Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.702
Filtrar
1.
Food Chem ; 308: 125577, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669942

RESUMO

Leveraging phenolic complexation to optimize starch functionality and digestibility is restrained by the obscurity of their physicochemical nature and molecular basis. To define starch-phenolic complexes under hydrothermal treatments, maize amylopectin and potato starch were complexed with caffeic acid, ferulic acid and gallic acid. Starch hydrothermal stability and digestibility were measured by differential scanning calorimeter and Englyst's method, respectively. While monosaccharide compositions and glycosidic linkages were analyzed by GC-MS, hydrodynamic radius and proton magnetic resonance of gelatinized complexes were measured by dynamic light scattering and NMR respectively. Compared with native starches, starch-phenolic complexes were not chemically modified and had modestly lower estimated glycemic indexes and significantly lower gelatinization temperatures (p < 0.05). Starch-phenolic complexes also had significantly lower levels of phenolic proton intensities and hydrodynamic radii relative to the control starch-phenolic mixtures (p < 0.05). These results suggested that phenolics may complex with starch through non-covalent CH-π bonds along α-(1 → 4) glycosidic chains.

2.
J Enzyme Inhib Med Chem ; 35(1): 50-58, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31656107

RESUMO

GPR119 is a promising target for discovery of anti-type 2 diabetes mellitus agents. We described the optimisation of a novel series of pyrimido[5,4-b][1,4]oxazine derivatives as GPR119 agonists. Most designed compounds exhibited good agonistic activities. Among them, compound 10 and 15 demonstrated the potent EC50 values (13 and 12 nM, respectively) and strong inherent activities. Moreover, significant hypoglycaemic effect of compound 15 was observed by reducing the blood glucose AUC0-2h at the dose of 30 mg/kg, which is stronger than Vildagliptin (23.4% reduction vs. 17.9% reduction).

3.
J Cell Physiol ; 235(1): 317-327, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31215035

RESUMO

Cardiomyocyte function and viability are highly modulated by mammalian Ste20-like kinase 1 (Mst1)-Hippo pathway and mitochondria. Mitophagy, a kind of mitochondrial autophagy, is a protective program to attenuate mitochondrial damage. However, the relationship between Mst1 and mitophagy in septic cardiomyopathy has not been explored. In the present study, Mst1 knockout mice were used in a lipopolysaccharide (LPS)-induced septic cardiomyopathy model. Mitophagy activity was measured via immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay. Pathway blocker and small interfering RNA were used to perform the loss-of-function assay. The results demonstrated that Mst1 was rapidly increased in response to LPS stress. Knockout of Mst1 attenuated LPS-mediated inflammation damage, reduced cardiomyocyte death, and improved cardiac function. At the molecular levels, LPS treatment activated mitochondrial damage, such as mitochondrial respiratory dysfunction, mitochondrial potential reduction, mitochondrial ATP depletion, and caspase family activation. Interestingly, in response to mitochondrial damage, Mst1 deletion activated mitophagy which attenuated LPS-mediated mitochondrial damage. However, inhibition of mitophagy via inhibiting parkin mitophagy abolished the protective influences of Mst1 deletion on mitochondrial homeostasis and cardiomyocyte viability. Overall, our results demonstrated that septic cardiomyopathy is linked to Mst1 upregulation which is followed by a drop in the protective mitophagy.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31671247

RESUMO

Fluorescent materials exhibiting the characteristics of strong two-photon absorption (TPA) are extensively used for nonlinear optics, bio-imaging and phototherapy. One practical approach to obtain fluorescent materials with high TPA performance is to polymerize molecular chromophores to form π-conjugated structure. This leads to the increase in TPA cross-section per chromophore, however, efforts to towards this direction was capped by the lack of long-range ordering in the structure and the strong π-π stacking between the chromophores. Here, we reported the rational design of benzothiadiazole-based covalent organic framework (COF) for promoting TPA performance and obtaining the efficient two-photon excited fluorescence. Structure characterizations and spectroscopic studies revealed that the enhancement in TPA performance was attributed to the donor-π-acceptor-π-donor (D-π-A-π-D) configuration of the chromophore, long-range order, and large π-conjugation domain of COF crystals. The structural slipping in TPA-COF not only attenuates the π-π stacking interaction between the layers, but more importantly, overcomes the aggregation-caused emission quenching of the chromophores for improving near-infrared two-photon excited fluorescence imaging.

