Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.722
Filtrar
1.
Epigenetics ; 19(1): 2337087, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38564758

RESUMO

Decidual macrophages are the second-largest immune cell group at the maternal-foetal interface. They participate in apoptotic cell removal, and protect the foetus from microorganisms or pathogens. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia and recurrent spontaneous miscarriage (RSM). However, the mechanisms by which decidual macrophages are involved in the occurrence of adverse pregnancy outcomes have not been elucidated. Here we integrated DNA methylation and gene expression data from decidua macrophages to identify potential risk factors related to RSM. GPR133 was significantly hypomethylated and upregulated in decidual macrophages from RSM patients. Further demethylation analysis demonstrated that GPR133 expression in decidual macrophages was significantly increased by 5-Aza-dC treatment. In addition, the influence of GPR133 on the phagocytic ability of macrophages was explored. Phagocytosis was impaired in the decidual macrophages of RSM patients with increased GPR133 expression. Increased GPR133 expression induced by demethylation treatment in the decidual macrophages of healthy control patients led to a significant decrease in phagocytic function. Importantly, knockdown of GPR133 resulted in a significant improvement in the phagocytic function of THP-1 macrophages. In conclusion, the existing studies have shown the influence of GPR133 on the phagocytic function of decidual macrophages and pregnancy outcomes, providing new data and ideas for future research on the role of decidual macrophages in RSM.


Assuntos
Aborto Espontâneo , Decídua , Feminino , Humanos , Gravidez , Aborto Espontâneo/genética , Decídua/metabolismo , Metilação de DNA , Macrófagos , Fagocitose , Regulação para Cima
2.
Cardiol Young ; : 1-6, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577783

RESUMO

OBJECTIVE: Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope. METHODS: A retrospective analysis was performed on the clinical data of 2513 children aged 3-18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope. RESULTS: (1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001). CONCLUSION: The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.

3.
Complement Ther Med ; 82: 103038, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582375

RESUMO

OBJECTIVE: An increasing body of evidence suggests a positive role of chiropractic in the treatment of neuro-musculoskeletal disorders. This study aims to explore current research hotspots and trends, providing insights into the broad prospects of this field. METHODS: A bibliometric review was conducted on all chiropractic articles included in the Web of Science Core Collection before December 31, 2023. RESULTS: Over the past century, the volume of research in the field of chiropractic has been fluctuating annually, with four peaks observed in total. The United States, Canada, Australia, and the United Kingdom are leading countries. Chu, Eric Chun-Pu is the author with the most publications, while Bronfort, Gert has the highest total citation count. The University of Southern Denmark has produced the most publications, while Queens University - Canada is the most central institution. The Journal of Manipulative and Physiological Therapeutics is the journal with the most publications and citations, while the Journal of the American Medical Association is the most central journal. The two most-cited articles were both authored by Eisenberg DM. Emerging keywords include "chronic pain" and "skills". The theoretical mechanisms and scientific basis of chiropractic, its clinical practice and safety, education and training, integration with other disciplines, and patient experiences and satisfaction are the frontiers and hotspots of research. CONCLUSION: This study integrates bibliometric analysis to summarize the current state of research and global network centers in the field of chiropractic, further highlighting the hotspots and trends in this field. However, Individual and national rankings should be interpreted with caution due to our focus on Web of Science rather than PubMed.

4.
Sci Bull (Beijing) ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580551

RESUMO

The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.

