RESUMO
As a biological variable, sex influences the metabolism of and/or response to certain drugs. Vicagrel is being developed as an investigational new drug in China; however, it is unknown whether sex could affect its metabolic activation and platelet responsiveness. This study aimed to determine whether such differences could exist, and to elucidate the mechanisms involved. Orchiectomized (ORX) or ovariectomized (OVX) mouse models were used to investigate the effects of androgen or estrogen on the metabolic activation of and platelet response to vicagrel. Plasma vicagrel active metabolite H4 concentrations, platelet inhibition of vicagrel, and protein levels of intestinal hydrolases Aadac and Ces2 were measured, respectively. Further, p38-MAPK signaling pathway was enriched, whose role was determined using SB202190. Results showed that female mice exhibited significantly elevated systemic exposure of H4 and enhanced platelet responses to vicagrel than males, and protein expression levels of Aadac and Ces2 differed by sex. OVX mice exhibited less changes than sham mice. ORX mice exhibited increases in protein levels of intestinal hydrolases, systemic exposure of H4, and platelet inhibition of vicagrel, but dihydrotestosterone (DHT) reversed these changes in ORX mice and suppressed these changes in OVX mice. Phosphorylated p38 levels were reduced in female or ORX mice but increased in ORX mice by DHT. SB202190 reversed DHT-induced changes observed in ORX mice. We concluded that sex differences exist in metabolic activation of and platelet response to vicagrel in mice through elevation of p38 phosphorylation by androgen, suggesting sex-based vicagrel dosage adjustments for patient care.
RESUMO
Introduction: Previous studies on hemodialysis adequacy primarily focused on the association between Kt/V and survival, and low Kt/V is associated with increased mortality. There is a paucity of research on the correlation between Kt/V and chronic kidney disease (CKD) complications. Methods: The retrospective study was conducted in the blood purification center of a tertiary hospital in China from July 2020 to September 2022. It aimed to analyze the association between latent Kt/V trajectory categories and CKD complications (hypertension, anemia, mineral and bone disorder) and inflammatory markers. The latent class trajectory model was established to describe the different patterns of Kt/V changes over the observation period. Results: During the 2-year study period, 93 patients on thrice-weekly hemodialysis with residual kidney function <2 mL/min were included. In the 3-class Kt/V trajectory model, 21 patients were in class 1 with a Kt/V trajectory that declined from a higher to lower levels (from >1.6 to <1.4), 59 patients were in class 2 with Kt/V consistently in a relatively low range (around 1.4), and 13 patients were in class 3 with Kt/V stabilized around 1.6. No significant difference in CKD complications or inflammation markers was observed among the three Kt/V trajectories. Conclusion: Under the premise of adequate Kt/V, neither a stable higher Kt/V nor a declined Kt/V significantly influenced CKD complications or inflammatory markers.
RESUMO
Diabetic foot ulcer (DFU) is a common and severe complication of diabetes characterized by wound neuropathy, ischemia, and susceptibility to infection, making its treatment difficult. Dressings are commonly used in treating diabetic wounds; however, they have disadvantages, including lack of flexibility and mechanical strength, lack of coagulation activity, resistance to biodegradation, and low drug delivery efficiency. Developing more effective strategies for diabetic wound treatment has become a new focus. Microneedles (MN) can be used as a drug delivery platform for DFU wounds, allowing safe, effective, painless and minimally invasive medication administration through the skin. Herein, PDA@Ag/SerMA microneedles were prepared by combining the photothermal properties of polydopamine (PDA), the antimicrobial properties of argentum (Ag), and the ability of sericin methacryloyl (SerMA) to promote cell mitosis to accelerate wound healing and treat diabetic ulcer wounds. The results revealed that PDA@Ag/SerMA microneedles exhibited approximately 100% antimicrobial efficacy against Staphylococcus aureus and Escherichia coli under 808 nm near-infrared (NIR) irradiation. Furthermore, the wound healing rate of mice reached 95% within 12 days, which demonstrated the excellent antibacterial properties and wound healing efficacy of PDA@Ag/SerMA microneedles at cellular and animal levels, providing a potential solution for treating DFU.
RESUMO
Triclocarban (TCC), as a typical antimicrobial agent, accumulates at substantial levels in natural environments and engineered systems. This work investigated the impact of TCC on anaerobic sulfur transformation, especially toxic H2S production. Experimental findings revealed that TCC facilitated sulfur flow from the sludge solid phase to liquid phase, promoted sulfate reduction and sulfur-containing amino acid degradation, and largely improved anaerobic H2S production, i.e., 50-600 mg/kg total suspended solids (TSS) TCC increased the cumulative H2S yields by 24.76-478.12%. Although TCC can be partially biodegraded in anaerobic systems, the increase in H2S production can be mainly attributed to the effect of TCC rather than its degradation products. TCC was spontaneously adsorbed by protein-like substances contained in microbe extracellular polymers (EPSs), and the adsorbed TCC increased the direct electron transfer ability of EPSs, possibly due to the increase in the content of electroactive polymer protein in EPSs, the polarization of the amide group CâO bond, and the increase of the α-helical peptide dipole moment, which might be one important reason for promoting sulfur bioconversion processes. Microbial analysis showed that the presence of TCC enriched the organic substrate-degrading bacteria and sulfate-reducing bacteria and increased the abundances of functional genes encoding sulfate transport and dissimilatory sulfate reduction.
Assuntos
Enxofre , Enxofre/metabolismo , Anaerobiose , Biodegradação Ambiental , Carbanilidas/metabolismoRESUMO
Chronic hepatitis B virus (HBV) infection poses a major global health challenge with massive morbidity and mortality. Despite a preventive vaccine, current treatments provide limited virus clearance, necessitating lifelong commitment. The HBV surface antigen (HBsAg) is crucial for diagnosis and prognosis, yet its high-resolution structure and assembly on the virus envelope remain elusive. Utilizing extensive datasets and advanced cryo-electron microscopy analysis, we present structural insights into HBsAg at a near-atomic resolution of 3.7 angstroms. HBsAg homodimers assemble into subviral particles with D2- and D4-like quasisymmetry, elucidating the dense-packing rules and structural adaptability of HBsAg. These findings provide insights into how HBsAg assembles into higher-order filaments and interacts with the capsid to form virions.
Assuntos
Capsídeo , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Vírion , Humanos , Capsídeo/química , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Antígenos de Superfície da Hepatite B/química , Vírus da Hepatite B/ultraestrutura , Vírus da Hepatite B/química , Vírus da Hepatite B/fisiologia , Multimerização Proteica , Envelope Viral/química , Envelope Viral/ultraestrutura , Vírion/ultraestrutura , Vírion/química , Montagem de Vírus , Hepatite B Crônica/virologia , Conjuntos de Dados como AssuntoRESUMO
The addition of iron-based conductive materials has been extensively validated as a highly effective approach to augment methane generation from anaerobic digestion (AD) process. In this work, it was additionally discovered that Fe3O4 notably suppressed the production of hazardous H2S gas during sludge AD. As the addition of Fe3O4 increased from 0 to 20 g/L, the accumulative H2S yields decreased by 89.2 % while the content of element sulfur and acid volatile sulfide (AVS) respectively increased by 55.0 % and 30.4 %. Mechanism analyses showed that the added Fe3O4 facilitated sludge conductive capacity, and boosted the efficiency of extracellular electron transfer, which accelerated the bioprocess of sulfide oxidation. Although Fe3O4 can chemically oxidize sulfide to elemental sulfur, microbial oxidation plays a major role in reducing H2S accumulation. Moreover, the released iron ions reacted with soluble sulfide, which promoted the chemical equilibrium of sulfide species from H2S to metal sulfide. Microbial analysis showed that some SRBs (i.e., Desulfomicrobium and Defluviicoccus) and SOB (i.e., Sulfuritalea) changed into keystone taxa (i.e., connectors and module hubs) in the reactor with Fe3O4 addition, showing that the functions of sulfate reduction and sulfur oxidation may play important roles in Fe3O4-present system. Fe3O4 presence also increased the content of functional genes encoding sulfide quinone reductase and flavocytochrome c sulfidedehydrogenase (e.g., Sqr and Fcc) that could oxidize sulfide to sulfur. The impact of other iron-based conductive material (i.e., zero-valent iron) was also verified, and the results showed that it could also significantly reduce H2S production. These findings provide new insights into the effect of iron-based conductive materials on anaerobic process, especially sulfur conversion.
RESUMO
BACKGROUND: Investigating the molecular mechanism of colorectal cancer (CRC), a common lethal malignancies worldwide, is of great clinical significance. Solute carrier family 25 member 19 (SLC25A19) is a member of the solute carrier family that contribute to cellular functions, including tumor biology. Recently, many studies have attention on uncovering the relationship of SLC25A19 with malignant cancers, but its precise involvement in the regulation of CRC has not been thoroughly understood. This study sought to uncover the role and mechanism of SLC25A19 in CRC development. METHODS: The GEPIA database and immunohistochemical staining were utilized to detect the expression of SLC25A19 in CRC tissues. The functional influences of SLC25A19 on CRC cell phenotypes were evaluated through a series of assays including celigo cell count, colony formation, CCK-8, flow cytometry, wound healing, and transwell assays following knocking down SLC25A19. Subsequently, the xenograft tumor model was constructed to evaluate the effect of SLC25A19 on tumor growth in vivo. The underlying mechanisms of SLC25A19 silencing were investigated using the human phospho-kinase array. RESULTS: This study demonstrated the upregulation of SLC25A19 in CRC and its significant correlation with unfavorable prognosis in CRC patients. Suppression of SLC25A19 resulted in significant inhibition of cell proliferation, colony formation, and cell migration, alongside a boost in cell apoptosis. In vivo experiments revealed that silenced SLC25A19 displayed reduced growth rates and formed smaller xenografts. Mechanistically, the p53 pathway was found to be upregulated by SLC25A19 knockdown and mediated the function of SLC25A19. CONCLUSIONS: Consequently, SLC25A19 was identified as a novel molecule with key regulatory ability in CRC development.
Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53 , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Camundongos , Linhagem Celular Tumoral , Prognóstico , Apoptose , Camundongos Nus , Movimento Celular , Feminino , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB CRESUMO
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
RESUMO
Microplastics (MPs) are important carriers of various toxic metals and can alter their toxicity pattern in agricultural soil, leading to combined pollution, therefore posing new challenges to soil pollution management and environmental risk assessment. In this study, we observed the internalization of MPs in plants and conducted incubation experiments to evaluated the effects of arsenate (As(V)) alone and in combination with polystyrene (PS) MPs on wheat seedlings (Triticum aestivum L.). Under As(V) alone and combined with PS-MP exposure, dose-dependent toxicity in terms of root and stem elongation and biomass accumulation was observed. Compared with As(V) alone, the presence of PS-MPs reduced the accumulation of As in wheat roots by 11.43-58.91%, but PS-MPs intensified the transport of As to the aboveground parts of wheat, increasing As accumulation in wheat stems by 27.77-1011.54%. This causes more serious mechanical damage and oxidative stress to plant cells, increasing the accumulation of reactive oxygen species and lipid peroxidation in wheat roots and upregulating the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). In addition, the co-exposure of As(V) and PS-MPs disrupts the photosynthetic system of wheat leaves and the secretion activities of roots. Therefore, the combination of As(V) and PS-MPs caused greater damage to wheat growth. Our findings contribute to a more comprehensive assessment of the combined toxicity of MPs and heavy metal to crops.
RESUMO
In data analysis and forecasting, particularly for multivariate long-term time series, challenges persist. The Transformer model in deep learning methods has shown significant potential in time series forecasting. The Transformer model's dot-product attention mechanism, however, due to its quadratic computational complexity, impairs training and forecasting efficiency. In addition, the Transformer architecture has limitations in modeling local features and dealing with multivariate cross-dimensional dependency relationship. In this article, a Multi-Scale Convolution Enhanced Transformer model (MSCformer) is proposed for multivariate long-term time series forecasting. As an alternative to modeling the time series in its entirety, a segmentation strategy is designed to convert the input original series into segmented forms with different lengths, then process time series segments using a new constructed multi-Dependency Aggregation module. This multi-Scale segmentation approach reduces the computational complexity of the attention mechanism part in subsequent models, and for each segment of length corresponds to a specific time scale, it also ensures that each segment retains the semantic information of the data sequence level, thereby comprehensively utilizing the multi-scale information of the data while more accurately capturing the real dependency of the time series. The Multi-Dependence Aggregate module captures both cross-temporal and cross-dimensional dependencies of multivariate long-term time series and compensates for local dependencies within the segments thereby captures local series features comprehensively and addressing the issue of insufficient information utilization. MSCformer synthesizes dependency information extracted from various temporal segments at different scales and reconstructs future series using linear layers. MSCformer exhibits higher forecasting accuracy, outperforming existing methods in multiple domains including energy, transportation, weather, electricity, disease and finance.
RESUMO
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) patients are at an elevated risk of developing severe coronavirus disease 2019 (COVID-19). The objective of this study was to assess antibody responses and safety profiles six months after the third dose of the inactivated acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in MASLD patients. METHODS: This study included MASLD patients and healthy volunteers without a history of SARS-CoV-2 infection. Blood samples were collected six months after receiving the third dose of the inactivated vaccine to measure the levels of neutralizing antibodies (NAbs) and anti-spike IgG antibodies against SARS-CoV-2. RESULTS: A total of 335 participants (214 MASLD patients and 121 healthy volunteers) were enrolled. The seroprevalence of NAb was 61.7% (132 of 214) in MASLD patients and 74.4% (90 of 121) in healthy volunteers, which was a significant difference (p = 0.018). Statistically significant differences in IgG seroprevalence were also observed between MASLD patients and healthy volunteers (p = 0.004). Multivariate analysis demonstrated that the severity of MASLD (OR, 2.97; 95% CI, 1.32-6.68; p = 0.009) and age (OR, 1.03; 95% CI, 1.01-1.06; p = 0.004) were independent risk factors for NAb negativity in MASLD patients. Moderate/severe MASLD patients had a lower NAb seroprevalence than mild MASLD patients (45.0% vs. 65.5%, p = 0.016). CONCLUSION: Lower antibody responses were observed in MASLD patients six months after their third dose of the inactivated vaccine than in healthy volunteers, providing further assistance in monitoring patients who are more vulnerable to hypo-responsiveness to SARS-CoV-2 vaccines.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Vacinas de Produtos Inativados , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Adulto , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Idoso , Formação de Anticorpos/imunologia , Estudos SoroepidemiológicosRESUMO
One of the crucial factors influencing the growth and viability of larvae and juveniles is their opening diets. The objective of this study was to identify suitable initial feed options for M. macropterus larvae and juveniles. A total of 1200 newly hatched M. macropterus with an average weight of 18.3 mg and an average length of 11.58 mm were selected and randomly divided into four groups. The fish were fed with different opening diets, including rotifer, Artemia nauplii, Tubifex, and micro-diet from six days after hatching (dahs), respectively. Growth indices and activities of digestive enzymes were assessed at 10, 15, 20, 25, 30, 35, and 40 dahs. Histological examination of the structure of the digestive tract was performed at 40 dahs, while survival rates were also documented. The results demonstrated that different diets had no effect on the survival rate of larvae and juveniles of M. macropterus. The growth performance indices were ranked as follows: Tubifex group > Artemia nauplii group > micro-diet group > rotifer group. Remarkably, the Tubifex group exhibited superior growth performance, which was also reflected in the structure of the digestive tract and digestive enzyme activity. Therefore, it is recommended to include Tubifex in the diet of M. macropterus larvae and juvenile during the standardized farming process.
RESUMO
Music is integrated into daily life when listening to it, playing it, and singing, uniquely modulating brain activity. Functional near-infrared spectroscopy (fNIRS), celebrated for its ecological validity, has been used to elucidate this music-brain interaction. This scoping review synthesizes 22 empirical studies using fNIRS to explore the intricate relationship between music and brain function. This synthesis of existing evidence reveals that diverse musical activities, such as listening to music, singing, and playing instruments, evoke unique brain responses influenced by individual traits and musical attributes. A further analysis identifies five key themes, including the effect of passive and active music experiences on relevant human brain areas, lateralization in music perception, individual variations in neural responses, neural synchronization in musical performance, and new insights fNIRS has revealed in these lines of research. While this review highlights the limited focus on specific brain regions and the lack of comparative analyses between musicians and non-musicians, it emphasizes the need for future research to investigate the complex interplay between music and the human brain.
RESUMO
OBJECTIVES: The prognostic effects of the Patient-Generated Subjective Global Assessment (PG-SGA) criteria in cancer survivors have been observed but require validation in clinical practice. This study was designed to evaluate the prognostic effects of baseline and longitudinal changes in PG-SGA scores on all-cause mortality among Chinese cancer patients in a real-world setting. METHODS: Study patients were selected from one representative tertiary hospital in West China. Kaplan-Meier curves and Cox regression analyses were used to estimate the prognostic effect of baseline and dynamic changes in PG-SGA scores on the all-cause mortality of cancer patients. Receiver operating characteristic curves and a concordance index were used to evaluate the predictive accuracy of PG-SGA criteria. RESULTS: A total of 1415 cancer patients were included in this study, with a mean age of 46 years old. Cox regression analysis showed that baseline malnourished status was significantly associated with the survival of cancer patients (PG-SGA 4-8: hazard ratio [HR] = 1.46, 95% confidence interval [CI]: 1.09-1.96, P = 0.012; PG-SGA ≥9: HR = 1.78, 95% CI: 1.34-2.37, P < 0.001). Cancer patients with longitudinal increased PG-SGA scores (>2 points) were observed to have high risks for mortality (HR = 1.69, 95% CI: 1.04-2.74, P = 0.033). Compared with longitudinal changes in PG-SGA scores, baseline malnourished status showed higher predictive power in identifying the risk subgroup (concordance index: 0.646 vs. 0.586). Sensitivity analyses supported the main findings. CONCLUSIONS: This study highlights the prognostic value of baseline and dynamic changes in PG-SGA scores for cancer patients, which can help improve their outcomes.
Assuntos
Desnutrição , Neoplasias , Avaliação Nutricional , Estado Nutricional , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Neoplasias/mortalidade , Estudos Longitudinais , China/epidemiologia , Prognóstico , Desnutrição/mortalidade , Desnutrição/diagnóstico , Adulto , Sobreviventes de Câncer/estatística & dados numéricos , Modelos de Riscos Proporcionais , Estimativa de Kaplan-Meier , Causas de Morte , Curva ROC , IdosoRESUMO
Arthrobotrys oligospora is a typical nematode-trapping (NT) fungus, which can secrete food cues to lure, capture, and digest nematodes by triggering the production of adhesive networks (traps). Based on genomic and proteomic analyses, multiple pathogenic genes and proteins involved in trap formation have been characterized; however, there are numerous uncharacterized genes that play important roles in trap formation. The functional studies of these unknown genes are helpful in systematically elucidating the complex interactions between A. oligospora and nematode hosts. In this study, we screened the gene AOL_s00004g24 (Ao4g24). This gene is similar to the SWI/SNF chromatin remodeling complex, which was found to play a potential role in trap formation in our previous transcriptome analysis. Here, we characterized the function of Ao4g24 by gene disruption, phenotypic analysis, and metabolomics. The deletion of Ao4g24 led to a remarkable decrease in conidia yield, trap formation, and secondary metabolites. Meanwhile, the absence of Ao4g24 influenced the mitochondrial membrane potential, ATP content, autophagy, ROS level, and stress response. These results indicate that Ao4g24 has crucial functions in sporulation, trap formation, and pathogenicity in NT fungi. Our study provides a reference for understanding the role of unidentified genes in mycelium growth and trap formation in NT fungi.
RESUMO
The Qilu Lake is an eutrophic shallow lake located in Yunnan Province, China. An ecological fishery project was initiated in the lake from 2011 to 2021 to introduce filter-feeding fish species that feed on algae, with the aim of improving water quality. In January 2022, when the ecological fishery project expired, all fisheries-related activities (including fish stocking and fishing activities) ceased in the lake. To comprehensively evaluate the initial alterations in fish community structure and diversity resulting from the fishing cessation in the Qilu Lake, the present study conducted field surveys within the one year before the fishing cessation (referred to as BFC) and the one year after the fishing cessation (referred to as AFC). A total of twenty-one fish species were collected, including four native species. Four species were recorded in the lake for the first time, including Pelteobagrus fulvidraco, Pelteobagrus vachelli, Paramisgurnus dabryanus, and Hyporhamphus intermedius. The number of fish species decreased from 21 to 13 following the fishing cessation. The fishes collected in both BFC and AFC are mainly omnivorous-feeding and of bottom-dwelling habits. The mean size of the fishes in the AFC sample shows a significant decrease compared to those in BFC. After the fishing cessation, the Shannon-Wiener diversity index and Margalef richness index of the fish slightly declined. The fish community structure of the Qilu Lake exhibits a high degree of similarity to adjacent lakes in central Yunnan. Our study demonstrates a significant shift in the fish community of the Qilu Lake following the fishing cessation, one which may adversely impact the stability of the lake ecosystem. To enhance fish species diversity in the Qilu Lake, it is recommended that policies be implemented to promote the ecological fishery project and improve habitat restoration for native fish species, while also regulating fish community structure.
RESUMO
Upon DNA damage, numerous proteins are targeted for ubiquitin-dependent proteasomal degradation, which is an integral part of the DNA repair program. Although details of the ubiquitination processes have been intensively studied, little is known about whether and how the 26S proteasome is regulated in the DNA damage response (DDR). Here, we show that human Rpn10/PSMD4, one of the three ubiquitin receptors of the 26S proteasome, is rapidly phosphorylated in response to different types of DNA damage. The phosphorylation occurs at Rpn10-Ser266 within a conserved SQ motif recognized by ATM/ATR/DNA-PK. Blockade of S266 phosphorylation attenuates homologous recombination-mediated DNA repair and sensitizes cells to genotoxic insults. In vitro and in cellulo experiments indicate that phosphorylation of S266, located in the flexible linker between the two ubiquitin-interacting motifs (UIMs) of Rpn10, alters the configuration of UIMs, and actually reduces ubiquitin chain (substrate) binding. As a result, essential DDR proteins such as BRCA1 are spared from premature degradation and allowed sufficient time to engage in DNA repair, a scenario supported by proximity labeling and quantitative proteomic studies. These findings reveal an inherent self-limiting mechanism of the proteasome that, by controlling substrate recognition through Rpn10 phosphorylation, fine-tunes protein degradation for optimal responses under stress.
Assuntos
Dano ao DNA , Reparo do DNA , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Fosforilação , Ubiquitina/metabolismo , Proteína BRCA1/metabolismo , Especificidade por Substrato , Ubiquitinação , Proteínas de Ligação a RNARESUMO
Understanding the endogenous mechanism of adaptive response to drug-induced liver injury (arDILI) may discover innovative strategies to manage DILI. To gain mechanistic insight into arDILI, we investigated exosomal miRNAs in the adaptive response to toosendanin-induced liver injury (TILI) of mice. Exosomal miR-106b-5p was identified as a specific regulator of arDILI by comprehensive miRNA profiling. Outstandingly, miR-106b-5p agomir treatment alleviated TILI and other DILI by inhibiting apoptosis and promoting hepatocyte proliferation. Conversely, antagomir treatments had opposite effects, indicating that miR-106b-5p protects mice from liver injury. Injured hepatocytes released miR-106b-5p-enriched exosomes taken up by surrounding hepatocytes. Vim (encodes vimentin) was identified as an important target of miR-106b-5p by dual luciferase reporter and siRNA assays. Furthermore, single-cell RNA-sequencing analysis of toosendanin-injured mouse liver revealed a cluster of Vim + hepatocytes; nonetheless declined following miR-106b-5p cotreatment. More importantly, Vim knockout protected mice from acetaminophen poisoning and TILI. In the clinic, serum miR-106b-5p expression levels correlated with the severity of DILI. Indeed, liver biopsies of clinical cases exposed to different DILI causing drugs revealed marked vimentin expression among harmed hepatocytes, confirming clinical relevance. Together, we report mechanisms of arDILI whereby miR-106b-5p safeguards restorative tissue repair by targeting vimentin.
RESUMO
AIMS: To examine whether functional connectivity (FC) of the occipital gyrus differs between patients with Parkinson's disease (PD) motor subtypes and healthy controls (HCs). METHODS: We enrolled 30 PD patients exhibiting tremor dominance (TD), 43 PD patients with postural instability and gait disturbance (PIGD), and 42 HCs. The occipital gyrus was partitioned into six areas of interest, as seed points, via the Anatomical Automatic Labeling template to compare the FC of the three groups and analyze the relationship of FC with clinical scales. RESULTS: Compared with the PIGD group, the TD group showed increased FC between the left superior occipital gyrus (SOG.L) and right median cingulate and paracingulate gyri (DCG.R)/right paracentral lobule/bilateral inferior parietal, but supramarginal and angular gyri; the left middle occipital gyrus (MOG.L) and left posterior cingulate gyrus (PCG.L); the MOG.R and SOG.L/right calcarine fissure and surrounding cortex/DCG.R/PCG.L/right cuneus; the left inferior occipital gyrus (IOG.L) and right caudate nucleus; and the IOG.R and PCG.L. CONCLUSION: Differentiated FC between the occipital gyrus and other brain areas within the PD motor subtypes, which may serve as neural markers to distinguish between patients with TD and PIGD PD.