5.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671600

RESUMO

Double-spikes Phalaenopsis orchids have greater market value than those with single-spike. In this study, a gene designated as Spike Activator 1 (SPK1), which encodes a basic helix-loop-helix (bHLH) transcription factor, was isolated and characterized from Phalaenopsis aphrodite (moth orchid). SPK1 was highly expressed in the meristematic tissues. In the axillary bud, SPK1 was highly upregulated by a moderately low temperature of 20 °C but downregulated by a spike inhibition temperature of 30 °C. SPK1 protein is localized in the nucleus. Another bHLH, bHLH35, which is also highly expressed in young tissues in the same way as SPK1 was also identified. In contrast to SPK1, bHLH35 transcripts are downregulated at 20 °C but upregulated at 30 °C. Bimolecular florescence complementation assay and yeast two-hybrid assays indicated that SPK1 interacts with bHLH35 and forms a heterodimer. Virus-induced gene silencing (VIGS) showed that 7 out of 15 vector control plants produced double spikes but that only 1 out of 15 VIGS-spk1 plants produced double spikes. RT-qPCR results indicated that VIGS-spk1 downregulated gene expression levels of SPK1, FT, CYCB, and EXPA8. Overall, we propose that SPK1 plays an essential role in early axillary bud development and spike initiation of P. aphrodite.

6.
JCI Insight ; 4(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672932

RESUMO

Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked ß-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase-KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.

7.
Phys Chem Chem Phys ; 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674604

RESUMO

The TiO2-Pt-water interface is of great relevance in photocatalysis where Pt is widely used as a co-catalyst for enhancing hydrogen evolution in aqueous TiO2. Using ab initio molecular dynamics, we investigated this interface focusing on Pt single atoms supported on anatase TiO2(101) in a water environment. Based on recent experiments showing a broad distribution of Pt coordination sites in TiO2, we examined six distinct single-Pt supported species with different nominal Pt oxidation states, namely: Pt, PtOH, and PtO2 species adsorbed on the stoichiometric surface; Pt adsorbed at a surface oxygen vacancy (Ov); and Pt substituting a surface Ti cation (PtTi), both without and with an accompanying Ov (PtTi + Ov). As found for the pristine anatase surface, interfacial water remained intact in the presence of a nearly neutral Pt adatom within the time duration of our simulations (∼15 ps). Similarly, no (or only temporary) water dissociation was observed at the PtTi + Ov and PtO2 interfaces, due to the formation of very stable planar Pt coordination structures that interact only weakly with water. In contrast, water dissociated with OH- (H+) on the Pt atom when this substituted a surface Ti (oxygen) ion as well as on PtOH. The significant proton affinity of Pt atoms at surface oxygen vacancies suggests that negatively charged Pt species are particularly efficient at catalyzing hydrogen evolution in aqueous TiO2.

8.
Phys Chem Chem Phys ; 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674632

RESUMO

In recent years, another two-dimensional (2D) family, monolayer metal monochalcogenides (group IIIA-VIA), has attracted extensive attention. In this work, we adopt density functional theory (DFT) and the non-equilibrium Green's function (NEGF) method to systematically investigate the ballistic thermoelectric properties of the IIIA-VIA family, including GaS, GaSe, GaTe, InS, InSe, and InTe. Among others, the InTe monolayer possesses the highest figure of merit, ZT = 2.03 at 300 K, due to its ultra-low thermal conductance. Biaxial strain in the range of -10% (compressive) to 10% (tensile) is applied to the InTe monolayer and the strain-induced electronic and thermal transport properties are discussed. The maximum ZT (up to 2.7) for the InTe monolayer at 300 K is achieved under an 8% tensile strain.

9.
Nat Commun ; 10(1): 4936, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666505

RESUMO

Single atom catalysts exhibit particularly high catalytic activities in contrast to regular nanomaterial-based catalysts. Until recently, research has been mostly focused on single atom catalysts, and it remains a great challenge to synthesize bimetallic dimer structures. Herein, we successfully prepare high-quality one-to-one A-B bimetallic dimer structures (Pt-Ru dimers) through an atomic layer deposition (ALD) process. The Pt-Ru dimers show much higher hydrogen evolution activity (more than 50 times) and excellent stability compared to commercial Pt/C catalysts. X-ray absorption spectroscopy indicates that the Pt-Ru dimers structure model contains one Pt-Ru bonding configuration. First principle calculations reveal that the Pt-Ru dimer generates a synergy effect by modulating the electronic structure, which results in the enhanced hydrogen evolution activity. This work paves the way for the rational design of bimetallic dimers with good activity and stability, which have a great potential to be applied in various catalytic reactions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31678511

