Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.589
Filtrar
1.
Natl Sci Rev ; 11(3): nwad323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312377

RESUMO

Tunability of optical performance is one of the key technologies for adaptive optoelectronic applications, such as camouflage clothing, displays, and infrared shielding. High-precision spectral tunability is of great importance for some special applications with on-demand adaptability but remains challenging. Here we demonstrate a galvanostatic control strategy to achieve this goal, relying on the finding of the quantitative correlation between optical properties and electrochemical reactions within materials. An electrochromic electro-optical efficiency index is established to optically fingerprint and precisely identify electrochemical redox reactions in the electrochromic device. Consequently, the charge-transfer process during galvanostatic electrochemical reaction can be quantitatively regulated, permitting precise control over the final optical performance and on-demand adaptability of electrochromic devices as evidenced by an ultralow deviation of <3.0%. These findings not only provide opportunities for future adaptive optoelectronic applications with strict demand on precise spectral tunability but also will promote in situ quantitative research in a wide range of spectroelectrochemistry, electrochemical energy storage, electrocatalysis, and material chemistry.

2.
World J Clin Cases ; 12(2): 249-255, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313653

RESUMO

BACKGROUND: Post-stroke epilepsy is a common and easily overlooked complication of acute cerebrovascular disease. Long-term seizures can seriously affect the prognosis and quality of life of patients. Electroencephalogram (EEG) is the simplest way to diagnose epilepsy, and plays an important role in predicting seizures and guiding medication. AIM: To explore the EEG characteristics of patients with post-stroke epilepsy and improve the detection rate of inter-seizure epileptiform discharges. METHODS: From January 2017 to June 2020, 10 patients with post-stroke epilepsy in our hospital were included. The clinical, imaging, and EEG characteristics were collected. The stroke location, seizure type, and ictal and interictal EEG manifestations of the patients with post-stroke epilepsy were then retrospectively analyzed. RESULTS: In all 10 patients, epileptiform waves occurred in the side opposite to the stroke lesion during the interictal stage; these manifested as sharp wave, sharp-wave complex, or spike discharges in the anterior head lead of the side opposite to the lesion. CONCLUSION: In EEG, epileptiform waves can occur in the side opposite to the stroke lesion in patients with post-stroke epilepsy.

3.
Anal Sci ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316711

RESUMO

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.

4.
Nat Protoc ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316964

RESUMO

Identification and characterization of circulating tumor cells (CTCs) from blood samples of patients with cancer can help monitor parameters such as disease stage, disease progression and therapeutic efficiency. However, the sensitivity and specificity of current multivalent approaches used for CTC capture is limited by the lack of control over the ligands' position. In this Protocol Update, we describe DNA-tetrahedral frameworks anchored with aptamers that can be configured with user-defined spatial arrangements and stoichiometries. The modified tetrahedral DNA frameworks, termed 'n-simplexes', can be used as probes to specifically target receptor-ligand interactions on the cell membrane. Here, we describe the synthesis and use of n-simplexes that target the epithelial cell adhesion molecule expressed on the surface of CTCs. The characterization of the n-simplexes includes measuring the binding affinity to the membrane receptors as a result of the spatial arrangement and stoichiometry of the aptamers. We further detail the capture of CTCs from patient blood samples. The procedure for the preparation and characterization of n-simplexes requires 11.5 h, CTC capture from clinical samples and data processing requires ~5 h per six samples and the downstream analysis of captured cells typically requires 5.5 h. The protocol is suitable for users with basic expertise in molecular biology and handling of clinical samples.

5.
mSystems ; : e0111923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319107

RESUMO

Skin microbiome can be altered in patients with atopic dermatitis (AD). An understanding of the changes from healthy to atopic skin can help develop new targets for treatment by identifying microbial and molecular biomarkers. This study investigates the skin microbiome and metabolome of healthy adult subjects and lesion (ADL) and non-lesion (ADNL) of AD patients by 16S rRNA gene sequencing and mass spectrometry, respectively. Samples from AD patients showed alterations in the diversity and composition of the skin microbiome, with ADL skin having the greatest divergence. Staphylococcus species, especially S. aureus, were significantly increased in AD patients. Metabolomic profiles were also different between the groups. Dipeptide derivatives are more abundant in ADL, which may be related to skin inflammation. Co-occurrence network analysis of the microbiome and metabolomics data revealed higher co-occurrence of metabolites and bacteria in healthy ADNL compared to ADL. S. aureus co-occurred with dipeptide derivatives in ADL, while phytosphingosine-derived compounds showed co-occurrences with commensal bacteria, for example, Paracoccus sp., Pseudomonas sp., Prevotella bivia, Lactobacillus iners, Anaerococcus sp., Micrococcus sp., Corynebacterium ureicelerivorans, Corynebacterium massiliense, Streptococcus thermophilus, and Roseomonas mucosa, in healthy and ADNL groups. Therefore, these findings provide valuable insights into how AD affects the human skin metabolome and microbiome.IMPORTANCEThis study provides valuable insight into changes in the skin microbiome and associated metabolomic profiles in an adult population with mild to moderate atopic dermatitis. It also identifies new therapeutic targets that may be useful for developing personalized treatments for individuals with atopic dermatitis based on their unique skin microbiome and metabolic profiles.

6.
Clin Biochem ; 125: 110719, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316335

RESUMO

BACKGROUND: Increased cerebrospinal fluid (CSF) ß2-microglobulin (ß2-MG) values are attributed to immune activation, lymphoid cell turnover and release of tissue destruction in the central nervous system (CNS). We investigated plasma and CSF ß2-MG levels in adult patients with viral encephalitis/meningitis and their correlations with clinical parameters. METHOD: CSF samples from 26 patients with viral encephalitis/meningitis were collected. Moreover, 24 CSF samples from patients with non-inflammatory neurological disorders (NIND) as controls were collected. Plasma samples from 22 enrolled patients and 20 healthy individuals were collected. The ß2-MG levels were measured by immunoturbidimetry on an automatic biochemical analyzer. Clinical data were extracted from an electronic patient documentation system. RESULT: CSF levels of ß2-MG, adenosine deaminase (ADA), white blood cell (WBC), lactate dehydrogenase (LDH), protein and lactate were significantly increased in patients with viral encephalitis/meningitis respectively (p < 0.001, p < 0.001, p < 0.001, p = 0.001, p < 0.001, p = 0.013). In contrast, no statistically significant difference was found in plasma levels of ß2-MG. Furthermore, CSF levels of ß2-MG were weakly correlated with WBC (r = 0.426, p = 0.030), lymphocyte percentage (r = 0.599, p = 0.018), ADA (r = 0.545, p = 0.004) and LDH (r = 0.414, p = 0.036), but not with lactate (r = 0.381, p = 0.055), protein (r = 0.179, p = 0.381) and plasma levels of ß2-MG (r = -0.156, p = 0.537) in viral encephalitis/meningitis patients. CONCLUSION: CSF ß2-MG may be a potential inflammatory marker for viral encephalitis/meningitis in adult patients diagnosed with viral encephalitis/meningitis.

7.
Front Microbiol ; 15: 1257405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298896

RESUMO

Background: Recent research linked changes in the gut microbiota and serum metabolite concentrations to intracerebral hemorrhage (ICH). However, the potential causal relationship remained unclear. Therefore, the current study aims to estimate the effects of genetically predicted causality between gut microbiota, serum metabolites, and ICH. Methods: Summary data from genome-wide association studies (GWAS) of gut microbiota, serum metabolites, and ICH were obtained separately. Gut microbiota GWAS (N = 18,340) were acquired from the MiBioGen study, serum metabolites GWAS (N = 7,824) from the TwinsUK and KORA studies, and GWAS summary-level data for ICH from the FinnGen R9 (ICH, 3,749 cases; 339,914 controls). A two-sample Mendelian randomization (MR) study was conducted to explore the causal effects between gut microbiota, serum metabolites, and ICH. The random-effects inverse variance-weighted (IVW) MR analyses were performed as the primary results, together with a series of sensitivity analyses to assess the robustness of the results. Besides, a reverse MR was conducted to evaluate the possibility of reverse causation. To validate the relevant findings, we further selected data from the UK Biobank for analysis. Results: MR analysis results revealed a nominal association (p < 0.05) between 17 gut microbial taxa, 31 serum metabolites, and ICH. Among gut microbiota, the higher level of genus Eubacterium xylanophilum (odds ratio (OR): 1.327, 95% confidence interval (CI):1.154-1.526; Bonferroni-corrected p = 7.28 × 10-5) retained a strong causal relationship with a higher risk of ICH after the Bonferroni corrected test. Concurrently, the genus Senegalimassilia (OR: 0.843, 95% CI: 0.778-0.915; Bonferroni-corrected p = 4.10 × 10-5) was associated with lower ICH risk. Moreover, after Bonferroni correction, only two serum metabolites remained out of the initial 31 serum metabolites. One of the serum metabolites, Isovalerate (OR: 7.130, 95% CI: 2.648-19.199; Bonferroni-corrected p = 1.01 × 10-4) showed a very strong causal relationship with a higher risk of ICH, whereas the other metabolite was unidentified and excluded from further analysis. Various sensitivity analyses yielded similar results, with no heterogeneity or directional pleiotropy observed. Conclusion: This two-sample MR study revealed the significant influence of gut microbiota and serum metabolites on the risk of ICH. The specific bacterial taxa and metabolites engaged in ICH development were identified. Further research is required in the future to delve deeper into the mechanisms behind these findings.

8.
J Neuroimmune Pharmacol ; 19(1): 3, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300393

RESUMO

Severe traumatic brain injury (TBI) can result in persistent complications, including circadian rhythm disorder, that substantially affect not only the injured people, but also the mood and social interactions with the family and the community. Pyroptosis in GFAP-positive astrocytes plays a vital role in inflammatory changes post-TBI. We determined whether VX-765, a low molecular weight caspase-1 inhibitor, has potential therapeutic value against astrocytic inflammation and pyroptosis in a rodent model of TBI plus hemorrhagic shock and resuscitation (HSR). A weight-drop plus bleeding and refusion model was used to establish traumatic exposure in rats. VX-765 (50 mg/kg) was injected via the femoral vein after resuscitation. Wheel-running activity was assessed, brain magnetic resonance images were evaluated, the expression of pyroptosis-associated molecules including cleaved caspase-1, gasdermin D (GSDMD), and interleukin-18 (IL-18) in astrocytes in the region of anterior hypothalamus, were explored 30 days post-trauma. VX-765-treated rats had significant improvement in circadian rhythm disorder, decreased mean diffusivity (MD) and mean kurtosis (MK), increased fractional anisotropy (FA), an elevated number and branches of astrocytes, and lower cleaved caspase-1, GSDMD, and IL-18 expression in astrocytes than TBI + HSR-treated rats. These results demonstrated that inhibition of pyroptosis-associated astrocytic activations in the anterior hypothalamus using VX-765 may ameliorate circadian rhythm disorder after trauma. In conclusion, we suggest that interventions targeting caspase-1-induced astrocytic pyroptosis by VX-765 are promising strategies to alleviate circadian rhythm disorder post-TBI.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Cronobiológicos , Dipeptídeos , Choque Hemorrágico , para-Aminobenzoatos , Humanos , Ratos , Animais , Roedores , Choque Hemorrágico/tratamento farmacológico , Interleucina-18 , Lesões Encefálicas Traumáticas/tratamento farmacológico , Caspases
9.
Nat Commun ; 15(1): 1002, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307834

RESUMO

Visual illusions and mental imagery are non-physical sensory experiences that involve cortical feedback processing in the primary visual cortex. Using laminar functional magnetic resonance imaging (fMRI) in two studies, we investigate if information about these internal experiences is visible in the activation patterns of different layers of primary visual cortex (V1). We find that imagery content is decodable mainly from deep layers of V1, whereas seemingly 'real' illusory content is decodable mainly from superficial layers. Furthermore, illusory content shares information with perceptual content, whilst imagery content does not generalise to illusory or perceptual information. Together, our results suggest that illusions and imagery, which differ immensely in their subjective experiences, also involve partially distinct early visual microcircuits. However, overlapping microcircuit recruitment might emerge based on the nuanced nature of subjective conscious experience.


Assuntos
Ilusões , Córtex Visual , Humanos , Ilusões/fisiologia , Córtex Visual Primário , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Retroalimentação , Imageamento por Ressonância Magnética , Mapeamento Encefálico
10.
Ann Nutr Metab ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310860

RESUMO

INTRODUCTION: Childhood obesity is a global health problem that is associated with various metabolic complications, such as insulin resistance, type 2 diabetes, dyslipidemia, and cardiovascular diseases. The mechanisms underlying the development of insulin resistance in childhood obesity are not fully understood. Nephroblastoma overexpressed gene (NOV), also known as CCN3, is a member of the CCN family of matricellular proteins that modulate cell proliferation, differentiation, adhesion, migration, and survival. Previous studies have shown that NOV/CCN3 is involved in glucose metabolism and insulin signaling in various tissues and cell types. However, the role of NOV/CCN3 in childhood obesity and insulin resistance remains unclear. METHODS: In this study, we aimed to investigate the association between plasma NOV/CCN3 levels and insulin resistance in 58 obese and 43 non-obese children aged 6-12 years. We measured plasma NOV/CCN3 levels by enzyme-linked immunosorbent assay (ELISA), and assessed insulin resistance by homeostasis model assessment of insulin resistance (HOMA-IR). We also collected clinical and biochemical data, such as body mass index (BMI), waist circumference (WC), blood pressure (BP), fasting glucose (FG), fasting insulin (FI), lipid profile, and inflammatory markers. RESULTS: We found that plasma NOV/CCN3 levels were significantly higher in obese children than in non-obese children (P<0.001), and positively correlated with BMI (r=0.42, P<0.001), WC (r=0.38, P<0.001), BP (r=0.35, P<0.001), FG (r=0.31, P<0.001), FI (r=0.45, P<0.001), HOMA-IR (r=0.48, P<0.001), triglycerides (r=0.28, P<0.001), low-density lipoprotein cholesterol (LDL-C) (r=0.26, P<0.001), and C-reactive protein (CRP) (r=0.32, P<0.001). Multiple linear regression analysis revealed that plasma NOV/CCN3 levels were independently associated with HOMA-IR after adjusting for age, sex, BMI, WC, BP, FG, FI, lipid profile, and CRP (ß=0.36, P<0.001). CONCLUSION: These results suggest that plasma NOV/CCN3 levels are elevated in childhood obesity and are associated with insulin resistance, indicating that NOV/CCN3 may play a role in the pathogenesis of metabolic disorders in obese children.

11.
J Hazard Mater ; 467: 133731, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38340562

RESUMO

In this study Paraccocus versutus XT0.6 was employed to address the mechanism of microbial dissolution and oxidation of stibnite. Results showed that with the growth of XT0.6, pH increased to 9.0 in both microbe-mineral contact (MM) and microbe-mineral non-contact groups (M[M]). Dissolved Sb(III) was released from stibnite, which was subsequently quickly oxidized to Sb(V) completely in MM and partially in M[M] groups. On the contrast, the final pH decreased to 6.5 and 4.9, respectviely, in system amended with extracellular secretion (EM) of XT0.6 and abiotic groups. Dissolution of stibnite and oxidation of Sb(III) were also observed in EM group, suggesting a potential contribution of extracellular enzyme in Sb(III) oxidation. The dissolution and oxidation rates were the highest in MM group, followed by those in M[M], EM and abiotic groups. To be noted, Sb(V) concentration decreased in MM group on the fifth day, which might indicate the formation of Sb(V)-bearing secondary mineral. Genome of XT0.6 consisted of two chromosomes and one plasmid, and most genes responsible for antimony oxidation and antimony resistance were located on the chromosomes. Proteomics analysis of the extracellular secretions indicated the up-regulated proteins were mainly related to electron-transfer, suggesting their potential role in Sb(III) oxidation.

