Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.869
Filtrar
1.
Methods Mol Biol ; 2059: 299-313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31435929

RESUMO

The construction protocol of bio-nanocapsule (BNC)-based nanocarriers, named GL-BNC and GL-virosome, for targeted drug delivery to macrophages is described here. First, genes encoding the Streptococcus sp. protein G-derived C2 domain (binds to IgG Fc) and Finegoldia magna protein L-derived B1 domain (binds to Igκ light chain) are prepared by PCR amplification. Subsequently, the genes encoding hepatic cell-specific binding domain of hepatitis B virus envelope L protein are replaced by these PCR products. The expression plasmid for this fused gene (encoding GL-fused L protein) can be used to transform Saccharomyces cerevisiae AH22R- cells. To obtain GL-BNC, the transformed yeast cells are disrupted with glass beads, treated with heat, and then subjected to IgG affinity column chromatography followed by size exclusion column chromatography. In addition, GL-BNCs can be fused with liposomes to form GL-virosome. The targeted delivery of GL-BNC and GL-virosome to macrophages can be confirmed by in vitro phagocytosis assays using the murine macrophage cell line RAW264.7.

2.
Nanotechnology ; 31(2): 025603, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31550692

RESUMO

Nanotubes are prone to collapsing under compression due to the competition between the bending stiffness of the walls and the van der Waals interactions. The different radial morphologies during collapse may affect the electrical properties of nanotube, which may find promising potential applications in strain engineering. In this paper, the finite-deformation model is introduced to determine the radial morphologies, energy barrier and radial deformability of a nanotube under compression, in which the adhesion interactions are analytically obtained. The analytical solutions of the radial morphologies during compression are consistent with the molecular dynamics simulations results, indicating the effectiveness of the finite-deformation model. The analytical results reveal that both the energy barrier and the radial deformability show a decreasing tendency with the increase of the nanotube diameter.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117435, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31400745

RESUMO

A novel two-photon pH probe, 3-benzimidazole-7-hydroxycoumarin (BHC), was designed and synthesized based on the structures of hydroxycoumarin and benzimidazole. BHC showed good linearity in the pH ranges of 3.30-5.40 (pKa = 4.20) and 6.50-8.30 (pKa = 7.20) at a maximum emission wavelength of 480 nm. BHC in acidic and alkaline media could be distinguished by an obvious spectral shift of the maximum absorption wavelength from 390 nm to 420 nm. In addition, BHC was well localized to mitochondria and successfully applied to one-photon and two-photon imaging of pH changes in the mitochondria of HeLa cells. The findings presented herein suggest that BHC can serve as an excellent fluorescent probe for selectively sensing mitochondrial pH changes with remarkable photostability and low cytotoxicity.

4.
Environ Sci Technol ; 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682408

RESUMO

The formation and occurrence of environmentally persistent free radicals (EPFRs) have recently attracted increasing research attention. The interactions between organics and transition metals and the crystalline forms of the transition metals are essential for EPFR formation. This study is thus designed to investigate catechol degradation and compare the characteristics of EPFRs on α-Fe2O3 (hematite, HM) and α-FeOOH (goethite, GT). Catechol degradation was inhibited in the dark in the presence of iron oxides. The inhibition was stronger on GT-silica, but the electron paramagnetic resonance (EPR) signals of the two systems were comparable. The enhanced degradation under UV light irradiation was comparable between HM-silica and GT-silica, but the EPR signals were stronger on GT-silica. Catechol was adsorbed on HM in a mononuclear bidentate (M-B) configuration, but it was adsorbed in both mononuclear monodentate (M-M) and binuclear bidentate (B-B) configurations on GT. After series analysis, we proposed that the dimer-type radical (2,2',3,3'-tetrahydroxy-1,1'-biphenylene) was responsible for the more stable EPR signals for the HM system, while the M-M structure was more favorable for the catechol stabilization. Note that in the analysis of EPFR formation mechanisms, it is important to consider 1) different crystalline lattices or planes and 2) the contribution of the degradation byproducts of the parent organics.

