Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.913
Filtrar
1.
Materials (Basel) ; 17(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893930

RESUMO

In this study, a pH-responsive polycaprolactone (PCL)-copper peroxide (CuO2) composite antibacterial coating was developed by suspension flame spraying. The successful synthesis of CuO2 nanoparticles and fabrication of the PCL-CuO2 composite coatings were confirmed by microstructural and chemical analysis. The composite coatings were structurally homogeneous, with the chemical properties of PCL well maintained. The acidic environment was found to effectively accelerate the dissociation of CuO2, allowing the simultaneous release of Cu2+ and H2O2. Antimicrobial tests clearly revealed the enhanced antibacterial properties of the PCL-CuO2 composite coating against both Escherichia coli and Staphylococcus aureus under acidic conditions, with a bactericidal effect of over 99.99%. This study presents a promising approach for constructing pH-responsive antimicrobial coatings for biomedical applications.

2.
Proc Natl Acad Sci U S A ; 121(26): e2321710121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885377

RESUMO

Somatostatin receptor 5 (SSTR5) is an important G protein-coupled receptor and drug target for neuroendocrine tumors and pituitary disorders. This study presents two high-resolution cryogenicelectron microscope structures of the SSTR5-Gi complexes bound to the cyclic neuropeptide agonists, cortistatin-17 (CST17) and octreotide, with resolutions of 2.7 Å and 2.9 Å, respectively. The structures reveal that binding of these peptides causes rearrangement of a "hydrophobic lock", consisting of residues from transmembrane helices TM3 and TM6. This rearrangement triggers outward movement of TM6, enabling Gαi protein engagement and receptor activation. In addition to hydrophobic interactions, CST17 forms conserved polar contacts similar to somatostatin-14 binding to SSTR2, while further structural and functional analysis shows that extracellular loops differently recognize CST17 and octreotide. These insights elucidate agonist selectivity and activation mechanisms of SSTR5, providing valuable guidance for structure-based drug development targeting this therapeutically relevant receptor.


Assuntos
Octreotida , Receptores de Somatostatina , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/química , Humanos , Octreotida/química , Octreotida/farmacologia , Octreotida/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/química , Microscopia Crioeletrônica , Ligação Proteica , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Somatostatina/metabolismo , Somatostatina/química , Somatostatina/análogos & derivados , Modelos Moleculares , Células HEK293
3.
Artigo em Inglês | MEDLINE | ID: mdl-38886269

RESUMO

Air pollution can cause disease and has become a major global environmental problem. It is currently believed that air pollution may be related to the progression of SSNHL. As a rapidly developing city in recent years, Hefei has serious air pollution. In order to explore the correlation between meteorological variables and SSNHL admissions, we conducted this study. This study investigated the short-term associations between SSNHL patients admitted to the hospital and Hefei climatic variables. The daily data on SSNHL-related hospital admissions and meteorological variables containing mean temperature (T-mean; °C), diurnal temperature range (DTR; °C), atmospheric pressure (AP; Hp), and relative humidity (RH; %), from 2014 to 2021 (2558 days), were collected. A time-series analysis integrating distributed lag non-linear models and generalized linear models was used. PubMed, Embase, Cochrane Library, and Web of Science databases were searched. Literature published up to August 2023 was reviewed to explore the potential impact mechanisms of meteorological factors on SSNHL. The mechanisms were determined in detail, focusing on wind speed, air pressure, temperature, humidity, and air pollutants. Using a median of 50.00% as a baseline, the effect of exceedingly low T-mean in the single-day hysteresis effect model began at a lag of 8 days (RR = 1.032, 95% CI: 1.001 ~ 1.064). High DTR affected the admission rate for SSNHL on lag 0 day. The significance of the effect was the greatest on that day (RR = 1.054, 95% CI: 1.007 ~ 1.104) and then gradually decreased. High and exceedingly high RH affected the admission rate SSNHL on lag 0 day, and these effects lasted for 8 and 7 days, respectively. There were significant associations between all grades of AP and SSNHL. This is the first study to assess the effect of meteorological variables on SSNHL-related admissions in China using a time-series approach. Long-term exposures to high DTR, RH values, low T-mean values, and all AP grades enhance the incidence of SSNHL in residents. Limiting exposure to extremes of ambient temperature and humidity may reduce the number of SSNHL-related hospital visits in the region. It is advisable to maintain a suitable living environment temperature and avoid extreme temperature fluctuations and high humidity. During periods of high air pollution, it is recommended to stay indoors and refrain from outdoor exercise.