12.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328132

RESUMO

Integrase (IN) performs dual essential roles during HIV-1 replication. During ingress, IN functions within an oligomeric "intasome" assembly to catalyze viral DNA integration into host chromatin. During late stages of infection, tetrameric IN binds viral RNA and orchestrates the condensation of ribonucleoprotein complexes into the capsid core. The molecular architectures of HIV-1 IN assemblies that mediate these distinct events remain unknown. Furthermore, the tetramer is an important antiviral target for allosteric IN inhibitors. Here, we determined cryo-EM structures of wildtype HIV-1 IN tetramers and intasome hexadecamers. Our structures unveil a remarkable plasticity that leverages IN C-terminal domains and abutting linkers to assemble functionally distinct oligomeric forms. Alteration of a newly recognized conserved interface revealed that both IN functions track with tetramerization in vitro and during HIV-1 infection. Collectively, our findings reveal how IN plasticity orchestrates its diverse molecular functions, suggest a working model for IN-viral RNA binding, and provide atomic blueprints for allosteric IN inhibitor development.

13.
Plants (Basel) ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337976

RESUMO

Although hydrogen gas (H2)-treated soil improves crop biomass, this approach appears difficult for field application due to the flammability of H2 gas. In this report, we investigated whether and how H2 applied in hydrogen nanobubble water (HNW) improves the yield and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) with and without fertilizers. Two-year-long field trials showed that compared to corresponding controls, HNW without and with fertilizers improved the cherry tomato yield per plant by 39.7% and 26.5% in 2021 (Shanghai), respectively, and by 39.4% and 28.2% in 2023 (Nanjing), respectively. Compared to surface water (SW), HNW increased the soil available nitrogen (N), phosphorus (P), and potassium (K) consumption regardless of fertilizer application, which may be attributed to the increased NPK transport-related genes in roots (LeAMT2, LePT2, LePT5, and SlHKT1,1). Furthermore, HNW-irrigated cherry tomatoes displayed a higher sugar-acid ratio (8.6%) and lycopene content (22.3%) than SW-irrigated plants without fertilizers. Importantly, the beneficial effects of HNW without fertilizers on the yield per plant (9.1%), sugar-acid ratio (31.1%), and volatiles (20.0%) and lycopene contents (54.3%) were stronger than those achieved using fertilizers alone. In short, this study clearly indicated that HNW-supplied H2 not only exhibited a fertilization effect on enhancing the tomato yield, but also improved the fruit's quality with a lower carbon footprint.

14.
ACS Infect Dis ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346249

RESUMO

HIV-1 integrase (IN) is an important molecular target for the development of anti-AIDS drugs. A recently FDA-approved second-generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB, 2021) is being marketed for use in long-duration antiviral formulations. However, missed doses during extended therapy can potentially result in persistent low levels of CAB that could select for resistant mutant forms of IN, leading to virological failure. We report a series of N-substituted bicyclic carbamoyl pyridones (BiCAPs) that are simplified analogs of CAB. Several of these potently inhibit wild-type HIV-1 in single-round infection assays in cultured cells and retain high inhibitory potencies against a panel of viral constructs carrying resistant mutant forms of IN. Our lead compound, 7c, proved to be more potent than CAB against the therapeutically important resistant double mutants E138K/Q148K (>12-fold relative to CAB) and G140S/Q148R (>36-fold relative to CAB). A significant number of the BiCAPs also potently inhibit the drug-resistant IN mutant R263K, which has proven to be problematic for the FDA-approved second-generation INSTIs.

15.
J Pain ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354968

RESUMO

Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder (PTSD), represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation (LTP) as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents (EPSCs) in the BLA-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlight that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.

16.
Chempluschem ; : e202300781, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355897

RESUMO

Efficient biocatalytic cascade reactions play a crucial role in guiding intricate, specific and selective intracellular transformation processes. However, the catalytic activity of the enzyme cascade reaction in bulk solution was greatly impacted by the spatial morphology and inter-enzyme distance. The programmability and addressability nature of framework nucleic acid (FNA) allows to be used as scaffold for immobilization and to direct the spatial arrangement of enzyme cascade molecules. Here, we used tetrahedral DNA framework (TDF) as nanorulers to assemble two enzymes for constructing a double-enzyme complex, which significantly enhance the catalytic efficiency of sarcosine oxidase (SOx)/horseradish peroxidase (HRP) cascade system. We synthesized four types of TDF nanoruler capable of programming the lateral distance between enzymes from 5.67 nm to 12.33 nm. Enzymes were chemical modified by ssDNA while preserving most catalytic activity. Polyacrylamide gel electrophoresis (PAGE), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to verify the formation of double-enzyme complex. Four types of double-enzyme complex with different enzyme distance were constructed, in which TDF26(SOx+HRP) exhibited the highest relative enzyme cascade catalytic activity, ~3.11-fold of free-state enzyme. Importantly, all the double-enzyme complexes demonstrate a substantial improvement in enzyme cascade catalytic activity compared to free enzymes.

17.
Anal Bioanal Chem ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358531

RESUMO

α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.

18.
Psychogeriatrics ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351289

RESUMO

BACKGROUND: The purpose of this research was to stratify the level of frailty to examine the risk factors associated with reversible cognitive frailty (RCF) and potentially reversible cognitive frailty (PRCF) in nursing homes to provide a basis for hierarchical management in different stages of frailty. METHODS: The study was a cross-sectional study conducted from September to November 2022; 504 people were selected by stratified random sampling after convenience selection from the Home for the Aged Guangzhou. The structured questionnaire survey was conducted through face-to-face interviews using the general data questionnaire, Fried Frailty Phenotype, Montreal Cognitive Assessment Scale. RESULTS: In total, 452 individuals were included for analysis. A total of 229 cases (50.7%) were PRCF, 70 (15.5%) were RCF. Multivariate logistic regression analysis showed that in pre-frailty, the Geriatric Depression Scale (GDS-15) score (odds ratio (OR) 1.802; 95% CI 1.308-2.483), Instrumental Activities of Daily Living Scale (IADL) score (0.352; 0.135-0.918) and energy (0.288; 0.110-0.755) were influencing factors of RCF. GDS-15 score (1.805; 1.320-2.468), IADL score (0.268; 0.105-0.682), energy (0.377; 0.150-0.947), lack of intellectual activity (6.118; 1.067-35.070), admission time(>3 years) (9.969; 1.893-52.495) and low education (3.465; 1.211-9.912) were influencing factors of PRCF. However, RCF with frailty was associated with the Short-Form Mini-Nutritional Assessment (MNA-SF) score (0.301; 0.123-0.739) and low education time (0 ~ 12 years) (0.021; 0.001-0.826). PRCF with frailty was associated with age (1.327; 1.081-1.629) and weekly exercise time (0.987; 0.979-0.995). CONCLUSIONS: The prevalence of RCF and PRCF was high among pre-frail and frail older adults in nursing homes. Different levels of frailty had different influencing factors for RCF and PRCF. Depression, daily living ability, energy, intellectual activity, admission time, education level, nutrition status, age and exercise time were associated with RCF and PRCF. Hierarchical management and intervention should be implemented for different stages of frailty to prevent or delay the progression of cognitive frailty.

19.
ACS Appl Mater Interfaces ; 16(6): 7384-7398, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308573

RESUMO

Flexible capacitive tactile sensors show great promise in personalized healthcare monitoring and human-machine interfaces, but their practical application is normally hindered because they rarely possess the required comprehensive performance, that is, high pressure sensitivity and fast response within a broad pressure range, high structure robustness, performance consistency, etc. This paper aims to engineer flexible capacitive pressure sensors with highly ordered porous dielectric microstructures and a 3D-printing-based fully solution-processable fabrication process. The proposed dielectric layer with uniformly distributed interior microporous can not only increase its compressibility and dynamic response within an extended pressure range but also enlarge its contact area with electrodes, contributing to a simultaneous improvement in the sensitivity, response speed, detection range, and structure robustness. Meanwhile, owing to its superior abilities in complex structure manufacturing and dimension controlling, the proposed 3D-printing-based fabrication process enables the consistent fabrication of the porous microstructure and thus guarantees device consistency. As a result, the prepared pressure sensors exhibit a high sensitivity of 0.21 kPa-1, fast response and relaxation times of 112 and 152 ms, an interface bonding strength of more than 455.2 kPa, and excellent performance consistency (≤5.47% deviation among different batches of sensors) and tunability. Encouraged by this, the pressure sensor is further integrated with a wireless readout circuit and realizes wireless wearable monitoring of various biosignals (pulse waves and heart rate) and body movements (from slight finger touch to large knee bending). Finally, the influence law of the feature parameters of the porous microstructure on device performance is established by the finite element method, paving the way for sensor optimization. This study motivates the development of flexible capacitive pressure sensors toward practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...