5.
J Control Release ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582337

RESUMO

Corneal stromal fibrosis is a common cause of visual impairment resulting from corneal injury, inflammation and surgery. Therefore, there is an unmet need for inhibiting corneal stromal fibrosis. However, bioavailability of topical eye drops is very low due to the tear and corneal barriers. In situ delivery offers a unique alternative to improve efficacy and minimize systemic toxicity. Herein, a drug delivery platform based on thermoresponsive injectable hydrogel/nano-micelles composite with in situ drug-controlled release and long-acting features is developed to prevent corneal scarring and reduce corneal stromal fibrosis in lamellar keratoplasty. The in-situ gelation hydrogels enabled direct delivery of celastrol to the corneal stroma. In vivo evaluation with a rabbit anterior lamellar keratoplasty model showed that hydrogel/micelles platform could effectively inhibit corneal stromal fibrosis. This strategy achieves controlled and prolonged release of celastrol in the corneal stroma of rabbit. Following a single corneal interlamellar injection, celastrol effectively alleviated fibrosis via mTORC1 signal promoting autophagy and inhibiting TGF-ß1/Smad2/3 signaling pathway. Overall, this strategy demonstrates promise for the clinical application of celastrol in preventing corneal scarring and reducing corneal stromal fibrosis post-lamellar keratoplasty, highlighting the potential benefits of targeted drug delivery systems in ocular therapeutics.

6.
Health Inf Sci Syst ; 12(1): 29, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584761

RESUMO

Purpose: To explore the biliary and duodenal microbiota features associated with the formation and recurrence of choledocholithiasis (CDL). Methods: We prospectively recruited patients with primary (P-CDL, n = 29) and recurrent CDL (R-CDL, n = 27) for endoscopic retrograde cholangiopancreatography (ERCP). Duodenal mucosa (DM), bile and bile duct stones (BDS) samples were collected in P- and R-CDL patients. DM samples were also collected in 8 healthy controls (HC). The microbiota profile analysis was performed with 16S rRNA gene sequencing. Results: Short-course antibiotic application before ERCP showed no significant effects in alpha and beta diversities of the biliary and duodenal microbiota in CDL. Alpha diversity showed no difference between DM and bile samples in CDL. The duodenal microbial richness and diversity was lower in both P- and R-CDL than HC. The biliary microbiota composition showed a high similarity between P- and R-CDL. Fusobacterium and Enterococcus were higher abundant in DM, bile, and BDS samples of R-CDL than P-CDL, as well as Escherichia and Klebsiella in bile samples of R-CDL. The enriched duodenal and biliary bacteria in CDL were closely associated with cholecystectomy, inflammation and liver dysfunction. The bile-associated microbiota of R-CDL expressed enhanced capacity of D-glucuronide and D-glucuronate degradation, implicating an elevated level of ß-glucuronidase probably produced by enriched Escherichia and Klebsiella in bile. Conclusions: The duodenal microbiota was in an imbalance in CDL. The duodenal microbiota was probably the main source of the biliary microbiota and was closely related to CDL formation and recurrence. Enterococcus, Fusobacterium, Escherichia and Klebsiella might contribute to CDL recurrence. Clinical trials: The study was registered at the Chinese Clinical Trial Registry (https://www.chictr.org.cn/index.html, ChiCTR2000033940). Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-023-00267-2.

7.
Am J Transl Res ; 16(3): 817-828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586098

RESUMO

OBJECTIVE: This study aims to explore the risk factors of vascular complications following free flap reconstruction and to develop a clinical auxiliary assessment tool for predicting vascular complications in patients undergoing free flap reconstruction leveraging machine learning methods. METHODS: We reviewed the medical data of patients who underwent free flap reconstruction at the Affiliated Hospital of Zunyi Medical University retrospectively from January 1, 2019, to December 31, 2021. Statistical analysis was used to screen risk factors. A training data set was generated and augmented using the synthetic minority oversampling technique. Logistic regression, random forest and neural network, models were trained, using this dataset. The performance of these three predictive models was then evaluated and compared using a test set, with four metrics, area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. RESULTS: A total of 570 patients who underwent free flap reconstruction were included in this study, 46 of whom developed postoperative vascular complications. Among the models tested, the neural network model exhibited superior performance on the test set, achieving an AUC of 0.828. Multivariate logistic regression analysis identified that preoperative hemoglobin levels, preoperative fibrinogen levels, operation duration, smoking history, the number of anastomoses, and peripheral vascular injury as statistically significant independent risk factors for vascular complications post-free flap reconstruction. The top five predictive factors in the neural network were fibrinogen content, operation duration, donor site, body mass index (BMI), and platelet count. CONCLUSION: Hemoglobin levels, fibrinogen levels, operation duration, smoking history, and anastomotic veins are independent risk factors for vascular complications following free flap reconstruction. These risk factors enhance the ability of machine learning models to predict the occurrence of vascular complications and identify high-risk patients. The neural network model outperformed the logistic regression and random forest models, suggesting its potential to aid clinicians in early identification of high-risk patients thereby mitigating patient suffering and improving prognosis.