4.
Front Pharmacol ; 15: 1374158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887554

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is marked by hepatic steatosis accompanied by an inflammatory response. At present, there are no approved therapeutic agents for NAFLD. Dendrobium Huoshanense polysaccharide (DHP), an active ingredient extracted from the stems of Dendrobium Huoshanense, and exerts a protective effect against liver injury. However, the therapeutic effects and mechanisms of action DHP against NAFLD remain unclear. DHP was extracted, characterized, and administered to mice in which NAFLD had been induced with a high-fat and high-fructose drinking (HFHF) diet. Our results showed that DHP used in this research exhibits the characteristic polysaccharide peak with a molecular weight of 179.935 kDa and is composed primarily of Man and Glc in a molar ratio of 68.97:31.03. DHP treatment greatly ameliorated NAFLD by significantly reducing lipid accumulation and the levels of liver function markers in HFHF-induced NAFLD mice, as evidenced by decreased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC) and total triglyceride (TG). Furthermore, DHP administration reduced hepatic steatosis, as shown by H&E and Oil red O staining. DHP also inhibited the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway expression, thereby reducing levels of hepatic proinflammatory cytokines. Besides, untargeted metabolomics further indicated that 49 metabolites were affected by DHP. These metabolites are strongly associated the metabolism of glycine, serine, threonine, nicotinate and nicotinamide, and arachidonic acid. In conclusion, DHP has a therapeutic effect against NAFLD, whose underlying mechanism may involve the modulation of TLR4/NF-κB, reduction of inflammation, and regulation of the metabolism of glycine, serine, threonine, nicotinate and nicotinamide metabolism, and arachidonic acid metabolism.

5.
J Fluoresc ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888657

RESUMO

Diabetes, particularly Type 2 Diabetes Mellitus (T2DM), is a chronic metabolic disorder with high and increasing global prevalence, characterized by insulin resistance and inadequate insulin secretion. Despite advancements in novel drug delivery systems, widespread and systematic treatment of advanced glycation end products (AGEs) remains challenging due to issues like drug toxicity, low water solubility, and uncontrolled release. Thus, developing nanoplatforms with controlled release capabilities has become a major research focus. Due to its excellent biocompatibility and drug delivery properties, chitosan has attracted considerable attention as a typical biopolymer. In this study, we designed and synthesized an intelligent fluorescence-pH sensitive nanopolymer material using chitosan. We loaded drug 1 and chromium phthalocyanine (CrPc) into folic acid-conjugated carboxymethyl chitosan (FA-CMCS) nanocarriers, forming FA-CMCS@1-CrPc. Comprehensive characterization of FA-CMCS@1-CrPc was conducted using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and gas adsorption analysis (BET). The results indicate that the nanomaterial was successfully synthesized and exhibits excellent specific surface area, biocompatibility, and fluorescence response. Further research revealed that FA-CMCS@1-CrPc not only achieved controlled drug release but also could regulate drug release by adjusting pH. Additionally, due to its strong fluorescence performance, the nanomaterial demonstrated higher detection sensitivity, especially for monitoring the release of 5% trace drugs. An in vitro model of insulin-resistant cells was established to evaluate the effects of the drug delivery system on glucose degradation and AGE-RAGE regulation, providing a foundation for the development of new T2DM drugs.

7.
IEEE Trans Med Imaging ; PP2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875086

RESUMO

Diffusion models have emerged as a popular family of deep generative models (DGMs). In the literature, it has been claimed that one class of diffusion models-denoising diffusion probabilistic models (DDPMs)-demonstrate superior image synthesis performance as compared to generative adversarial networks (GANs). To date, these claims have been evaluated using either ensemble-based methods designed for natural images, or conventional measures of image quality such as structural similarity. However, there remains an important need to understand the extent to which DDPMs can reliably learn medical imaging domain-relevant information, which is referred to as 'spatial context' in this work. To address this, a systematic assessment of the ability of DDPMs to learn spatial context relevant to medical imaging applications is reported for the first time. A key aspect of the studies is the use of stochastic context models (SCMs) to produce training data. In this way, the ability of the DDPMs to reliably reproduce spatial context can be quantitatively assessed by use of post-hoc image analyses. Error-rates in DDPM-generated ensembles are reported, and compared to those corresponding to other modern DGMs. The studies reveal new and important insights regarding the capacity of DDPMs to learn spatial context. Notably, the results demonstrate that DDPMs hold significant capacity for generating contextually correct images that are 'interpolated' between training samples, which may benefit data-augmentation tasks in ways that GANs cannot.

