transistors, electrochemical sensors, new generation of spintronics and energy converters. In previous works, GNM has been successfully obtained on copper foil surface by employing hydrogen as an etching agent. A more facile, and low-cost strategy for the preparation of GNM is required. Here, we demonstrated a direct and feasible means for synthesizing large-area GNM with symmetrical fractal patterns via a hydrogen-free chemical vapor deposition method. The influences of the growth time and the gas source flow on the morphology of GNM patterns were systematically investigated. Then, we exhibited the key reaction details and proposed a growth mechanism of the GNM synthesis during the hydrogen-free chemical vapor deposition process. This work provides a valuable guidance for quality control in GNM mass production.

18.
Small ; 18(49): e2204634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310123

RESUMO

The precise facet modulation of transition metal nitrides (TMNs) has been regarded as an essential issue in boosting electrocatalytic H2 production. Compared to thermal nitridation, the plasma technique serves as a favorable alternative to directly achieve TMNs, but the apparent surface heating effect during plasma treatment inevitably causes the thermally stabilized nitride formation, resulting in the deterioration of the highly reactive facet. To optimize the hydrogen evolution reaction (HER) behavior, an auxiliary cooling assisted plasma system to selectively expose Ni3 N (2-10) with favorable activity by controlling surface heating during plasma nitridation is designed. The resultant nickel nitride (cp-Ni3 N) nano-framework delivers exceptional catalytic performance, evidenced by its low overpotential of 58 and 188 mV at the current density of 10 and 100 mA cm-2 for HER, in stark comparison with that of normal plasma and thermally fabricated Ni3 N. Operando plasma diagnostics along with numerical simulation further confirm the effect of surface heating on typical plasma parameters as well as the Ni3 N nanostructure, indicating the key factor responsible for the high-performance nitride electrocatalyst.

19.
Nanoscale ; 14(38): 14038-14045, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36111827

RESUMO

Semiconducting two-dimensional intrinsic silicon nanosheets are ideal materials for many applications in modern industry, since they are the only ones that can match well with previous silicon components. However, such materials are still lacking, especially those with moderate band gaps. In this work, by using first-principles theory, a series of two-dimensional intrinsic silicon nanosheets are assembled from zigzag silicene nanoribbons with different widths. The result shows that all the nanosheets behave as semiconductors, although some of them possess small band gaps of dozens of meV. Two of them, individually assembled from the two narrowest zigzag silicene nanoribbons, possess the largest indirect band gaps of 0.20 and 0.26 eV, respectively. Under low compressive strain, these two nanosheets would turn into quasi-direct or direct band gap semiconductors, and the gaps increase up to 0.62 or 0.54 eV, respectively. Due to the electron transfer from three-fold to four-fold coordinated Si atoms, the charge carriers prefer to transport along the zigzag direction, and electrons and holes transport in the respective Si chains. Interestingly, the investigation of Poisson's ratio reveals that the assembled silicon nanosheets have a negative Poisson's ratio in certain strain ranges if the width n of zigzag silicene nanoribbons is even. This work provides a new approach to design semiconducting silicon nanosheets and benefits to the applications of two-dimensional silicon nanosheets in many electronic and mechanical fields.

20.
Small ; 18(42): e2204143, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36108133

RESUMO

Magnetic field enhanced electrocatalysis has recently emerged as a promising strategy for the development of a viable and sustainable hydrogen economy via water oxidation. Generally, the effects of magnetic field enhanced electrocatalysis are complex including magnetothermal, magnetohydrodynamic and spin selectivity effects. However, the exploration of magnetic field effect on the structure regulation of electrocatalyst is still unclear whereas is also essential for underpinning the mechanism of magnetic enhancement on the electrocatalytic oxygen evolution reaction (OER) process. Here, it is identified that in a mixed NiFe2 O4 (NFO), a large magnetic field can force the Ni2+ cations to migrate from the octahedral (Oh ) sites to tetrahedral (Td ) sites. As a result, the magnetized NFO electrocatalyst (NFO-M) shows a two-fold higher current density than that of the pristine NFO in alkaline electrolytes. The OER enhancement of NFO is also observed at 1 T (NFO@1T) under an operando magnetic field. Our first-principles calculations further confirm the mechanism of magnetic field driven structure regulation and resultant OER enhancement. These findings provide a strategy of manipulating tetrahedral units of spinel oxides by a magnetic field on boosting OER performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...