8.
Heliyon ; 10(7): e28608, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586331

RESUMO

Apoptosis is the primary cause of cell death in the differentiation of Adipose-derived stromal cells (ADSCs) into neurons. However, the relationship between endoplasmic reticulum stress (ERS) and death receptor-mediated apoptosis in ADSC-induced neuronal differentiation is not clear. ADSCs were isolated and induced to differentiate into neurons using ß-mercaptoethanol. The expression of neuron-specific enolase (NSE), GRP94, CHOP, Fas/FasL, TNFR1/TNF-α, DR5/TRAIL, Caspase8, and Caspase3 in ADSCs was examined using immunocytochemistry and Western blotting before induction, during pre-induction, and after induction. Transmission electron microscopy (TEM) was used to observe changes in the morphology of the endoplasmic reticulum (ER), and the MTT assay was employed to measure cell viability in the uninduced and induced groups. Additionally, the number of apoptotic cells during the induction process was measured using flow cytometry with Annexin V/PI. With increasing induction time, the positive expression rates of CHOP, Fas/FasL, Caspase8, Caspase-3, and NSE gradually increased, while the positive expression rate of GRP94 decreased. TNFR1/TNF-α and DR5/TRAIL peaked at 5 h post-induction and then decreased at 8 h. TEM revealed swelling and expansion of the ER, vacuolar changes, and degranulation in cells. The MTT assay showed a gradual decrease in the absorbance of surviving cells in all groups. Flow cytometry indicated an increasing rate of apoptosis in cells. Therefore, ERS in the normal culture and growth of ADSCs, manifesting as enhanced unfolded protein response (UPR), maintains the normal survival of ADSCs. However, in the process of ADSC-induced differentiation into neurons, ERS and death receptor-mediated apoptosis are significant causes of cell death.

9.
Heliyon ; 10(7): e28618, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586389

RESUMO

Background: The aim of this study was to investigate the effect of DNA methylation of Fork Head Box O3 (FOXO3a) on the process of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Methods: The expressions of FOXO3a, DNA methyltransferase 1 (DNMT1), METTL3, and EMT-related proteins (E-cadherin and N-cadherin) were measured. The influence of 5-Aza-dC and DNMT1 on the methylation level in the promoter region of FOXO3a was examined through the application of methylation-specific PCR (MSP). Chromatin immunoprecipitation (ChIP) was employed to detect binding between DNMT1 and the FOXO3a promoter. Methylated RNA immunoprecipitation (MeRIP) was utilized to evaluate the level of DNMT1 N6-methyladenosine (m6A) methylation. The assessment of cell viability and invasion abilities of A549 cells was performed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. NSCLC xenograft mouse models were established by subcutaneously injected treated A549 cells into nude mice. Results: The expression levels of DNMT1 and DNA methylation level FOXO3a were found to be significantly increased, whereas FOXO3a expression was considerably decreased in NSCLC cell lines and NSCLC tumor tissues. Both 5-Aza-dC treatment and DNMT1 knockdown resulted in the down-regulation of DNA methylation levels of FOXO3a while simultaneously up-regulating the expression of FOXO3a. A ChIP assay demonstrated that DNMT1 has the ability to bind to the promoter region of FOXO3a. Furthermore, the knockdown of DNMT1 promoted E-cadherin expression, but inhibited expression of N-cadherin, cell viability, and invasion ability. However, the knockdown of FOXO3a hindered the effect of DNMT1 knockdown on EMT, cell viability, and invasion ability of A549 cells. This was evidenced by decreased E-cadherin expression and increased N-cadherin expression, as well as increased cell viability and invasion ability. Increased expression of DNMT1 resulted from m6A methylation of DNMT1, which was mediated by METTL3. Overexpression of DNMT1 decreased of E-cadherin expression while increased N-cadherin expression, cell viability, and invasion ability in METTL3-shRNA treated A549 cells. In xenograft mouse models, DNMT1 knockdown significantly reduced tumor volumes and tumor weight. DNMT1 knockdown upregulated the expression of FOXO3a and E-cadherin, while downregulated N-cadherin expression in vivo. Conclusion: METTL3-mediated m6A methylation of DNMT1 up-regulates FOXO3a promoter methylation, thereby promoting the progression of NSCLC.