8.
Phytother Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863408

RESUMO

Environmental pollution, virus infection, allergens, and other factors may cause respiratory disease, which could be improved by dietary therapy. Allium species are common daily food seasoning and have high nutritional and medical value. Diallyl disulfide (DADS) is the major volatile oil compound of Allium species. The present study aims to explore the preventive effect and potential mechanism of DADS on pulmonary fibrosis. C57BL/6J mice were intratracheally injected with bleomycin (BLM) to establish pulmonary fibrosis and then administrated with DADS. Primary lung fibroblasts or A549 were stimulated with BLM, followed by DADS, farnesoid X receptor (FXR) agonist (GW4064), yes-associated protein 1 (YAP1) inhibitor (verteporfin), or silencing of FXR and YAP1. In BLM-stimulated mice, DADS significantly ameliorated histopathological changes and interleukin-1ß levels in bronchoalveolar lavage fluid. DADS decreased fibrosis markers, HIF-1α, inflammatory cytokines, and epithelial-mesenchymal transition in pulmonary mice and activated fibroblasts. DADS significantly enhanced FXR expression and inhibited YAP1 activation, which functions as GW4064 and verteporfin. A deficiency of FXR or YAP1 could result in the increase of these two protein expressions, respectively. DADS ameliorated extracellular matrix deposition, hypoxia, epithelial-mesenchymal transition, and inflammation in FXR or YAP1 knockdown A549. Taken together, targeting the crosstalk of FXR and YAP1 might be the potential mechanism for DADS against pulmonary fibrosis. DADS can serve as a potential candidate or dietary nutraceutical supplement for the treatment of pulmonary fibrosis.

9.
Chin Med ; 19(1): 83, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862981

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV)-induced lung inflammation is one of the main causes of hospitalization and easily causes disruption of intestinal homeostasis in infants, thereby resulting in a negative impact on their development. However, the current clinical drugs are not satisfactory. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM), has been used for clinical management of inflammatory diseases. However, its in vivo efficacy against RSV-induced lung inflammation and the underlying mechanism remain unclear. PURPOSE: The present study was designed to confirm the in vivo efficacy of ZTOI against lung inflammation and intestinal disorders in RSV-infected young mice and to explore the potential mechanism. STUDY DESIGN AND METHODS: Lung inflammation was induced by RSV, and cytokine antibody arrays were used to clarify the effectiveness of ZTOI in RSV pneumonia. Subsequently, key therapeutic targets of ZTOI against RSV pneumonia were identified through multi-factor detection and further confirmed. The potential therapeutic material basis of ZTOI in target tissues was determined by non-target mass spectrometry. After confirming that the pharmacological substances of ZTOI can reach the intestine, we used 16S rRNA-sequencing technology to study the effect of ZTOI on the intestinal bacteria. RESULTS: In the RSV-induced mouse lung inflammation model, ZTOI significantly reduced the levels of serum myeloperoxidase, serum amyloid A, C-reactive protein, and thymic stromal lymphoprotein; inhibited the mRNA expression of IL-10 and IL-6; and decreased pathological changes in the lungs. Immunofluorescence and qPCR experiments showed that ZTOI reduced RSV load in the lungs. According to cytokine antibody arrays, platelet factor 4 (PF4), a weak chemotactic factor mainly synthesized by megakaryocytes, showed a concentration-dependent change in lung tissues affected by ZTOI, which could be the key target for ZTOI to exert anti-inflammatory effects. Additionally, sesquiterpenes were enriched in the lungs and intestines, thereby exerting anti-inflammatory and regulatory effects on gut microbiota. CONCLUSION: ZTOI can protect from lung inflammation via PF4 and regulate gut microbiota disorder in RSV-infected young mice by sesquiterpenes, which provides reference for its clinical application in RSV-induced lung diseases.

10.
Appl Opt ; 63(14): 3770-3778, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856339

RESUMO

In optical systems, diffraction limits significantly impact spot simulations. This study addresses this problem by applying the Fourier transform to calculate spots in imaging systems. Typically, a 1 mm image plane suffices; however, mosaic aperture telescopes with notable wavefront discontinuities require an approximately 10 mm simulation image plane. This necessitates high sampling rates for pupils, posing challenges for conventional methods. Our model overcomes this challenge by leveraging an interpolation technique to align multiwavelength spots on a uniform image plane grid, thus effectively analyzing spot translation and spreading in imaging systems with diffraction limits.

