Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527418

RESUMO

BACKGROUND AND AIMS: The geographic origin and evolutionary mechanisms underpinning the rich and distinctive New Caledonian flora remain poorly understood. This is due to the complex geological past of the island and to the scarcity of well-resolved species-level phylogenies. Here, we infer phylogenetic relationships and divergence times of New Caledonian palms, which comprise 40 species. We use this framework to elucidate the biogeography of New Caledonian palm lineages, and to explore how extant species may have formed. METHODS: A phylogenetic tree including 37 New Caledonian palm species and 77 relatives from tribe Areceae was inferred from 151 nuclear genes obtained by targeted sequencing. Fossil-calibrated divergence times were estimated, and ancestral ranges were inferred. Ancestral and extant ecological preferences in terms of elevation, precipitation and substrate were compared between New Caledonian sister species to explore their possible roles as drivers of speciation. KEY RESULTS: New Caledonian palms form four well-supported clades, inside which relationships are well resolved. Our results support the current classification, but suggest that Veillonia and Campecarpus should be resurrected, and fail to clarify whether Rhopalostylidinae is sister to or nested in Basseliniinae. New Caledonian palm lineages derive from New Guinean and Australian ancestors, which reached the island through at least three independent dispersal events between the Eocene and Miocene. Palms then dispersed out of New Caledonia at least five times, mainly towards Pacific islands. Geographic and ecological transitions associated with speciation events differed across time and genera. Substrate transitions were more frequently associated with older than younger events. CONCLUSIONS: Neighbouring areas and a mosaic of local habitats shaped New Caledonia's palm flora, and the island played a significant role in generating palm diversity across the Pacific region. This new spatio-temporal framework will enable population-level ecological and genetic studies to further unpick the mechanisms underpinning New Caledonian palm endemism.

2.
Nat Commun ; 15(1): 1330, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351066

RESUMO

Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.


Assuntos
Cidadania , Ecossistema , Humanos , Tamanho do Genoma , Espécies Introduzidas , Ecologia , Biodiversidade , Plantas/genética
3.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
4.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38264772

RESUMO

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Tamanho do Genoma , Genoma de Planta , Poliploidia , Plantas/genética , Filogenia
5.
Plant Cell ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824826

RESUMO

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

6.
Wellcome Open Res ; 8: 321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663793

RESUMO

We present a genome assembly from an individual Ailanthus altissima (tree of heaven; Streptophyta; Magnoliopsida; Sapindales; Simaroubaceae). The genome sequence is 939 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules. The mitochondrial and plastid genome assemblies are 661.1 kilobases and 161.1 kilobases long, respectively.

7.
Methods Mol Biol ; 2703: 83-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646939

RESUMO

The vascular flora of Britain and Ireland is a historically well-documented and clearly delimited study system that offers itself to large-scale analyses of ecology and species assemblages. However, such analyses require clean, curated, and taxonomically resolved data, which are often unavailable. In this chapter, we describe how to access and use a key data resource that combines a taxonomically stable species list with genetic data (genome size, chromosome counts, and DNA barcode information), ecological information (such as life-form, realized niche description, and geographic origin) and distribution records. The data resource enables and encourages the study of natural ecological and evolutionary patterns and processes within the vascular flora of Britain and Ireland.


Assuntos
Traqueófitas , Irlanda , Reino Unido , Evolução Biológica , Tamanho do Genoma
8.
Methods Mol Biol ; 2703: 111-122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646941

RESUMO

Genome size is a plant character with far-reaching implications, ranging from impacts on the financial and computing feasibility of sequencing and assembling genomes all the way to influencing the very ecology and evolution of species. The increasing recognition of the role of genome size in plant science has led to a rising demand for comprehensive and easily accessible sources of genome size data. The Plant DNA C-values database has established itself as a trusted and widely used central hub for users needing to access available plant genome size data, complemented with related cytogenetic (ploidy level) and karyological (chromosome number) information where available. Since its inception in 2001, the database has undergone six major updates to incorporate newly available genome size information, leading to the most recent release (Release 7.1), which comprises data for 12,273 species across all the major land plant and some algal lineages. Here we describe how to use the database efficiently, making use of its different query and filtering settings.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Tamanho do Genoma , Citogenética , DNA de Plantas/genética
9.
Trends Genet ; 39(10): 728-735, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37582671

RESUMO

Angiosperm diversity arises from trait flexibility and repeated evolutionary radiations, but the role of genomic characters in these radiations remains unclear. In this opinion article, we discuss how genome size can influence angiosperm diversification via its intricate link with cell size, tissue packing, and physiological processes which, in turn, influence the macroevolution of functional traits. We propose that integrating genome size, functional traits, and phylogenetic data across a wide range of lineages allows us to test whether genome size decrease consistently leads to increased trait flexibility, while genome size increase constrains trait evolution. Combining theories from molecular biology, functional ecology and macroevolution, we provide a framework to better understand the role of genome size in trait evolution, evolutionary radiations, and the global distribution of angiosperms.