RESUMO

Lipid metabolic abnormalities have received intensified concerns and increased de novo synthesis of lipids is recognized as a common feature of many human cancers. Nevertheless, the role of lipid metabolism that confers aggressive properties on human cancers still remains to be revealed. Natural compounds represent an abundant pool of agents for the discovery of novel lead compounds. Trichothecin (TCN) is a sesquiterpenoid originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes. Here, we assess the association of stearoyl-CoA desaturase 1 (SCD-1) over-expression with malignant progression of colorectal cancer (CRC). Based on this association, the effect of TCN on migration and invasion of colon carcinoma cells closely related to the inhibition of SCD-1 is evaluated. We further demonstrate that reduced production of unsaturated fatty acids (FAs) by blocking SCD-1 activity is beneficial for the anti-invasion effect of TCN. The aim of this study was to clarify the mechanistic connection between metabolite alterations induced by metabolic rewiring and the aggressive tumor phenotype and further develop novel pharmacological tools for the intervention of tumor invasion associated with SCD-1-mediated metabolite alterations.

11.
Int J Med Mushrooms ; 21(7): 683-691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679302

RESUMO

A skin substitute TG05 obtained from residues of the culinary-medicinal mushroom Flammulina velutipes cultivation process was developed in this study for the first time. Pre-column derivatization high-performance liquid chromatography fingerprints analysis revealed that TG05 was composed of water-insoluble fibers containing xylose (57%), glucose (19.5%), and arabinose (16.3%) as major monomers. Porous and opaque structure of TG05 was demonstrated by scanning electron microscopy. Animal experiments conducted on mice and rats indicated that TG05 notably accelerated the wound-healing process. In addition, TG05 induced proliferation and migration of human keratinocytes time- and dose-dependently. Taken together, the skin substitute TG05 with new structure promotes wound healing in vitro and in vivo. This study provided a novel method to produce functional biomaterial from abundant and low-cost agricultural residues generated during edible mushroom cultivation.

12.
Can J Cardiol ; 35(11): 1546-1556, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31679624

RESUMO

BACKGROUND: Endothelial progenitor cell (EPC) therapy has been suggested as a major breakthrough in the treatment of ischemic diseases. However, the molecular mechanism that underlies EPC functional regulation is still unclear. METHODS: We examined the angiogenic capacity of EPCs in a hindlimb ischemia model of wild-type and ClC-3 knockout mice. RESULTS: Mice lacking of ClC-3 exhibited reduced blood flow recovery and neovascularization in ischemic muscles 7 and 14 days after hind limb ischemia. Moreover, compared with wild-type EPCs, the hindlimb blood reperfusion in mice receiving ClC-3 knockout EPCs was significantly impaired, accompanied by reduced EPC homing and retention. In vitro, EPCs derived from ClC-3 knockout mice displayed impaired migratory, adhesive, and angiogenic activity. CXC chemokine receptor 4 (CXCR4) expression was significantly reduced in EPC from ClC-3 knockout mice compared with wild-type. Moreover, the expression and phosphorylation of Janus kinase 2 (JAK-2), a downstream signalling of CXCR4, was also reduced in ClC-3 knockout EPC, indicating that CXCR4/JAK-2 signalling is dysregulated by ClC-3 deficiency. Consistent with this assumption, the migratory capacity of wild-type EPCs was attenuated by either CXCR4 antagonist AMD3100 or JAK-2 inhibitor AG490. More importantly, the impaired migratory capacity of ClC-3 knockout EPCs was rescued by overexpression of CXCR4. CONCLUSIONS: ClC-3 plays a critical role in the angiogenic capacity of EPCs and EPC-mediated neovascularization of ischemic tissues. Disturbance of CXCR4/JAK-2 signalling may contribute to the functional impairment of ClC-3 deficient EPCs. Thus, ClC-3 may be a potential therapeutic target for modulating neovascularization in ischemic diseases.

13.
Aging (Albany NY) ; 112019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31683259

RESUMO

This study explored the influence of long non-coding RNA (lncRNA) SNHG14 on α-synuclein (α-syn) expression and Parkinson's disease (PD) pathogenesis. Firstly, we found that the expression level of SNHG14 was elevated in brain tissues of PD mice. In MN9D cells, the rotenone treatment (1µmol/L) enhanced the binding between transcriptional factor SP-1 and SNHG14 promoter, thus promoting SNHG14 expression. Interference of SNHG14 ameliorated the DA neuron injury induced by rotenone. Next, we found an interaction between SNHG14 and miR-133b. Further study showed that miR-133b down-regulated α-syn expression by targeting its 3'-UTR of mRNA and SNHG14 could reverse the negative effect of miR-133b on α-syn expression. Interference of SNHG14 reduced rotenone-induced DA neuron damage through miR-133b in MN9D cells and α-syn was responsible for the protective effect of miR-133b. Similarly, interference of SNHG14 mitigated neuron injury in PD mouse model. All in all, silence of SNHG14 mitigates dopaminergic neuron injury by down-regulating α-syn via targeting miR-133b, which contributes to improving PD.