11.
Commun Biol ; 7(1): 696, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844522

RESUMO

The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , RNA Guia de Sistemas CRISPR-Cas/genética , Células HEK293
12.
Signal Transduct Target Ther ; 9(1): 154, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844816

RESUMO

Early insulin therapy is capable to achieve glycemic control and restore ß-cell function in newly diagnosed type 2 diabetes (T2D), but its effect on cardiovascular outcomes in these patients remains unclear. In this nationwide real-world study, we analyzed electronic health record data from 19 medical centers across China between 1 January 2000, and 26 May 2022. We included 5424 eligible patients (mean age 56 years, 2176 women/3248 men) who were diagnosed T2D within six months and did not have prior cardiovascular disease. Multivariable Cox regression models were used to estimate the associations of early insulin therapy (defined as the first-line therapy for at least two weeks in newly diagnosed T2D patients) with the incidence of major cardiovascular events including coronary heart disease (CHD), stroke, and hospitalization for heart failure (HF). During 17,158 persons years of observation, we documented 834 incident CHD cases, 719 stroke cases, and 230 hospitalized cases for HF. Newly diagnosed T2D patients who received early insulin therapy, compared with those who did not receive such treatment, had 31% lower risk of incident stroke, and 28% lower risk of hospitalization for HF. No significant difference in the risk of CHD was observed. We found similar results when repeating the aforesaid analysis in a propensity-score matched population of 4578 patients and with inverse probability of treatment weighting models. These findings suggest that early insulin therapy in newly diagnosed T2D may have cardiovascular benefits by reducing the risk of incident stroke and hospitalization for HF.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Insulina/uso terapêutico , Incidência , Idoso , China/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Adulto , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/tratamento farmacológico
13.
Antimicrob Resist Infect Control ; 13(1): 58, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845037

RESUMO

BACKGROUND: The prevalence of multiple nosocomial infections (MNIs) is on the rise, however, there remains a limited comprehension regarding the associated risk factors, cumulative risk, probability of occurrence, and impact on length of stay (LOS). METHOD: This multicenter study includes all hospitalized patients from 2020 to July 2023 in two sub-hospitals of a tertiary hospital in Guangming District, Shenzhen. The semi-Markov multi-state model (MSM) was utilized to analyze risk factors and cumulative risk of MNI, predict its occurrence probability, and calculate the extra LOS of nosocomial infection (NI). RESULTS: The risk factors for MNI include age, community infection at admission, surgery, and combined use of antibiotics. However, the cumulative risk of MNI is lower than that of single nosocomial infection (SNI). MNI is most likely to occur within 14 days after admission. Additionally, SNI prolongs LOS by an average of 7.48 days (95% Confidence Interval, CI: 6.06-8.68 days), while MNI prolongs LOS by an average of 15.94 days (95% CI: 14.03-18.17 days). Furthermore, the more sites of infection there are, the longer the extra LOS will be. CONCLUSION: The longer LOS and increased treatment difficulty of MNI result in a heavier disease burden for patients, necessitating targeted prevention and control measures.


Assuntos
Infecção Hospitalar , Tempo de Internação , Humanos , Infecção Hospitalar/epidemiologia , Tempo de Internação/estatística & dados numéricos , Fatores de Risco , Masculino , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Idoso , Adulto , Prevalência , Centros de Atenção Terciária , Antibacterianos/uso terapêutico
14.
Comput Biol Chem ; 112: 108113, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38851150

RESUMO

The integration of artificial intelligence (AI) into smart agriculture boosts production and management efficiency, facilitating sustainable agricultural development. In intensive agricultural management, adopting eco-friendly and effective pesticides is crucial to promote green agricultural practices. However, exploring new insecticides species is a difficult and time-consuming task that involves significant risks. Enhancing compound druggability in the lead discovery phase could considerably shorten the discovery cycle, accelerating insecticides research and development. The Insecticide Activity Prediction (IAPred) model, a novel classic artificial intelligence-based method for evaluating the potential insecticidal activity of unknown functional compounds, is introduced in this study. The IAPred model utilized 27 insecticide-likeness features from PaDEL descriptors and employed an ensemble of Support Vector Machine (SVM) and Random Forest (RF) algorithms using the hard-vote mechanism, achieving an accuracy rate of 86 %. Notably, the IAPred model outperforms current models by accurately predicting the efficacy of novel insecticides such as nicofluprole, overcoming the limitations inherent in existing insecticide structures. Our research presents a practical approach for discovering and optimizing novel insecticide lead compounds quickly and efficiently.

15.
Phytomedicine ; 131: 155783, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38838402

RESUMO

BACKGROUND: Psoriasis, a chronic immune-mediated skin disease with pathological features such as aberrant differentiation of keratinocytes, dermal-epidermal inflammation, and angiogenesis. 2,3,5,4'-Tetrahydroxy stilbene 2-Ο-ß-d-glucoside (2354Glu) is a natural small molecule polyhydrostilbenes isolated from Polygonum multiglorum Thunb. The regulation of IL-36 subfamily has led to new pharmacologic strategies to reverse psoriasiform dermatitis. PURPOSE: Here we investigated the therapeutic potential of 2354Glu and elucidated the underlying mechanism in psoriasis. METHODS: The effects of 2354Glu on IL-36 signaling were assessed by psoriasiform in vivo, in vitro and ex vivo model. The in vivo mice model of psoriasis-like skin inflammation was established by applying imiquimod (IMQ), and the in vitro and ex vitro models were established by stimulating mouse primary keratinocyte, human keratinocytes cells (HaCaT) and ex vivo skin tissue isolated from the mice back with Polyinosine-polycytidylic acid (Poly(I:C)), IMQ, IL-36γ and Lipopolysaccharide (LPS) respectively. Moreover, NETs formation was inhibited by Cl-amidine to evaluate the effect of NETs in psoriatic mouse model. The effects of 2354Glu on skin inflammation were assessed by western blot, H&E, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay and real-time quantitative PCR. RESULTS: In Poly(I:C)-stimulated keratinocytes, the secretion of IL-36 was inhibited after treatment with 2354Glu, similar to the effects of TLR3, P2X7R and caspase-1 inhibitors. In aldara (imiquimod)-induced mice, 2354Glu (100 and 25 mg/kg) improved immune cell infiltration and hyperkeratosis in psoriasis by directly targeting IL-36 in keratinocytes through P2X7R-caspase-1. When treatment with 2354Glu (25 mg/kg) was insufficient to inhibit IL-36γ, NETs reduced pathological features and IL-36 signaling by interacting with keratinocytes to combat psoriasis like inflammation. CONCLUSION: These results indicated that NETs had a beneficial effect on psoriasiform dermatitis. 2354Glu alleviates psoriasis by directly targeting IL-36/P2X7R axis and NET formation, providing a potential candidate for the treatment of psoriasis.

17.
Nat Prod Res ; : 1-10, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824425

RESUMO

The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.

18.
BMC Genomics ; 25(1): 577, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858651

RESUMO

BACKGROUND: Several core breeding and supporting lines of the Qingyuan partridge chicken, a representative local chicken breed in China, have been developed over 20 years. Consequently, its economic traits related to growth and reproduction have been significantly improved by breeding selection and commercial utilization, but some characteristic traits, such as partridge feathers, high meat quality and sufficient flavor, have always been retained. However, effective methods for genetic assessment and functional gene exploration of similar trait groups are lacking. The presence of identical haplotype fragments transmitted from parent to offspring results in runs of homozygosity (ROH), which offer an efficient solution. In this study, genomes of 134 Qingyuan partridge chickens representing two breeding populations and one preserved population were re-sequenced to evaluate the genetic diversity and explore functional genes by analyzing the diversity, distribution, and frequency of ROH. RESULTS: The results showed a low level of genomic linkage and degree of inbreeding within both the bred and preserved populations, suggesting abundant genetic diversity and an adequate genetic potential of the Qingyuan partridge chicken. Throughout the long-term selection process, 21 genes, including GLI3, ANO5, BLVRA, EFNB2, SLC5A12, and SVIP, associated with breed-specific characteristics were accumulated within three ROH islands, whereas another 21 genes associated with growth traits including IRX1, IRX2, EGFR, TPK1, NOVA1, BDNF and so on were accumulated within five ROH islands. CONCLUSIONS: These findings provide new insights into the genetic assessment and identification of genes with breed-specific and selective characteristics, offering a solid genetic basis for breeding and protection of Qingyuan partridge chickens.


Assuntos
Cruzamento , Galinhas , Homozigoto , Animais , Galinhas/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , Variação Genética , China , Genômica/métodos
19.
Mil Med Res ; 11(1): 34, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831462

RESUMO

The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...