Assuntos
Evolução Biológica , Magnoliopsida , Filogenia , Magnoliopsida/genética , Tamanho do Genoma , Ecologia
10.
New Phytol ; 239(6): 2389-2403, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438886

RESUMO

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Assuntos
Ecossistema , Traqueófitas , Tamanho do Genoma , Cidadania , Ploidias , Espécies Introduzidas , DNA
11.
Methods Mol Biol ; 2672: 115-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335471

RESUMO

Whole genome duplications (WGD) are frequent in many plant lineages; however, ploidy level variation is unknown in most species. The most widely used methods to estimate ploidy levels in plants are chromosome counts, which require living specimens, and flow cytometry estimates, which necessitate living or relatively recently collected samples. Newly described bioinformatic methods have been developed to estimate ploidy levels using high-throughput sequencing data, and these have been optimized in plants by calculating allelic ratio values from target capture data. This method relies on the maintenance of allelic ratios from the genome to the sequence data. For example, diploid organisms will generate allelic data in a 1:1 proportion, with an increasing number of possible allelic ratio combinations occurring in individuals with higher ploidy levels. In this chapter, we explain step-by-step this bioinformatic approach for the estimation of ploidy level.


Assuntos
Genoma , Ploidias , Humanos , Biologia Computacional , Poliploidia
12.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299136

RESUMO

Angiosperm genome sizes (GS) range ~2400-fold and comprise genes and their regulatory regions, repeats, semi-degraded repeats, and 'dark matter'. The latter represents repeats so degraded that they can no longer be recognised as repetitive. In exploring whether the histone modifications associated with chromatin packaging of these contrasting genomic components are conserved across the diversity of GS in angiosperms, we compared immunocytochemistry data for two species whose GS differ ~286-fold. We compared published data for Arabidopsis thaliana with a small genome (GS = 157 Mbp/1C) with newly generated data from Fritillaria imperialis, which has a giant genome (GS = 45,000 Mbp/1C). We compared the distributions of the following histone marks: H3K4me1, H3K4me2, H3K9me1, H3K9me2, H3K9me3, H3K27me1, H3K27me2, and H3K27me3. Assuming these histone marks are associated with the same genomic features across all species, irrespective of GS, our comparative analysis enables us to suggest that while H3K4me1 and H3K4me2 methylation identifies genic DNA, H3K9me3 and H3K27me3 marks are associated with 'dark matter', H3K9me1 and H3K27me1 mark highly homogeneous repeats, and H3K9me2 and H3K27me2 mark semi-degraded repeats. The results have implications for our understanding of epigenetic profiles, chromatin packaging and the divergence of genomes, and highlight contrasting organizations of the chromatin within the nucleus depending on GS itself.

13.
Genome Biol Evol ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149730

RESUMO

Lichen-forming fungi are a diverse and ecologically important group of obligate mutualistic symbionts. Due to difficulties with maintaining them in culture and their extremely slow growth, lichenologists are increasingly opting for metagenomic sequencing followed by symbiont genome separation using bioinformatic pipelines. However, without knowing the true genome size of the lichen-forming fungus, we cannot quantify the completeness of the genome assembly and the efficacy of the bioinformatic filtering. To address this issue, we report here the first whole-genome assembly for the lichen-forming fungus Ramalina farinacea (L.) Ach. sequenced with Oxford Nanopore long-read technology alongside direct measurements of its genome size using flow cytometry. The assembly showed high contiguity (N50 = 1.55 Mbp) and gene set completeness (BUSCO = 95.8%). The highly robust genome size obtained of 33.61 Mbp/1C (CV% = 2.98) showed our assembly covered 97% of the entire genome. Our results demonstrate that accurate genome size measurements can be obtained directly from lichen thalli and used to provide a benchmark for assessing true cytometric completeness of metagenome-derived assemblies.

14.
Proc Natl Acad Sci U S A ; 120(16): e2220261120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040419

RESUMO

Natural hybridization can have a profound evolutionary impact, with consequences ranging from the extinction of rare taxa to the origin of new species. Natural hybridization is particularly common in plants; however, our understanding of the general factors that promote or prevent hybridization is hampered by the highly variable outcomes in different lineages. Here, we quantify the influence of different predictors on hybrid formation across species from an entire flora. We combine estimates of hybridization with ecological attributes and a new species-level phylogeny for over 1,100 UK flowering plant species. Our results show that genetic factors, particularly parental genetic distance, as well as phylogenetic position and ploidy, are key determinants of hybrid formation, whereas many other factors such as range overlap and genus size explain much less variation in hybrid formation. Overall, intrinsic genetic factors shape the evolutionary and ecological consequences of natural hybridization across species in a flora.


Assuntos
Evolução Biológica , Ploidias , Filogenia , Hibridização de Ácido Nucleico , Hibridização Genética
15.
Front Plant Sci ; 14: 1063174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959945

RESUMO

Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order's spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.

16.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881851

RESUMO

The Ascomycota form the largest phylum in the fungal kingdom and show a wide diversity of lifestyles, some involving associations with plants. Genomic data are available for many ascomycetes that are pathogenic to plants, but endophytes, which are asymptomatic inhabitants of plants, are relatively understudied. Here, using short- and long-read technologies, we have sequenced and assembled genomes for 15 endophytic ascomycete strains from CABI's culture collections. We used phylogenetic analysis to refine the classification of taxa, which revealed that 7 of our 15 genome assemblies are the first for the genus and/or species. We also demonstrated that cytometric genome size estimates can act as a valuable metric for assessing assembly "completeness", which can easily be overestimated when using BUSCOs alone and has broader implications for genome assembly initiatives. In producing these new genome resources, we emphasise the value of mining existing culture collections to produce data that can help to address major research questions relating to plant-fungal interactions.


Assuntos
Ascomicetos , Endófitos , Filogenia , Endófitos/genética , Ascomicetos/genética , Genômica
17.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769031

RESUMO

Giant genomes are rare across the plant kingdom and their study has focused almost exclusively on angiosperms and gymnosperms. The scarce genetic data that are available for ferns, however, indicate differences in their genome organization and a lower dynamism compared to other plant groups. Tmesipteris is a small genus of mainly epiphytic ferns that occur in Oceania and several Pacific Islands. So far, only two species with giant genomes have been reported in the genus, T. tannensis (1C = 73.19 Gbp) and T. obliqua (1C = 147.29 Gbp). Low-coverage genome skimming sequence data were generated in these two species and analyzed using the RepeatExplorer2 pipeline to identify and quantify the repetitive DNA fraction of these genomes. We found that both species share a similar genomic composition, with high repeat diversity compared to taxa with small (1C < 10 Gbp) genomes. We also found that, in general, characterized repetitive elements have relatively high heterogeneity scores, indicating ancient diverging evolutionary trajectories. Our results suggest that a whole genome multiplication event, accumulation of repetitive elements, and recent activation of those repeats have all played a role in shaping these genomes. It will be informative to compare these data in the future with data from the giant genome of the angiosperm Paris japonica, to determine if the structures observed here are an emergent property of massive genomic inflation or derived from lineage specific processes.


Assuntos
Gleiquênias , Magnoliopsida , Gleiquênias/genética , Genoma de Planta , DNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Genômica/métodos , Magnoliopsida/genética , Evolução Molecular , Filogenia
18.
Ann Bot ; 131(4): 635-654, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36681900

RESUMO

BACKGROUND AND AIMS: Among the numerous pantropical species of the yam genus, Dioscorea, only a small group occurs in the Mediterranean basin, including two narrow Pyrenean endemics (Borderea clade) and two Mediterranean-wide species (D. communis and D. orientalis, Tamus clade). However, several currently unrecognized species and infraspecific taxa have been described in the Tamus clade due to significant morphological variation associated with D. communis. Our overarching aim was to investigate taxon delimitation in the Tamus clade using an integrative approach combining phylogenomic, spatial and morphological data. METHODS: We analysed 76 herbarium samples using Hyb-Seq genomic capture to sequence 260 low-copy nuclear genes and plastomes, together with morphometric and environmental modelling approaches. KEY RESULTS: Phylogenomic reconstructions confirmed that the two previously accepted species of the Tamus clade, D. communis and D. orientalis, are monophyletic and form sister clades. Three subclades showing distinctive geographic patterns were identified within D. communis. These subclades were also identifiable from morphometric and climatic data, and introgression patterns were inferred between subclades in the eastern part of the distribution of D. communis. CONCLUSIONS: We propose a taxonomy that maintains D. orientalis, endemic to the eastern Mediterranean region, and splits D. communis sensu lato into three species: D. edulis, endemic to Macaronesia (Canary Islands and Madeira); D. cretica, endemic to the eastern Mediterranean region; and D. communis sensu stricto, widespread across western and central Europe. Introgression inferred between D. communis s.s. and D. cretica is likely to be explained by their relatively recent speciation at the end of the Miocene, disjunct isolation in eastern and western Mediterranean glacial refugia and a subsequent westward recolonization of D. communis s.s. Our study shows that the use of integrated genomic, spatial and morphological approaches allows a more robust definition of species boundaries and the identification of species that previous systematic studies failed to uncover.


Assuntos
Dioscorea , Dioscoreaceae , Tamus , Dioscorea/genética , Filogenia , Genômica , Filogeografia
19.
Ann Bot ; 131(1): 59-70, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34259813

RESUMO

BACKGROUND AND AIMS: The dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number. METHODS: We conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation. KEY RESULTS: The measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution. CONCLUSIONS: Our results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.


Assuntos
Gleiquênias , Filogenia , Gleiquênias/genética , Tamanho do Genoma , Genômica , DNA
20.
Curr Biol ; 32(18): R952-R954, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36167043

RESUMO

A new study uncovers a novel trade-off in polyploid plants. While the larger cells of polyploids benefit from increased cell storage and water retention, this comes at the cost of reduced structural stability, potentially impacting survival.


Assuntos
Genoma de Planta , Poliploidia , Plantas/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...