14.
Opt Express ; 27(22): 32193-32209, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684436

RESUMO

Strong-field photoelectron holography (SFPH), originating from the interference of the direct electron and the rescattering electron in tunneling ionization, is a significant tool for probing structure and electronic dynamics in molecules. We theoretically study SFPH by counter rotating two-color circularly (CRTC) polarized laser pulses. Different from the case of the linearly polarized laser field, where the holographic structure in the photoelectron momentum distribution (PEMD) is clustered around the laser polarization direction, in the CRTC laser fields, the tunneling ionized electrons could recollide with the parent ion from different angles and thus the photoelectron hologram appears in the whole plane of laser polarization. This property enables structural information delivered by the electrons scattering the molecule from different angles to be recorded in the two-dimensional photoelectron hologram. Moreover, the electrons tunneling at different laser cycles are streaked to different angles in the two-dimensional polarization plane. This property enables us to probe the sub-cycle electronic dynamics in molecules over a long time window with the multiple-cycle CRTC laser pulses.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31684704

RESUMO

INTRODUCTION: There is evidence that maternal and child outcomes in patients with gestational diabetes mellitus (GDM) are associated with different exercise patterns. However, the evidence on which forms of exercise are beneficial for pregnant women with GDM is unclear. EVIDENCE ACQUISITION: PubMed, EMBASE, the Cochrane Library and the Web of Science were systematically searched for eligible studies until Feb.24, 2019. A randomized controlled trial (RCT) was used as the study method. The literature quality was evaluated and the data extracted by two researchers, and statistical analysis was carried out using Review Manage 5.2 software. EVIDENCE SYNTHESIS: A total of 9 RCTs were included. The research results show that compared with the conventional treatment group, aerobic exercise reduced the fasting blood glucose [WMD=-0.35, 95% CI: -0.62~-0.08, I2=87%], postprandial blood glucose [WMD=-0.62, 95% CI:-0.95~-0.29, I2=84%] and glycosylated hemoglobin levels [WMD=-0.35, 95% CI:-0.49~-0.20, I2=71%] in patients with GDM. Compared with the conventional treatment group, the dosage of insulin [WMD=0.97, 95% CI: 0.42~2.26, I2=0%] in patients with GDM in the resistance exercise group was reduced, and the effect of combined treatment was statistically significant. Compared with the conventional treatment group, the combination of aerobic exercise plus resistance exercise training reduced postprandial blood glucose in patients with GDM [WMD=-0.64, 95% CI:-0.94~-0.34], and the combined treatment effect was statistically significant. CONCLUSIONS: Different types of exercise have different intervention effects on the outcome of patients with gestational diabetes. However, we do not have enough data to determine whether infants benefit from this exercise, and it is still necessary to conduct large-scale, high-quality and long-term intervention studies for verification.

16.
Psychol Med ; : 1-12, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31685046

RESUMO

BACKGROUND: The microbiota-gut-brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients. METHODS: We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD. RESULTS: The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890. CONCLUSIONS: The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31685635

RESUMO

Epidemiological studies show that maternal diabetes is associated with an increased risk of autism spectrum disorders (ASDs), although the detailed mechanisms remain unclear. The present study aims to investigate the potential effect of maternal diabetes on autism-like behavior in offspring. The results of in vitro study showed that transient hyperglycemia induces persistent reactive oxygen species (ROS) generation with suppressed superoxide dismutase 2 (SOD2) expression. Additionally, we found that SOD2 suppression is due to oxidative stress-mediated histone methylation and the subsequent dissociation of early growth response 1 (Egr1) on the SOD2 promoter. Furthermore, in vivo rat experiments showed that maternal diabetes induces SOD2 suppression in the amygdala, resulting in autism-like behavior in offspring. SOD2 overexpression restores, while SOD2 knockdown mimics, this effect, indicating that oxidative stress and SOD2 expression play important roles in maternal diabetes-induced autism-like behavior in offspring, while prenatal and postnatal treatment using antioxidants permeable to the blood-brain barrier partly ameliorated this effect. We conclude that maternal diabetes induces autism-like behavior through hyperglycemia-mediated persistent oxidative stress and SOD2 suppression. Here we report a potential mechanism for maternal diabetes-induced ASD.

18.
Pharmacol Res ; : 104489, 2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31689519

RESUMO

Phloretin, extracted from the pericarp and velamen of apples or pears, is a dihydrochalcone flavonoid with anti-bacterial and anti-inflammatory activities. It has been reported that phloretin has anti-inflammatory effects in ulcerative colitis (UC) mice. However, the role of the gut microbiota in the phloretin anti-UC process remains unclear. In this study, we observed that the anti-UC effect of phloretin was affected by co-housing, probably because of the transmissible nature of the gut micobiota. Through fecal micobiota transplantation (FMT), the effects of the gut microbiota on the anti-UC of phloretin were further confirmed. UC was induced in mice by administrating 3% dextran sulfate sodium (DSS) in drinking water for 7 days. Phloretin (60 mg/kg) was administered by gavage every day during the experiment. Fecal microbes (109 CFU/mL) from phloretin-treated UC mice were administered by gavage to non-phloretin-treated UC mice for 7 days. The results showed that FMT, like phloretin, ameliorated UC by improving disease symptoms and colon inflammation, balancing inflammatory cytokines, maintaining intestinal barrier integrity, restoring systemic immune function, inhibiting NF-κB and NLRP3 inflammasome activation and ameliorating the oxidant stress. Both FMT and phloretin treatment increased the levels of Bacteroidetes, Alistipes and Lactobacillus and decreased those of Firmicutes, Oscillibacter and Ruminiclostridium_6. Correlation analysis between gut microbes and micro-environmental factors revealed that Alistipes abundance was negatively correlated with DAI, pathological score, and TNF-α, IL-6 and IL-1ß levels, and Alistipes was more abundant in phloretin or FMT treated UC mice. Oscillibacter abundance was significantly positively correlated with IL-6 and IL-1ß levels and pathological score, and Oscillibacter was increased in UC mice. Furthermore, network analysis of the dominant genera revealed that Alistipes abundance was negatively related to Oscillibacter abundance. In conclusion, this study suggests that the anti-UC effects of phloretin are achieved through regulation of the gut microbiota and phloretin has the potential to be developed as a promising agent for the treatment of UC.

19.
J Am Chem Soc ; 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31691568

RESUMO

Receptor-ligand interactions (RLIs) that play pivotal roles in living organisms are often depicted with the classic keys-and-locks model. Nevertheless, RLIs on the cell surface are generally highly complex and nonlinear, partially due to the non-continuous and dynamic distribution of receptors on extracellular membranes. Here, we develop a tetrahedral DNA framework (TDF)-programmed approach to topologically engineer RLIs on the cell membrane, which enables active re-cruitment-binding of clustered receptors for high-affinity capture of circulating tumor cells (CTCs). The four vertices of a TDF afford orthogonal anchoring of ligands with spatial organization, based on which we synthesized n-simplexes har-boring 1-3 aptamers targeting epithelial cell adhesion molecule (EpCAM) that are over-expressed on the membrane of tumor cells. The 2-simplex with three aptamers not only shows increased binding affinity (~19-fold) but prevents endo-cytosis by cells. By using 2-simplex as the capture probe, we demonstrate the high-efficiency CTC capture, which is chal-lenged in real clinical breast cancer patient samples. This TDF-programmed platform thus provides a powerful means for studying RLIs in physiological settings and for cancer diagnosis.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31692241

RESUMO

New nanostructure means new nanotechnology and nanoscience. The need of complex nanostructure-based advanced functional nanomaterials has promoted the appearance of several kinds of multifluid electrospinning processes, such as tri-axial electrospinning, quad-fluid coaxial electrospinning, tri-fluid side-by-side electrospinning, and coaxial electrospinning with a side-by-side core. These multifluid processes can greatly expand the capability of electrospinning in generating new types of nanostructures with different organization manner of the inner parts, and from both spinnable and unspinnable working fluids. The key elements for conducting a multifluid electrospinning lie in a well-designed spinneret, compatibility of the working fluids, and special operational parameters. The complex nanostructures can be created through direct electrospinning of multiple fluids, through after-treatment of the electrospun products, and through ingenious design of the components, compositions and their spatial distributions as well. This article provides a simple review on the most recent publications about the multifluid electrospinning processes and the corresponding complex nanostructures. This article is characterized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA