Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.486
Filtrar
1.
Int J Ophthalmol ; 16(3): 402-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935785

RESUMO

AIM: To illustrate clinicopathological features of orbital non-rhabdomyosarcoma soft tissue sarcoma (NRSTS), and to compare the treatment outcome between postoperative radiotherapy (RT) and chemotherapy in a retrospective analysis nearly 20y. METHODS: A retrospective cohort study of 56 patients with orbital NRSTS were reviewed, 34 of whom received postoperative RT, and 22 received postoperative chemotherapy. The clinicopathological features, local recurrence, metastases, and survival data were recorded. Survival analysis was performed using the Kaplan-Meier method. RESULTS: During follow-up (111.8mo, ranged 8-233mo) for 56 patients, 19 patients of them developed local recurrence, and 7 patients developed distant metastases. Fifteen patients died during follow-up period. Overall survival rates considering the whole study group was 78.57% at 5y, and 72.16% at 10y after the initial diagnosis. Compared with chemotherapy, RT was associated with lower risk of local recurrence [hazard ratio for RT vs chemotherapy, 0.263, 95% confidence interval (CI), 0.095-0.728, P=0.0015]; with lower risk of distant metastasis (hazard ratio for RT vs chemotherapy, 0.073, 95%CI, 0.015-0.364, P=0.0014); and with lower risk of death from disease (hazard ratio for RT vs chemotherapy, 0.066, 95%CI, 0.022-0.200, P<0.0001). The 5-year survival rate in RT group was 97.06% compared to 50% in chemotherapy group. CONCLUSION: In patients with orbital NRSTS, postoperative RT provides better control of local recurrence, distant metastasis, and death from disease than chemotherapy. RT is the more preferrable adjuvant therapy compared to chemotherapy possibly.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36943036

RESUMO

Developing crystalline porous materials with highly efficient CO2 selective adsorption capacity is one of the key challenges to carbon capture and storage (CCS). In current studies, much more attention has been paid to the crystalline and porous properties of crystalline porous materials for CCS, while the defects, which are unavoidable and ubiquitous, are relatively neglected. Herein, for the first time, we propose a monomer-symmetry regulation strategy for directional defect release to achieve in situ functionalization of COFs while exposing uniformly distributed defect-aldehyde groups as functionalization sites for selective CO2 capture. The regulated defective COFs possess high crystallinity, good structural stability, and a large number of organized and functionalized aldehyde sites, which exhibit one of the highest selective separation values of all COF sorbing materials in CO2/N2 selective adsorption (128.9 cm3/g at 273 K and 1 bar, selectivity: 45.8 from IAST). This work not only provides a new strategy for defect regulation and in situ functionalization of COFs but also provides a valuable approach in the design and preparation of new adsorbents for CO2 adsorption and CO2/N2 selective separation.

3.
Biochem Biophys Res Commun ; 655: 90-96, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933312

RESUMO

AIMS: Acute lung injury (ALI) induced by sepsis and its complications have high morbidity and mortality rates globally. The objective of this study was to enhance our understanding of the underlying mechanism of ALI by identifying potential splicing events that are regulated in this condition. MATERIALS AND METHODS: The CLP mouse model was utilized for mRNA sequencing, and the expression and splicing data were analyzed. Verification of the changes in expression and splicing induced by CLP was conducted using qPCR and RT-PCR. RESULTS: Our results showed that splicing-related genes were regulated, suggesting that splicing regulation may be a key mechanism in ALI. We also found that more than 2900 genes displayed alternative splicing in the lungs of mice with sepsis. Using RT-PCR, we verified that TLR4 and other genes had differential splicing isoforms in the lungs of mice with sepsis. We confirmed the presence of TLR4-s in the lungs of mice with sepsis using RNA-fluorescence in situ hybridization. CONCLUSION: Our results suggest that sepsis-induced ALI can significantly alter splicing in the lungs of mice. The list of DASGs and splicing factors is valuable for further study in the search for new treatment approaches for sepsis-induced ALI.

4.
Int Immunopharmacol ; 117: 109997, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36940554

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. It is well known that the formation of positive feedback between synovial hyperplasia and inflammatory infiltration is intimately associated with the occurrence and development of RA. However, the exact mechanisms still remain unknown, making the early diagnosis and therapy of RA difficult. This study was designed to identify prospective diagnostic and therapeutic biomarkers, as well as their-mediated biological mechanisms in RA. METHODS: Three microarray datasets (GSE36700, GSE77298 and GSE153015) and two RNA-sequencing datasets (GSE89408 and GSE112656) of synovial tissues, as well as three other microarray datasets (GSE101193, GSE134087 and GSE94519) of peripheral blood were downloaded for integrated analysis. The differently expressed genes (DEGs) were identified by "limma" package of R software. Then, weight gene co-expression analysis and gene set enrichment analysis were performed to investigate synovial tissue-specific genes and their-mediated biological mechanisms in RA. The expression of candidate genes and their diagnostic value for RA were verified by quantitative real-time PCR and receiver operating characteristic (ROC) curve, respectively. Relevant biological mechanisms were explored through cell proliferation and colony formation assay. The suggestive anti-RA compounds were discovered by CMap analysis. RESULTS: We identified a total of 266 DEGs, which were mainly enriched in cellular proliferation and migration, infection and inflammatory immune signaling pathways. Bioinformatics analysis and molecular validation revealed 5 synovial tissue-specific genes, which exhibited excellent diagnostic value for RA. The infiltration level of immune cells in RA synovial tissue was significantly higher than that in control individuals. Moreover, preliminary molecular experiments suggested that these characteristic genes may be responsible for the high proliferation potential of RA fibroblast-like synoviocytes (FLSs). Finally, 8 small molecular compounds with anti-RA potential were obtained. CONCLUSIONS: We have proposed 5 potential diagnostic and therapeutic biomarkers (CDK1, TTK, HMMR, DLGAP5, and SKA3) in synovial tissues that may contribute to the pathogenesis of RA. These findings may shed light on the early diagnosis and therapy of RA.

5.
Curr Microbiol ; 80(4): 123, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870004

RESUMO

Pseudomonas aeruginosa is a widespread source of hospital-acquired infections and a top priority antibiotic-resistant pathogen as it has developed robust immunity to most traditional antibiotics. Quorum sensing (QS) enables P. aeruginosa to modulate virulence functions and is important for pathogenesis. QS relies on the production and perception of autoinducing chemical signal molecules. Acyl-homoserine lactones are the key autoinducer molecules that mediate P. aeruginosa-associated QS, and N-(3-oxododecanoyl)-L-homoserine lactone (3-O-C12-HSL) and N-butyryl-L-homoserine lactone (C4-HSL) are the two types. This study aimed to identify potential quenching targets of QS pathways that may reduce the chances of resistance developing in P. aeruginosa using co-culture approaches. In co-cultures, Bacillus reduced the production of 3-O-C12-HSL/C4-HSL signal molecules by inactivating acyl- homoserine lactone-based QS to inhibit important virulence factor expression. Moreover, Bacillus is subject to complex crosstalk with other regulatory systems, such as the integrated QS system and the Iqs system. The results showed that blocking one or more QS pathways was insufficient to reduce infection with multidrug resistant P. aeruginosa.


Assuntos
Bacillus , Pseudomonas aeruginosa , Técnicas de Cocultura , Percepção de Quorum , Acil-Butirolactonas , Antibacterianos
6.
ACS Omega ; 8(8): 7331-7343, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873028

RESUMO

Municipal organic solid waste contains many recoverable resources, including biomass materials and plastics. The high oxygen content and strong acidity of bio-oil limit its application in the energy field, and the oil quality is mainly improved by copyrolysis of biomass with plastics. Therefore, in this paper, a copyrolysis method was utilized to treat solid waste, namely, common waste cartons and waste plastic bottles (polypropylene (PP) and polyethylene (PE)) as raw materials. The products were analyzed by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, GC, and GC/MS to investigate the reaction pattern of the copyrolysis. The results show that the addition of plastics can reduce the residue content by about 3%, and the copyrolysis at 450 °C can increase the liquid yield by 3.78%. Compared with single waste carton pyrolysis, no new product appeared in the copyrolysis liquid products but the oxygen content of the liquid decreased from 65% to less than 8%. The content of CO2 and CO in the copyrolysis gas product is 5-15% higher than the theoretical value; the O content of the solid products increased by about 5%. This indicates that waste plastics can promote the formation of l-glucose and small molecules aldehydes and ketones by providing H radicals and reduce the oxygen content in liquids. Thus, copyrolysis improves the reaction depth and product quality of waste cartons, which provides a certain theoretical reference for the industrial application of solid waste copyrolysis.

7.
Front Med (Lausanne) ; 10: 1055115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873867

RESUMO

Although previous studies have suggested that hemoglobin is related to the health status of people living with human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) (PLWHA), the role of anemia in mortality remains unclear. This study aimed to comprehensively quantify the effect of anemia on the mortality risk of PLWHA. In this retrospective cohort study, we thoroughly estimated the effect of anemia on PLWHA mortality, using data collected from January 2005 to June 2022 in the Huzhou area, in 450 subjects extracted from the database of the China Disease Prevention and Control Information System and matched them using a propensity score matching approach to balance potential confounding bias. The potential exposure-response relationship between anemia, hemoglobin concentration, and the mortality of PLWHA was also carefully estimated. A series of subgroup analyses, including interaction analysis, was further conducted to validate the robustness of the effect of anemia on PLWHA death risk. Anemia was significantly associated with an elevated death risk in PLWHA, with an increase of 74% (adjusted hazard ratio [AHR]: 1.74; 95% confidence interval [CI]: 1.03-2.93; p = 0.038) in those with anemia after adjusting for potential confounders. PLWHA with moderate or severe anemia had a higher risk of death, with an 86% increase (AHR = 1.86; 95% CI: 1.01-3.42; p = 0.045). Meanwhile, the AHR tended to increase by 85% on average (AHR = 1.85, 95% CI: 1.37-2.50; p < 0.001) with a per standard deviation (SD) decrease in plasma hemoglobin. Consistent relationships between plasma hemoglobin and the risk of death were further observed in the results from multiple quantile regression models, restricted cubic spline regression models, and a series of subgroup analyses. Anemia is an independent risk factor for HIV/AIDS-related mortality. Our findings may provide new insights into the relevance of PLWHA administration to public health policy, which demonstrate that this low-cost and routinely measured marker (hemoglobin) can be a marker of poor prognosis even before the start of HAART.

8.
Eur J Med Chem ; 251: 115236, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924668

RESUMO

Mitogen-activated protein kinase kinases 1/2 (MEK1/2) play critical roles in the canonical RAS/RAF/MEK/ERK pathway. Highly selective and potent non-ATP-competitive allosteric MEK1/2 inhibitors have been developed, and three of them were clinically approved for the treatment of BRAFV600 -mutant melanoma. However, the accompanying side effects of the systemically administered MEK1/2 drugs largely constrain their tolerable doses and efficacy. In this study, a series of mirdametinib-based optically activatable MEK1/2 inhibitors (opti-MEKi) were designed and synthesized. A structural-based design led to the discovery of photocaged compounds with dramatically diminished efficacy in vitro, whose activities can be spatiotemporally induced by short durations of irradiation of ultraviolet (365 nm) light. We demonstrated the robust photoactivation of MEK1/2 inhibition and antimelanoma activity in cultured human cells, as well as in a xenograft zebrafish model. Taken together, the modular approach presented herein provides a method for the optical control of MEK1/2 inhibitor activity, and these data support the further development of optically activatable agents for light-mediated antimelanoma phototherapy.

9.
Rev Sci Instrum ; 94(2): 024702, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859057

RESUMO

Detection of the microwave (MW) field with high accuracy is very important in the physical science and engineering fields. Herein, an atomic Rabi resonance-based MW magnetic field sensor with a high-dynamic-range is reported, where α and ß Rabi resonances are used to measure MW fields. In MW measurement experiments, the sensor successfully measured a magnetic field of about 10 nT at 9.2 GHz using the α Rabi resonance line on the cesium clock transition and continuously detected the MW magnetic field in the X-band over a high dynamic power range of >60 dB from the ß Rabi resonance. Finally, the MW power frequency shift and power broadening are investigated to support more sensitive field measurements. The proposed MW detection method can be extended to cover a higher dynamic range and a wider frequency band by applying stronger excitations and exploring non-clock atomic transitions, respectively. In addition to MW magnetic field sensing, other potential application of the proposed method can be explored, including SI-traceable MW calibration and atomic communication.

10.
J Virol ; : e0180122, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36840584

RESUMO

The Zika virus (ZIKV) represents an important global health threat due to its unusual association with congenital Zika syndrome. ZIKV strains are phylogenetically grouped into the African and Asian lineages. However, the viral determinants underlying the phenotypic differences between the lineages remain unknown. Here, multiple sequence alignment revealed a highly conserved residue at position 21 of the premembrane (prM) protein, which is glutamic acid and lysine in the Asian and African lineages, respectively. Using reverse genetics, we generated a recombinant virus carrying an E21K mutation based on the genomic backbone of the Asian lineage strain FSS13025 (termed E21K). The E21K mutation significantly increased viral replication in multiple neural cell lines with a higher ratio of M to prM production. Animal studies showed E21K exhibited increased neurovirulence in suckling mice, leading to more severe defects in mouse brains by causing more neural cell death and destruction of hippocampus integrity. Moreover, the E21K substitution enhanced neuroinvasiveness in interferon alpha/beta (IFN-α/ß) receptor knockout mice, as indicated by the increased mortality, and enhanced replication in mouse brains. The global transcriptional analysis showed E21K infection profoundly altered neuron development networks and induced stronger antiviral immune response than wild type (WT) in both neural cells and mouse brains. More importantly, the reverse K21E mutation based on the genomic backbone of the African strain MR766 caused less mouse neurovirulence. Overall, our findings support the 21st residue of prM functions as a determinant for neurovirulence and neuroinvasiveness of the African lineage of ZIKV. IMPORTANCE The suspected link of Zika virus (ZIKV) to birth defects led the World Health Organization to declare ZIKV a Public Health Emergency of International Concern. ZIKV has been identified to have two dominant phylogenetic lineages, African and Asian. Significant differences exist between the two lineages in terms of neurovirulence and neuroinvasiveness in mice. However, the viral determinants underlying the phenotypic differences are still unknown. Here, combining reverse genetics, animal studies, and global transcriptional analysis, we provide evidence that a single E21K mutation of prM confers to the Asian lineage strain FSS130125 significantly enhanced replication in neural cell lines and more neurovirulent and neuroinvasiveness phenotypes in mice. Our findings support that the highly conserved residue at position 21 of prM functions as a determinant of neurovirulence and neuroinvasiveness of the African lineage of ZIKV in mice.

11.
EBioMedicine ; 89: 104457, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739631

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus of the genus flavivirus that is associated with congenital Zika syndrome (CZS) in newborns. A wide range of clinical symptoms including intellectual disability, speech delay, coordination or movement problems, and hearing and vision loss, have been well documented in children with CZS. However, whether ZIKV can invade the olfactory system and lead to post-viral olfactory dysfunction (PVOD) remains unknown. METHODS: We investigated the susceptibility and biological responses of the olfactory system to ZIKV infection using mouse models and human olfactory organoids derived from patient olfactory mucosa. FINDINGS: We demonstrate that neonatal mice infected with ZIKV suffer from transient olfactory dysfunction when they reach to puberty. Moreover, ZIKV mainly targets olfactory ensheathing cells (OECs) and exhibits broad cellular tropism colocalizing with small populations of mature/immature olfactory sensory neurons (mOSNs/iOSNs), sustentacular cells and horizontal basal cells in the olfactory mucosa (OM) of immunodeficient AG6 mice. ZIKV infection induces strong antiviral immune responses in both the olfactory mucosa and olfactory bulb tissues, resulting in the upregulation of proinflammatory cytokines/chemokines and genes related to the antiviral response. Histopathology and transcriptomic analysis showed typical tissue damage in the olfactory system. Finally, by using an air-liquid culture system, we showed that ZIKV mainly targets sustentacular cells and OECs and support robust ZIKV replication. INTERPRETATION: Our results demonstrate that olfactory system represents as significant target for ZIKV infection, and that PVOD may be neglected in CZS patients. FUNDING: Stated in the acknowledgment.


Assuntos
Transtornos do Olfato , Infecção por Zika virus , Zika virus , Recém-Nascido , Criança , Humanos , Camundongos , Animais , Replicação Viral , Antivirais/uso terapêutico
12.
Eur J Clin Microbiol Infect Dis ; 42(4): 471-480, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36810726

RESUMO

The widespread of different NDM variants in clinical Enterobacterales isolates poses a serious public health concern, which requires continuous monitoring. In this study, three E. coli strains carrying two novel blaNDM variants of blaNDM-36, -37 were identified from a patient with refractory urinary tract infection (UTI) in China. We conducted antimicrobial susceptibility testing (AST), enzyme kinetics analysis, conjugation experiment, whole-genome sequencing (WGS), and bioinformatics analysis to characterize the blaNDM-36, -37 enzymes and their carrying strains. The blaNDM-36, -37 harboring E. coli isolates belonged to ST227, O9:H10 serotype and exhibited intermediate or resistance to all ß-lactams tested except aztreonam and aztreonam/avibactam. The genes of blaNDM-36, -37 were located on a conjugative IncHI2-type plasmid. NDM-37 differed from NDM-5 by a single amino acid substitution (His261Tyr). NDM-36 differed from NDM-37 by an additional missense mutation (Ala233Val). NDM-36 had increased hydrolytic activity toward ampicillin and cefotaxime relative to NDM-37 and NDM-5, while NDM-37 and NDM-36 had lower catalytic activity toward imipenem but higher activity against meropenem in comparison to NDM-5. This is the first report of co-occurrence of two novel blaNDM variants in E. coli isolated from the same patient. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of NDM enzymes.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Infecções por Escherichia coli/microbiologia , Aztreonam/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
13.
Stem Cells Int ; 2023: 9196583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820242

RESUMO

The purpose of this work was to explore the molecular mechanisms by which USP21 regulates nasopharyngeal carcinoma tumor growth and cancer cell stemness. In this study, the USP21 transcript data was obtained from TCGA database. Then, qPCR and western blot tests revealed that, in contrast to normal tissue or normal nasopharyngeal epithelial cells, the expression of USP21 was greater in nasopharyngeal carcinoma tissues or cell lines, respectively. CCK-8 and EdU immunofluorescent staining assays revealed that USP21 promoted the proliferation of nasopharyngeal carcinoma cells. Meanwhile, scratch and transwell assays showed that USP21 facilitated migration and invasion of nasopharyngeal carcinoma cells. Sphere formation assay was performed on nasopharyngeal carcinoma cells after knockdown of USP21, which revealed that knockdown of USP21 inhibited the stemness profiles of nasopharyngeal carcinoma cells. Then, the western blot assays indicated that knockdown of USP21 in nasopharyngeal carcinoma cells would inhibit FOXM1 expression, and overexpression of FOXM1 could reverse the cell proliferation ability, cell migration and invasion ability, and cell stemness profiles. Finally, a nasopharyngeal xenograft model suggested that USP21 facilitated tumor growth in mice. These findings proved that USP21 promoted tumor growth and cancer cell stemness in nasopharyngeal carcinoma by regulating FOXM1.

14.
Genetics ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807971

RESUMO

By hybridization and special sexual reproduction, we sequentially aggregated Zea mays, Zea perennis, and Tripsacum dactyloides in an allohexaploid, backcrossed it with maize, derived self-fertile allotetraploids of maize and Z. perennis by natural genome extraction, extended their first six selfed generations, and finally constructed amphitetraploid maize using nascent allotetraploids as a genetic bridge. Transgenerational chromosome inheritance, subgenomes stability, chromosome pairings and rearrangements, and their impacts on an organism's fitness were investigated by fertility phenotyping and molecular cytogenetics techniques GISH and FISH. Results showed that diversified sexual reproductive methods produced highly differentiated progenies (2n=35-84) with varying proportions of subgenomic chromosomes, of which one individual (2n=54, MMMPT) overcame self-incompatibility barriers and produced a self-fertile nascent near-allotetraploid by preferentially eliminating Tripsacum chromosomes. Nascent near-allotetraploid progenies showed persistent chromosome changes, intergenomic translocations, and rDNA variations for at least up to the first six selfed generations; however, ploidy tended to stabilize at the near-tetraploid level (2n=40) with full integrity of 45SrDNA pairs, and a trend of decreasing variations by advancing generations with an average of 25.53, 14.14, and 0.37 maize, Z. perennis, and T. dactyloides chromosomes, respectively. The mechanisms for three genome stabilities and karyotype evolution for formatting new polyploid species were discussed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36833828

RESUMO

The constant application of manure-based fertilizers in vegetable farms leads to antibiotic residue accumulation in soils, which has become a major stressor affecting agroecosystem stability. The present study investigated the adaptation profiles of rhizosphere microbial communities in different vegetable farms to multiple residual antibiotics. Multiple antibiotics, including trimethoprim, sulfonamides, quinolones, tetracyclines, macrolides, lincomycins, and chloramphenicols, were detected in the vegetable farms; the dominant antibiotic (trimethoprim) had a maximum concentration of 36.7 ng/g. Quinolones and tetracyclines were the most prevalent antibiotics in the vegetable farms. The five most abundant phyla in soil samples were Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi and Firmicutes, while the five most abundant phyla in root samples were Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Myxococcota. Macrolides were significantly correlated with microbial community composition changes in soil samples, while sulfonamides were significantly correlated with microbial community composition changes in root samples. Soil properties (total carbon and nitrogen contents and pH) influenced the shifts in microbial communities in rhizosphere soils and roots. This study provides evidence that low residual antibiotic levels in vegetable farms can shift microbial community structures, potentially affecting agroecosystem stability. However, the degree to which the shift occurs could be regulated by environmental factors, such as soil nutrient conditions.


Assuntos
Microbiota , Quinolonas , Antibacterianos/análise , Fazendas , Verduras , Rizosfera , Bactérias , Solo/química , Tetraciclinas , Sulfanilamida , Trimetoprima , Macrolídeos , Microbiologia do Solo
16.
Nat Commun ; 14(1): 1134, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854751

RESUMO

Human RNA binding protein Musashi-1 (MSI1) plays a critical role in neural progenitor cells (NPCs) by binding to various host RNA transcripts. The canonical MSI1 binding site (MBS), A/GU(1-3)AG single-strand motif, is present in many RNA virus genomes, but only Zika virus (ZIKV) genome has been demonstrated to bind MSI1. Herein, we identified the AUAG motif and the AGAA tetraloop in the Xrn1-resistant RNA 2 (xrRNA2) as the canonical and non-canonical MBS, respectively, and both are crucial for ZIKV neurotropism. More importantly, the unique AGNN-type tetraloop is evolutionally conserved, and distinguishes ZIKV from other known viruses with putative MBSs. Integrated structural analysis showed that MSI1 binds to the AUAG motif and AGAA tetraloop of ZIKV in a bipartite fashion. Thus, our results not only identified an unusual viral RNA structure responsible for MSI recognition, but also revealed a role for the highly structured xrRNA in controlling viral neurotropism.


Assuntos
Síndrome de Möbius , Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Sítios de Ligação , RNA Viral/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética
17.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768951

RESUMO

Chilling injury owing to low temperatures severely affects the growth and development of maize (Zea mays.L) seedlings during the early and late spring seasons. The existing maize germplasm is deficient in the resources required to improve maize's ability to tolerate cold injury. Therefore, it is crucial to introduce and identify excellent gene/QTLs that confer cold tolerance to maize for sustainable crop production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant to cold and can be used to improve the cold tolerance of maize. In a previous study, a genetic bridge among maize that utilized Z. perennis and T. dactyloides was created and used to obtain a highly cold-tolerant maize introgression line (MIL)-IB030 by backcross breeding. In this study, two candidate genes that control relative electrical conductivity were located on MIL-IB030 by forward genetics combined with a weighted gene co-expression network analysis. The results of the phenotypic, genotypic, gene expression, and functional verification suggest that two candidate genes positively regulate cold tolerance in MIL-IB030 and could be used to improve the cold tolerance of cultivated maize. This study provides a workable route to introduce and mine excellent genes/QTLs to improve the cold tolerance of maize and also lays a theoretical and practical foundation to improve cultivated maize against low-temperature stress.


Assuntos
Plântula , Zea mays , Plântula/genética , Transcriptoma , Melhoramento Vegetal , Mapeamento Cromossômico , Temperatura Baixa
18.
ACS Nano ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745638

RESUMO

Monitoring sweat rate is vital for estimating sweat loss and accurately measuring biomarkers of interest. Although various optical or electrical sensors have been developed to monitor the sensible sweat rate, the quantification of the insensible sweat rate that is directly related to body thermoregulation and skin barrier functions still remains a challenge. This work introduces a superhydrophobic sweat sensor based on a polyacrylate sodium/MXene composite sandwiched between two superhydrophobic textile layers to continuously measure sweat vapor from insensible sweat with high sensitivity and rapid response. The superhydrophobic textile on a holey thin substrate with reduced stiffness and excellent breathability allows the permeation of sweat vapor, while preventing the sensor from being affected by the external water droplets and internal sensible sweat. Integrating the insensible sweat sensor with a flexible wireless communication and powering module further yields a standalone sensing system to continuously monitor insensible sweat rates at different body locations for diverse application scenarios. Proof-of-concept demonstrations on human subjects showcase the feasibility to continuously evaluate the body's thermoregulation and skin barrier functions for the assessment of thermal comfort, disease conditions, and nervous system activity. The results presented in this work also provide a low-cost device platform to detect other health-relevant biomarkers in the sweat (vapor) as the next-generation sweat sensor for smart healthcare and personalized medicine.

19.
Angew Chem Int Ed Engl ; 62(11): e202217458, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640120

RESUMO

Constructing efficient artificial solid electrolyte interface (SEI) film is extremely vital for the practical application of lithium metal batteries. Herein, a dense artificial SEI film, in which lithiophilic Zn/Lix Zny are uniformly but nonconsecutively dispersed in the consecutive Li+ -conductors of Lix SiOy , Li2 O and LiOH, is constructed via the in situ reaction of layered zinc silicate nanosheets and Li. The consecutive Li+ -conductors can promote the desolvation process of solvated-Li+ and regulate the transfer of lithium ions. The nonconsecutive lithiophilic metals are polarized by the internal electric field to boost the transfer of lithium ions, and lower the nucleation barrier. Therefore, a low polarization of ≈50 mV for 750 h at 2.0 mA cm-2 in symmetric cells, and a high capacity retention of 99.2 % in full cells with a high lithium iron phosphate areal loading of ≈13 mg cm-2 are achieved. This work offers new sights to develop advanced alkali metal anodes for efficient energy storage.

20.
J Colloid Interface Sci ; 637: 477-488, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36716671

RESUMO

Although most solar steam generation devices are effective in desalinating seawater and purifying wastewaters with heavy metal ions, they are ineffective in degrading organic pollutants from wastewaters. Herein, we design novel solar-driven water purification devices by decoration of three-dimensional pinecones with MoS2 nanoflowers via a one-step hydrothermal synthesis for generating clean water. The vertically arrayed channels in the central rachis and the unique helically arranged scales of the hydrothermal pinecone can not only transfer bulk water upward to the evaporation surface, but also absorb more solar light from different incident angles for solar-thermal evaporation and photodegradation of wastewaters under omnidirectional irradiations. The decorated MoS2 nanoflowers can not only enhance the solar-thermal energy conversion efficiency, but also decompose organic pollutants in the bulk water by their photocatalytic degradation effects. The resultant hydrothermal pinecone with in situ decorated MoS2 (HPM) evaporator exhibits a high evaporation rate of 1.85 kg m-2 h-1 under 1-sun irradiation with a high energy efficiency of 96 %. During the solar-driven water purification processes, the powdery HPM can also photodegrade organic pollutants of methylene blue and rhodamine B with high removal efficiencies of 96 % and 95 %, respectively. For practical demonstration, by floating in the methylene blue solution under 1-sun irradiation, the bulky HPM can generate clean water by simultaneous solar-thermal evaporation and photocatalytic degradation. The integration of solar steam generation and photocatalytic degradation mechanisms makes the HPM evaporator highly promising for practical high-yield purification of wastewaters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...