10.
Heliyon ; 10(7): e28670, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586420

RESUMO

Background: Immunotherapy has changed the treatment landscape for lung cancer. This study aims to construct a tumor mutation-related model that combines long non-coding RNA (lncRNA) expression levels and tumor mutation levels in tumor genomes to detect the possibilities of the lncRNA signature as an indicator for predicting the prognosis and response to immunotherapy in lung adenocarcinoma (LUAD). Methods: We downloaded the tumor mutation profiles and RNA-seq expression database of LUAD from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were extracted based on the cumulative number of mutations. Cox regression analyses were used to identify the prognostic lncRNA signature, and the prognostic value of the five selected lncRNAs was validated by using survival analysis and the receiver operating characteristic (ROC) curve. We used qPCR to validate the expression of five selected lncRNAs between human lung epithelial and human lung adenocarcinoma cell lines. The ImmuCellAI, immunophenoscore (IPS) scores and Tumor Immune Dysfunction and Exclusion (TIDE) analyses were used to predict the response to immunotherapy for this mutation related lncRNA signature. Results: A total of 162 lncRNAs were detected among the differentially expressed lncRNAs between the Tumor mutational burden (TMB)-high group and the TMB-low group. Then, five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as tumor mutation-related candidates for constructing the prognostic prediction model. Kaplan‒Meier curves showed that the overall survival of the low-risk group was significantly better than that of the high-risk group, and the results of the GSE50081 set were consistent. The expression levels of PD1, PD-L1 and CTLA4 in the low-risk group were higher than those in the high-risk group. The IPS scores and TIDE scores of patients in the low-risk group were significantly higher than those in the high-risk group. Conclusion: Our findings demonstrated that the five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as candidates for constructing the tumor mutation-related model which may serve as an indicator of tumor mutation levels and have important implications for predicting the response to immunotherapy in LUAD.

11.
Adv Mater ; : e2402532, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563503

RESUMO

Due to inherent differences in cellular composition and metabolic behavior with host cells, tumor-harbored bacteria can discriminatorily affect tumor immune landscape. However, the mechanisms by which intracellular bacteria affect antigen presentation process between tumor cells and antigen-presenting cells (APCs) are largely unknown. The invasion behavior of attenuated Salmonella VNP20009 (VNP) into tumor cells is investigated and an attempt is made to modulate this behavior by modifying positively charged polymers on the surface of VNP. It is found that non-toxic chitosan oligosaccharide (COS) modified VNP (VNP@COS) bolsters the formation of gap junction between tumor cells and APCs by enhancing the ability of VNP to infect tumor cells. On this basis, a bacterial biohybrid is designed to promote in situ antigen cross-presentation through intracellular bacteria induced gap junction. This bacterial biohybrid also enhances the expression of major histocompatibility complex class I molecules on the surface of tumor cells through the incorporation of Mdivi-1 coupled with VNP@COS. This strategic integration serves to heighten the immunogenic exposure of tumor antigens; while, preserving the cytotoxic potency of T cells. A strategy is proposed to precisely controlling the function and local effects of microorganisms within tumors.

12.
BMC Urol ; 24(1): 78, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575966

RESUMO

BACKGROUND: Few studies are focusing on the mechanism of erastin acts on prostate cancer (PCa) cells, and essential ferroptosis-related genes (FRGs) that can be PCa therapeutic targets are rarely known. METHODS: In this study, in vitro assays were performed and RNA-sequencing was used to measure the expression of differentially expressed genes (DEGs) in erastin-induced PCa cells. A series of bioinformatic analyses were applied to analyze the pathways and DEGs. RESULTS: Erastin inhibited the expression of SLC7A11 and cell survivability in LNCaP and PC3 cells. After treatment with erastin, the concentrations of malondialdehyde (MDA) and Fe2+ significantly increased, whereas the glutathione (GSH) and the oxidized glutathione (GSSG) significantly decreased in both cells. A total of 295 overlapping DEGs were identified under erastin exposure and significantly enriched in several pathways, including DNA replication and cell cycle. The percentage of LNCaP and PC3 cells in G1 phase was markedly increased in response to erastin treatment. For four hub FRGs, TMEFF2 was higher in PCa tissue and the expression levels of NRXN3, CLU, and UNC5B were lower in PCa tissue. The expression levels of SLC7A11 and cell survivability were inhibited after the knockdown of TMEFF2 in androgen-dependent cell lines (LNCaP and VCaP) but not in androgen-independent cell lines (PC3 and C4-2). The concentration of Fe2+ only significantly increased in TMEFF2 downregulated LNCaP and VCaP cells. CONCLUSION: TMEFF2 might be likely to develop into a potential ferroptosis target in PCa and this study extends our understanding of the molecular mechanism involved in erastin-affected PCa cells.


Assuntos
Ferroptose , Piperazinas , Neoplasias da Próstata , Masculino , Humanos , Androgênios , Ferroptose/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Próstata/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Netrina
13.
Nano Lett ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572971

RESUMO

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.

14.
J Environ Manage ; 357: 120732, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38560954

RESUMO

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.

15.
Cell Biosci ; 14(1): 42, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556890

RESUMO

BACKGROUND: Repeated neonatal sevoflurane exposures led to neurocognitive disorders in young mice. We aimed to assess the role of microglia and complement C1q in sevoflurane-induced neurotoxicity and explore the underlying mechanisms. METHODS: Neonatal mice were treated with sevoflurane on postnatal days 6, 8, and 10, and the Morris water maze was performed to assess cognitive functions. For mechanistic explorations, mice were treated with minocycline, C1q-antibody ANX005, and sialidase-inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA) before sevoflurane exposures. Western blotting, RT-qPCR, Golgi staining, 3D reconstruction and engulfment analysis, immunofluorescence, and microglial morphology analysis were performed. In vitro experiments were conducted in microglial cell line BV2 cells. RESULTS: Repeated neonatal sevoflurane exposures resulted in deficiencies in learning and cognition of young mice, accompanied by microglial activation and synapse loss. Sevoflurane enhanced microglia-mediated synapse elimination through C1q binding to synapses. Inhibition of microglial activation and phagocytosis with minocycline significantly reduced the loss of synapses. We further revealed the involvement of neuronal sialic acids in this process. The enhanced activity of sialidase by sevoflurane led to the loss of sialic acids, which facilitated C1q binding to synapses. Inhibition of C1q with ANX005 or inhibition of sialidase with NADNA significantly rescued microglia-mediated synapse loss and improved neurocognitive function. Sevoflurane enhanced the engulfment of BV2 cells, which was reversed by ANX005. CONCLUSIONS: Our findings demonstrated that C1q-mediated microglial synaptic elimination by enhancing desialylation contributed to sevoflurane-induced developmental neurotoxicity. Inhibition of C1q or sialidase may be a potential therapeutic strategy for this neurotoxicity.

16.
Front Microbiol ; 15: 1345235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559358

RESUMO

Introduction: Modern agriculture emphasizes the design of cropping systems using ecological function and production services to achieve sustainability. The functional characteristics of plants (grasses vs. legumes) affect changes in soil microbial communities that drive agroecosystem services. Information on the relationship between legume-grass mixtures and soil microorganisms in different ecological zones guides decision-making toward eco-friendly and sustainable forage production. However, it is still poorly understood how cropping patterns affect soil microbial diversity in alpine grasslands and whether this effect varies with altitude. Methods: To fill this gap in knowledge, we conducted a field study to investigate the effects of growing oats (Avena sativa L.), forage peas (Pisum sativum L.), common cornflower (Vicia sativa L.), and fava beans (Vicia faba L.) in monocultures and mixtures on the soil microbial communities in three ecological zones of the high alpine zone. Results: We found that the fungal and bacterial community structure differed among the cropping patterns, particularly the community structure of the legume mixed cropping pattern was very different from that of monocropped oats. In all ecological zones, mixed cropping significantly (p < 0.05) increased the α-diversity of the soil bacteria and fungi compared to oat monoculture. The α-diversity of the soil bacteria tended to increase with increasing elevation (MY [2,513 m] < HZ [2,661 m] < GN [3,203 m]), while the opposite was true for fungi (except for the Chao1 index in HZ, which was the lowest). Mixed cropping increased the abundance of soil fungi and bacteria across ecological zones, particularly the relative abundances of Nitrospira, Nitrososphaera, Phytophthora, and Acari. Factors affecting the bacterial community structure included the cropping pattern, the ecological zone, water content, nitrate-nitrogen, nitrate reductase, and soil capacity, whereas factors affecting fungal community structure included the cropping pattern, the ecological zone, water content, pH, microbial biomass nitrogen, and catalase. Discussion: Our study highlights the variation in soil microbial communities among different in alpine ecological regions and their resilience to cropping systems. Our results also underscore that mixed legume planting is a sustainable and effective forage management practice for the Tibetan Plateau.

17.
Front Pediatr ; 12: 1342514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560399

RESUMO

Background: Short sleep duration has been related to obesity in children and adolescents. However, it remains unknown whether late bedtime is also associated with obesity and whether the association is independent of sleep duration. A meta-analysis was performed to address this issue. Methods: In order to accomplish the aim of the meta-analysis, a comprehensive search was conducted on databases including PubMed, Embase, and Web of Science to identify observational studies. The cutoff to determine late bedtime in children in this meta-analysis was consistent with the value used among the included original studies. As for obesity, it was typically defined as a body mass index (BMI) > 95th percentile of age and sex specified reference standards or the International Obesity Task Force defined age- and gender-specific cut-off of BMI. The Cochrane Q test was employed to evaluate heterogeneity among the included studies, while the I2 statistic was estimated. Random-effects models were utilized to merge the results, considering the potential impact of heterogeneity. Results: Tweleve observational studies with 57,728 participants were included. Among them, 6,815 (11.8%) were obese. Pooled results showed that late bedtime reported by the participants or their caregivers was associated with obesity (odds ratio [OR]: 1.27, 95% confidence interval [CI]: 1.16-1.39, p < 0.001; I2 = 0%). Subgroup analysis showed consistent results in studies with (OR: 1.33, 95% CI: 1.04-1.70, p = 0.02) and without adjustment of sleep duration (OR: 1.27, 95% CI: 1.14-1.41, p < 0.001). Further subgroup analysis also showed that the association was not significantly affected by study location, design, age of the participants, or diagnostic methods for obesity (p for subgroup difference all >0.05). Conclusion: Late bedtime is associated with obesity in children and adolescents, which may be independent of sleep duration.

19.
Crit Rev Biotechnol ; : 1-18, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566484

RESUMO

Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.

20.
Small ; : e2311951, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593355

RESUMO

Soft actuators have assumed vital roles in a diverse number of research and application fields, driving innovation and transformative advancements. Using 3D molding of smart materials and combining these materials through structural design strategies, a single soft actuator can achieve multiple functions. However, it is still challenging to realize soft actuators that possess high environmental adaptability while capable of different tasks. Here, the response threshold of a soft actuator is modulated by precisely tuning the ratio of stimulus-responsive groups in hydrogels. By combining a heterogeneous bilayer membrane structure and in situ multimaterial printing, the obtained soft actuator deformed in response to changes in the surrounding medium. The response medium is suitable for both biotic and abiotic environments, and the response rate is fast. By changing the surrounding medium, the precise capture, manipulation, and release of micron-sized particles of different diameters in 3D are realized. In addition, static capture of a single red blood cell is realized using biologically responsive medium changes. Finally, the experimental results are well predicted using finite element analysis. It is believed that with further optimization of the structure size and autonomous navigation platform, the proposed soft microactuator has significant potential to function as an easy-to-manipulate multifunctional robot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...