5.
Reg Anesth Pain Med ; 2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678959

RESUMO

BACKGROUND: Erector spinae plane block (ESPB) is a novel regional anesthesia technique that is gaining popularity for postoperative pain management. This randomized controlled trial evaluated the effect of ESPB on quality of recovery (QoR) in patients undergoing modified radical mastectomy. METHODS: Eighty-two female patients undergoing modified radical mastectomy were included. Patients were randomly assigned to receive preoperative ultrasound-guided ESPB with either 0.5% ropivacaine or saline. The primary outcome was QoR, assessed 24 hours postoperatively using the 15-item QoR questionnaire (QoR-15). Secondary outcomes included postoperative pain scores, postoperative cumulative opioid consumption, postanesthesia care unit (PACU) discharge time, postoperative nausea or vomiting and dizziness. RESULTS: Global QoR-15 scores 24 hours postoperatively were significantly higher (indicating better quality) in the ESPB group (median 120, IQR 118-124) compared with the control group (median 110, IQR 108.3-112.8), with a median difference of 10 (95% CI 9 to 12, p<0.001). Compared with the control group, ESPB with ropivacaine reduced pain scores up to 8 hours after surgery, as well as reduced postoperative cumulative opioid consumption and PACU discharge time. CONCLUSIONS: A single preoperative injection of ESPB with ropivacaine may improve QoR postoperatively and acute postoperative analgesia in patients undergoing a modified radical mastectomy. TRIAL REGISTRATION NUMBER: ChiCTR-1800019599.

6.
Epidemiol Infect ; 147: e297, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31679542

RESUMO

In the human population, influenza A viruses are associated with acute respiratory illness and are responsible for millions of deaths annually. Avian and human influenza viruses typically have a different α2-3- and α2-6-linked sialic acid (SA) binding preference. Only a few amino acid changes in the haemagglutinin on the surface of avian influenza viruses (AIV) can cause a switch from avian to human receptor specificity, and the individuals with pathognostic chronic diseases might be more susceptible to AIV due to the decreased expression level of terminal α2-3-linked SA in their saliva. Here, using lectin and virus histochemical staining, we observed the higher expression levels of α2-3/6-linked SA influenza virus receptors in the airway of HBV-transgenic mice compared with that of control mice due to the significant decrease in control mice during ageing, which imply that this is also a risk factor for individuals with pathognostic chronic diseases susceptible to influenza viruses. Our findings will help understand the impact on influenza virus pathogenesis and transmission.

7.
J Cell Biochem ; 2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680314

RESUMO

Circ-Foxo3 is a circRNA encoded by the human FOXO3 gene and works as a sponge for potential microRNAs (miRNAs) to regulate cancer progression. However, the role of circ-Foxo3 in esophageal squamous cell cancer (ESCC) is not clear. In this study, circ-Foxo3 was lowly expressed in cell lines and ESCC tissues. Meanwhile, overexpression of circ-Foxo3 inhibited cell growth, migration, and invasion, whether in vivo or in vitro. Mechanically, we found a potential miRNA target, miR-23a, which negatively correlated with circ-Foxo3 in ESCC. Then, a luciferase assay confirmed the relationship between the circ-Foxo3 and miRNA. Moreover, circ-Foxo3 upregulation of PTEN occurred through "sponging" miR-23a. Taken together, these results indicated that the circ-Foxo3/miR-23a/PTEN pathway was critical for inhibiting the ESCC progression. This may provide a promising target for treat ESCC.

8.
J Cell Biochem ; 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31691358

RESUMO

Osteoporosis is one of the most common and debilitating skeletal disorders. Although studies in the last decade had uncovered the signaling pathways involved in bone formation stimulation, preventative of the onset and more efficient therapeutic strategies for the treatment of osteoporosis remain an important unmet clinical need. MicroRNAs were reported to play an important role in maintaining bone development and metabolism. We investigated the effect of miR-23a-3p on the proliferation and differentiation of osteoblast isolated from the tibia bone tissue of osteoporosis rats. Eighty Wistar female rats were divided into osteoporosis model group and normal group. Tibia bone tissues and osteoblasts were isolated for the following experiments. Quantitative reverse transcription-polymerase chain reaction illustrated that miR-23a-3p expression was significantly increased, while PGC-1α/WNT/ß-catenin signaling related proteins were significantly inhibited in tibia bone tissues of osteoporosis rat compared with normal control rat. MiR-23a-3p inhibited PGC-1α expression and suppressed the WNT/ß-catenin signaling pathway via directly targeting PGC-1α. Furthermore, suppression of miR-23a-3p increased cell viability and cell proliferation, inhibited apoptosis in primary osteoblast, and promoted alkaline phosphatase activity and calcium nodules by targeting PGC-1α/WNT/ß-catenin signaling pathway. Our study revealed that inhibition of miR-23a-3p promoted the osteoblasts proliferation and differentiation through targeting PGC-1α/WNT/ß-catenin signaling in osteoporosis rats.

9.
J Appl Oral Sci ; 27: e20180713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31691738

RESUMO

Vitamin D has been known to have important regulatory functions in inflammation and immune response and shows inhibitory effects on experimental periodontitis in animal models. However, the potential mechanism has yet to be clarified. Recent studies have highlighted Aryl hydrocarbon receptor (AhR) and its downstream signaling as a crucial regulator of immune homeostasis and inflammatory regulation. OBJECTIVE: This study aimed to clarify the effect of 1,25-dihydroxyvitamin D3 (VD3) on experimental periodontitis and AhR/nuclear factor-κB (NF-κB)/NLR pyrin domain-containing 3 (NLRP3) inflammasome pathway in the gingival epithelium in a murine model. METHODOLOGY: We induced periodontitis in male C57BL/6 wild-type mice by oral inoculation of Porphyromonas gingivalis (P. gingivalis), and subsequently gave intraperitoneal VD3 injection to the mice every other day for 8 weeks. Afterwards, we examined the alveolar bone using scanning electron microscopy (SEM) and detected the gingival epithelial protein using western blot analysis and immunohistochemical staining. RESULTS: SEM images demonstrated that alveolar bone loss was reduced in the periodontitis mouse model after VD3 supplementation. Western blot analyses and immunohistochemical staining of the gingival epithelium showed that the expression of vitamin D receptor, AhR and its downstream cytochrome P450 1A1 were enhanced upon VD3 application. Additionally, VD3 decreased NF-κB p65 phosphorylation, and NLRP3, apoptosis-associated speck-like protein, caspase-1, interleukin-1ß (IL-1ß) and IL-6 protein expression. CONCLUSIONS: These results implicate the alleviation of periodontitis and the alteration of AhR/NF-κB/NLRP3 inflammasome pathway by VD3 in the mouse model. The attenuation of this periodontal disease may correlate with the regulation of AhR/NF-κB/NLRP3 inflammasome pathway by VD3.

10.
Chem Asian J ; 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31692280

RESUMO

A core-shell NiAlO@polypyrrole composite (NiAlO@PPy) with a 3D "sand rose"-like morphology was prepared via a facile in situ oxidative polymerization of pyrrole monomer, where the role of PPy coating thickness was investigated for high-performance supercapacitors. Microstructure analyses indicated that the PPy was successfully coated onto the NiAlO surface to form a core-shell structure. The NiAlO@PPy exhibited a better electrochemical performance than pure NiAlO, and the moderate thickness of the PPy shell layer was beneficial for expediting the electron transfer in the redox reaction. It was found that the NiAlO@PPy5 prepared at 5.0 mL L-1 addition amount of pyrrole monomer demonstrated the best electrochemical performance with a high specific capacitance of 883.2 F g-1 at a current density of 1 A g-1 and excellent capacitance retention of 91.82 % of its initial capacitance after 1000 cycles at 3 A g-1 . The outstanding electrochemical performance of NiAlO@PPy5 were due to the synergistic effect of NiAlO and PPy, where the uniform network-like PPy shell with the optimal thickness made electrolyte ions more easily accessible for faradic reactions. This work provided a simple approach for designing organic-inorganic core-shell materials as high-performance electrode materials for electrochemical supercapacitors.

11.
Nano Lett ; 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694378

RESUMO

Nanorobots are safe and exhibit powerful functionalities including delivery, therapy, and diagnosis. Therefore, they are in high demand for the development of new cancer therapies. Although many studies have contributed to the progressive development of the nanorobot system for anticancer drug delivery, these systems still face some critical limitations, such as the potentially toxic materials in the nanorobots, unreasonable size for passive targeting, and the lack of several essential functions of the nanorobot for anticancer drug delivery including sensing, active targeting, controlling drug release, and sufficient drug loading capacity. Here, we developed a multifunctional nanorobot system capable of precise magnetic control, sufficient drug loading for chemotherapy, light-triggered controlled drug release, light absorption for photothermal therapy, enhanced magnetic resonance imaging, and tumor sensing. The developed nanorobot system exhibits in vitro synergetic antitumor effect of photothermal therapy and chemotherapy and outstanding tumor targeting efficiency in both in vitro and in vivo environments. The results of this study encourage further explorations of an efficient active drug delivery system for cancer treatment and development of nanorobot systems for other biomedical applications.

12.
J Chem Phys ; 151(17): 174101, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703494

RESUMO

The on- and and off-time distributions from fluorescence single-molecule experiments are widely used to extract kinetics parameters with the goal to provide a quantitative description for the molecule's behavior on the ensemble level. Such experiments are inevitably influenced by photobleaching, where the fluorescent probe transitions to a nonemissive state. Yet, it appears that few reports went beyond acknowledging this unavoidable complication; in fact, it has so far been ignored when evaluating off-time distributions. Here, we present a theoretical framework that allows the derivation of analytical equations in which photobleaching kinetics are rigorously incorporated. Unexpectedly, our results indicate that the off-time distribution should be nonexponential even when all the rate processes are single exponential. With the analytical theory understood and demonstrated as easy to implement, such ubiquitous photochemical processes can now be readily included in routine experimental analyses.

13.
ACS Nano ; 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31668069

RESUMO

The oxygen evolution reaction (OER) is pivotal for renewable energy conversion and storage devices, such as water electrolyzers and rechargeable metal-air batteries. However, rational design of electrocatalysts with suitably high efficiencies and stabilities in strongly acidic electrolytes remains a significant challenge. Here, we show the first demonstration of sub-10 nm, composition-tunable Rh-Ir alloy nanoparticles (NPs) prepared using a scalable microwave-assisted method as superior acidic OER catalysts. The OER activities showed a volcano-shaped dependence on Ir composition, with Ir-rich NPs (Ir ≥51%) achieving better OER performance than pure Ir NPs, as reflected by lower overpotentials and higher mass activities. Most significantly, Rh22Ir78 NPs achieved a maximum mass activity of 1.17 A·mg-1Ir at a 300 mV overpotential in 0.5 M H2SO4, which corresponds to a 3-fold enhancement relative to pure Ir NPs, making it one of the most active reported OER catalysts under acidic conditions. Density functional theory (DFT) calculations reveal that owing to the synergy of ensemble and electronic effects by alloying a small amount of Rh with Ir, the binding energy difference of the O and OOH intermediates is reduced, leading to faster kinetics and enhanced OER activity. Furthermore, Rh-Ir alloy NPs demonstrated excellent durability in strongly acidic electrolyte. This work not only provides fundamental understandings relating to composition-electrochemical performance relationships but also opens new avenues for the rational design of highly efficient OER electrocatalysts for applications in acidic media.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31705181

RESUMO

As the key organism for enhanced biological phosphorus removal, Accumulibacter has shown high intragenus diversity based on the phylogeny of polyphosphate kinase1 gene (ppk1) and many clade-specific features related to performance of wastewater treatment. However, the widely used molecular approaches are deficient or cost-inefficient in providing a comprehensive and quantitative population-level profile for Accumulibacter in complex community. In this study, we introduced a pipeline to analyze the population-level diversity and dynamics of Accumulibacter via high throughput sequencing (HTS) of ppk1 and 16S rRNA gene simultaneously. The HTS approach was assessed by testing primer coverage, performing sample replication, and comparing with a traditional clone library. Based on survey on full-scale activated sludge samples, unexpected high microdiversity in Accumulibacter and a tendency of exclusivity between two phylogenetic types were discovered. Moreover, the pipeline facilitated monitoring the population-level dynamics and co-occurrence pattern under various laboratory enriching conditions. The results revealed previously uncharacterized intraclade dynamics during enrichment, little effect of denitrifying process on the Accumulibacter diversity, and the niche adaption of Clade IIC on propionate as sole carbon source. Co-occurrence of Accumulibacter populations further partially supported the exclusivity of two types. A few bacterial taxa, including Cytophagaceae-, Prosthecobacter-, and Compteibacter-related taxa, showed co-occurrence with many Accumulibacter populations, suggesting their niche co-selection or potential metabolic interactions with Accumulibacter. The present pipeline is transplantable for studying microdiversity and niche differentiation of other functional microorganisms in complex microbial systems.

15.
World J Microbiol Biotechnol ; 35(11): 171, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673786

RESUMO

Fungal endo-ß-1,4-xylanases (endo-xylanases) can hydrolyze xylan into xylooligosaccharides (XOS), and have potential biotechnological applications for the exploitation of natural renewable polysaccharides. In the current study, we aimed to screen and characterize an efficient fungal endo-xylanase from 100 natural humus-rich soil samples collected in Guizhou Province, China, using extracted sugarcane bagasse xylan (SBX) as the sole carbon source. Initially, 182 fungal isolates producing xylanases were selected, among which Trichoderma sp. strain TP3-36 was identified as showing the highest xylanase activity of 295 U/mL with xylobiose (X2) as the main product when beechwood xylan was used as substrate. Subsequently, a glycoside hydrolase family 11 endo-xylanase, TXyn11A, was purified from strain TP3-36, and its optimal pH and temperature for activity against beechwood xylan were identified to be 5.0 and 55 °C, respectively. TXyn11A was stable across a broad pH range (3.0-10.0), and exhibited strict substrate specificity, including xylan from beechwood, wheat, rye, and sugarcane bagasse, with Km and Vmax values of 5 mg/mL and 1250 µmol/mg min, respectively, toward beechwood xylan. Intriguingly, the main product obtained from hydrolysis of beechwood xylan by TXyn11A was xylobiose, whereas SBX hydrolysis resulted in both X2 and xylotriose. Overall, these characteristics of the endo-xylanase TXyn11A indicate several potential industrial applications.

16.
Appl Opt ; 58(30): 8148-8152, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31674484

RESUMO

In this work, we report a large-active-area multispectral superconducting nanowire single-photon detector for free-space applications. The detector is realized by fabricating NbTiN nanowire with an active area of 35 µm diameter on two serially connected dielectric mirrors that can simultaneously and efficiently detect single photons at the three typical wavelengths employed in free-space applications, namely, 532, 850, and 1064 nm. Maximal system detection efficiencies (SDEs) of 80.0% at 532 nm and 850 nm and 75.8% at 1064 nm are achieved for polarized light obtained by coupling the detector with an SMF-28 fiber. Upon coupling with a 50 µm multimode fiber, SDEs of 68.6%, 59.6%, and 47.0%, are achieved for 532, 850, and 1064 nm wavelength unpolarized light, respectively. Moreover, the detector shows timing jitters of 37.1 and 41.0 ps when coupled with SMF-28 fiber and 50 µm multimode fiber. This type of detector with a large active area and multiwavelength detection capability is promising for both single and multiwavelength free-space applications.

17.
Chemosphere ; 242: 125164, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31669989

RESUMO

Phytoremediation is an economical strategy to harvest cadmium (Cd) from contaminated soil, but the efficiency of phytoremediation was affected by many factors. This study investigated the potential of Serratia sp. K3 (K3) assisted with straw biogas residue (SBR) or leavening fertilizer (LF) on improving the Cd migration efficiency and micro-environment in soil-vetiveria zizanioides L. system. The results showed that the acid soluble Cd in soil was increased by 2.83-29.79% in treatments compared with control (CK). In addition, Cd accumulation in the roots and shoots of vetiveria zizanioides were significantly enhanced by the combination of K3 and SBR/LF. Especially, the translocation factor of Cd increased by 21.53-62.37% in groups with K3 compared with the groups without K3, correspondingly. Furthermore, SBR/LF effectively changed bacterial community structure, and improved bacterial abundance. Relative abundance of functional genes related with carbohydrate/energy/amino acid metabolism were increased in groups of SBRB/LFB rhizosphere compared with CK. These results provide insight into the change of phytoremediation efficiency and soil bacterial communities in the vetiveria zizanioides rhizosphere after inoculation. This study may provide a promising method for improving phytoremediation in Cd contaminated soil.

18.
BMC Oral Health ; 19(1): 236, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684930

RESUMO

BACKGROUND: Antiinflammatory effect of 1,25-dihydroxyvitamin D3 (1,25D3) has been reported in periodontitis, but the exact mechanisms remain unclear. Oral epithelial cells are recently highlighted as an important regulator of inflammation in this disease. This in vitro study was established to investigate the effect of 1,25D3 on key proinflammatory cytokine IL-6 production and aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB) signaling in oral epithelial cells upon the stimulation of lipopolysaccharide (LPS) from periodontal pathogens. METHODS: OKF6/TERT-2 oral keratinocytes were incubated with LPS and different concentrations of 1,25D3, and levels of IL-6 production were determined using enzyme-linked immunosorbent assay (ELISA). Expression of vitamin D receptor (VDR), and activation of AhR was examined using western blot analysis, and phosphorylation of NF-κB was detected using cell-based protein phosphorylation ELISA. RESULTS: 1,25D3 inhibited LPS-induced IL-6 overexpression in OKF6/TERT-2 cells. Additionally, 1,25D3 increased VDR expression and AhR activation, and repressed NF-κB phosphorylation. Furthermore, 1,25D3 suppressed IL-6 expression and enhanced VDR expression and regulated AhR/NF-κB signaling activation in a dose-dependent manner after 48 h treatment. CONCLUSIONS: These results suggest that 1,25D3 may inhibit LPS-induced IL-6 overexpression in human oral epithelial cells through AhR/NF-κB signaling. Our findings may provide an explanation for the antiinflammatory effect and therapeutic benefit of 1,25D3 in periodontitis.

19.
Eur Respir J ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699841

RESUMO

BACKGROUND: Lung adenocarcinomas (LUADs) that radiologically display as subsolid nodules (SSNs) exhibit more indolent biological behavior than solid LUADs. SSNs, commonly encompassing preinvasive and invasive but early-stage adenocarcinomas, can be categorised as pure ground-glass nodules (pGGNs) and part-solid nodules (PSNs). The genomic characteristics of SSNs remain poorly understood. METHODS: We subjected 154 SSN samples from 120 treatment-naive Chinese patients to whole exome sequencing. Clinical parameters and radiological features of these SSNs were collected. The genomic landscape of SSNs and differences from that of advanced stage LUADs were defined. We also investigated the intratumor heterogeneity and clonal relationship of multifocal SSNs and conducted radiogenomic analysis to link imaging and molecular characteristics of SSNs. Fisher's exact and Wilcoxon rank sum tests were used in the statistical analysis. RESULTS: The median somatic mutation rate across the SSN cohort was 1.12 mutations/Mb. Mutations in EGFR were the most prominent and significant variation, followed by those in RBM10, TP53, STK11, and KRAS. The differences between SSNs and advanced-stage LUADs at a genomic level were unraveled. Branched evolution and remarkable genomic heterogeneity were demonstrated in SSNs. Although multi-centric origin was predominant, we also detected early metastatic events among multifocal SSNs. Using radiogenomic analysis, we found that higher ratios of solid components in SSNs were accompanied by significantly higher mutation frequencies in EGFR, TP53, RBM10, and ARID1B, suggesting that these genes play roles in the progression of LUADs. CONCLUSIONS: Our study provides the first comprehensive description of the mutational landscape and radiogenomic mapping of SSNs.

20.
Phys Rev Lett ; 123(10): 100503, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573287

RESUMO

Quantum computing has seen tremendous progress in past years. Due to implementation complexity and cost, the future path of quantum computation is strongly believed to delegate computational tasks to powerful quantum servers on the cloud. Universal blind quantum computing (UBQC) provides the protocol for the secure delegation of arbitrary quantum computations, and it has received significant attention. However, a great challenge in UBQC is how to transmit a quantum state over a long distance securely and reliably. Here, we solve this challenge by proposing a resource-efficient remote blind qubit preparation (RBQP) protocol, with weak coherent pulses for the client to produce, using a compact and low-cost laser. We experimentally verify a key step of RBQP-quantum nondemolition measurement-in the field test over 100 km of fiber. Our experiment uses a quantum teleportation setup in the telecom wavelength and generates 1000 secure qubits with an average fidelity of (86.9±1.5)%, which exceeds the quantum no-cloning fidelity of equatorial qubit states. The results prove the feasibility of UBQC over long distances, and thus serves as a key milestone towards secure cloud quantum computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA