Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.880
Filtrar
1.
Bioact Mater ; 7: 126-143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34466722

RESUMO

Although with the good biological properties, silk fibroin (SF) is immensely restrained in long-distance vascular defect repair due to its relatively fast degradation and inferior mechanical properties. It is necessary to construct a multifunctional composite scaffold based on SF. In this study, a novel magnetic SF scaffold (MSFCs) was prepared by an improved infiltration method. Compared with SF scaffold (SFC), MSFCs were found to have better crystallinity, magnetocaloric properties, and mechanical strength, which was ascribed to the rational introduction of iron-based magnetic nanoparticles (MNPs). Moreover, in vivo and in vitro experiments demonstrated that the degradation of MSFCs was significantly extended. The mechanism of delayed degradation was correlated with the dual effect that was the newly formed hydrogen bonds between SFC and MNPs and the complexing to tyrosine (Try) to inhibit hydrolase by internal iron atoms. Besides, the ß-crystallization of protein in MSFCs was increased with the rise of iron concentration, proving the beneficial effect after MNPS doped. Furthermore, although macrophages could phagocytose the released MNPs, it did not affect their function, and even a reasonable level might cause some cytokines to be upregulated. Finally, in vitro and in vivo studies demonstrated that MSFCs showed excellent biocompatibility and the growth promotion effect on CD34-labeled vascular endothelial cells (VECs). In conclusion, we confirm that the doping of MNPs can significantly reduce the degradation of SFC and thus provide an innovative perspective of multifunctional biocomposites for tissue engineering.

2.
J Colloid Interface Sci ; 606(Pt 2): 1229-1238, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492461

RESUMO

Lipase is the most widely used enzyme in industry. Due to its unique "lid" structure, lipase can only show high activity at the oil-water interface, which means that water is needed in the catalytic esterification process. However, the traditional lipase catalytic system cannot effectively control "micro-water" in the esterification environment, resulting in the high content of free water, which hinders the esterification reaction and reduces the yield. In this paper, a promising strategy of esterification catalyzed by polyacrylamide hydrogel immobilized lipase is reported. The porous polyacrylamide hydrogel microspheres (PHM) prepared by inverse emulsion polymerization are used as carrier to adsorb lipase by hydrogen bonding interaction. These hydrogel microspheres provide a "micro-water environment" for lipase in the anhydrous reaction system, and further provide an oil-water interface for "interface activation" of lipase. The obtained lipase-porous polyacrylamide hydrogel microspheres (L-PHMs) exhibit higher temperature and pH stability compared with free lipase, and the optimum enzymatic activity reach 1350 U/g (pH 6, 40 °C). L-PHMs can still remain about 49% of their original activity after 20 reuses. Furthermore, L-PHMs have been successfully applied to catalyze the synthesis of conjugated linoleic acid ethyl ester. The results suggest that this immobilization method opens up a new way for the application of lipase in ester synthesis.


Assuntos
Hidrogéis , Lipase , Enzimas Imobilizadas/metabolismo , Esterificação , Hidrogênio , Lipase/metabolismo , Microesferas
3.
J Colloid Interface Sci ; 606(Pt 1): 158-166, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388568

RESUMO

Sulfonated polydivinylbenzene bamboo-like nanotube (SPDVB) with effective olefins oxidation activity is prepared by combining cationic polymerization and sulfonation. By merely adjusting sulfonation time, SPDVB with different sulfonic acid group (-SO3H) contents is achieved. SPDVB is used as both a solid emulsifier and catalyst to fabricate Pickering emulsion interface catalytic system for oxidizing olefins with 30% H2O2 acting as oxidant/water phase and olefins acting as reactants/oil phase. It is shown that Pickering emulsion interface catalytic system stabilized by SPDVB exhibits enhanced olefins oxidation efficiency than the conventional ones. At the optimum catalyst and reaction condition, the conversion of olefins by Pickering emulsion interface catalytic system stabilized by SPDVB for cyclohexene, 1-methylcyclohexene, cyclooctene, 2,3-dimethyl-2-butene oxidation is higher than 90.00% and the corresponding 1,2-diol selectivity exceeds 93.00% except the selectivity to 1-methyl-1,2-cyclohexanediol. The catalytic system also exhibits excellent cycling performance (>95.00% olefins conversion and >89.00% 1,2-diol selectivity for cyclohexene/2,3-dimethyl-2-butene oxidation after four cycles). A possible mechanism for oxidation of olefins to 1,2-diol by SPDVB stabilized Pickering emulsion is proposed: the high catalytic interface area between sulfonic acid group and H2O2 in water phase enhances the sulfonic acid group of SPDVB to convert into peroxysulfonic acid (catalytic activity centre) firstly; then the formed peroxysulfonic acid attacks the double bond of olefins to form epoxide intermediates, which will be hydrolyzed to 1,2-diol.


Assuntos
Peróxido de Hidrogênio , Nanotubos , Alcenos , Emulsões , Oxirredução , Tamanho da Partícula
4.
J Colloid Interface Sci ; 606(Pt 1): 192-203, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388570

RESUMO

Strain-sensitive and conductive hydrogels have attracted extensive research interest due to their potential applications in various fields, such as healthcare monitoring, human-machine interfaces and soft robots. However, low electrical signal transmission and poor tensile properties still limit the application of flexible sensing hydrogels in large amplitude and high frequency motion. In this study, a novel ionic liquid segmental polyelectrolyte hydrogel consisting of acrylic acid (AAc), 1-vinyl-3-butylimidazolium bromide (VBIMBr) and aluminum ion (Al3+) was prepared by molecular design and polymer synthesis. The cationic groups and amphiphilicity of ionic liquid chain segments effectively improve the tensile behavior of the polyelectrolyte hydrogel, with a maximum tensile strength of 0.16 MPa and a maximum breaking strain of 604%. The introduction of ionic liquid segments increased the current carrying concentration of polyelectrolyte hydrogel, and the conductivity reached the initial 4.8 times (12.5 S/m), which is a necessary condition for detecting various amplitude and high frequency limb movements. The flexible electronic sensor prepared by this polyelectrolyte hydrogel efficiently detects the movement of different parts of the human body stably and sensitively, even in extreme environment (-20 °C). These outstanding advantages demonstrate the great potential of this hydrogel in healthcare monitoring and wearable flexible strain sensors.


Assuntos
Líquidos Iônicos , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Hidrogéis , Resistência à Tração
5.
Sci Total Environ ; 803: 150003, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492487

RESUMO

Enrichment of ionic poly/perfluoroalkyl substances (PFASs) in aqueous aerosol (AA) is an important pathway for them to enter atmosphere. In this study, the enrichment behaviors of 12 legacy and emerging PFASs in AA in both single solute and mixed solutions were investigated. The enrichment factors (EF) displayed a general increasing trend with the fluorinated carbon chain length. For the first time, a robust Quantitative Structure-Property Relationship (QSPR) model coupled with partial least-square method was established with fifteen quantum chemical descriptors. Four molecular descriptors, including dipole moment (µ), molecular weight (MW), the maximal value of the molecular surface potential (Vs, max) and molecular volume (V) were identified as the key structural variables affecting the PFASs enrichment. Inorganic salts and humic acid (HA) which are common in seawater, facilitated the PFASs enrichment as a result of enhanced hydrophobicity and the bridging effect caused by divalent cations. The typical cationic and anionic surfactants, cetyltrimethylammonium bromide and sodium dodecyl sulfate, both inhibited the enrichment due to the competition between PFASs and surfactants. It is interesting that 6:2 chlorinated polyfluorinated ether sulfonate (F53B) had the highest EF among the 12 PFASs, implying its strong potential of atmosphere transport.


Assuntos
Ácidos Alcanossulfônicos , Fluorcarbonetos , Poluentes Químicos da Água , Aerossóis , Fluorcarbonetos/análise , Estrutura Molecular , Água , Poluentes Químicos da Água/análise
6.
Head Neck ; 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731528

RESUMO

BACKGROUND: Radiotherapy greatly benefits patients with tumors, but not all patients show favorable treatment response. This study investigated the impact of forkhead box protein C2 (FOXC2)-mediated a disintegrin and metalloprotease 12 (ADAM12) on the radiosensitivity of head and neck squamous cell carcinoma (HNSCC). METHODS: After transfection and ionizing radiation, the biological activities of HNSCC cells were assessed. The relationship between ADAM12 and FOXC2 was verified. A xenograft model was used to evaluate the effect of FOXC2 knockdown on HNSCC growth in the context of radiation therapy. RESULTS: FOXC2 and ADAM12 were upregulated in irradiated CAL-27 and HN4 cells. Knockdown of FOXC2 suppressed the malignant behaviors of CAL-27 and HN4 cells and inhibited the growth of transplanted tumors in nude mice. FOXC2 could bind ADAM12 promoter. Overexpression of ADAM12 reversed the promotion of FOXC2 silencing on the radiosensitivity of HNSCC cells. CONCLUSIONS: FOXC2 regulates the radiosensitivity of HNSCC by targeting ADAM12.

7.
Cell Death Differ ; 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743205

RESUMO

The cystine/glutamate antiporter SLC7A11 (commonly known as xCT) functions to import cystine for glutathione biosynthesis, thereby protecting cells from oxidative stress and ferroptosis, a regulated form of non-apoptotic cell death driven by the accumulation of lipid-based reactive oxygen species (ROS). p14ARF, a well-established tumor suppressor, promotes ferroptosis by inhibiting NRF2-mediated SLC7A11 transcription. Here, we demonstrate the crucial role of Cullin 2 RING E3 ligase (CRL2)-KLHDC3 E3 ubiquitin ligase complex in regulating p14ARF protein stability. KLHDC3 acts as a CRL2 adaptor that specifically recognizes a C-terminal degron in p14ARF and triggers p14ARF for ubiquitin-proteasomal degradation. This regulation mode is absent in the murine p14ARF homolog, p19arf which lacks the C-terminal degron. We also show that KLHDC3 suppresses ferroptosis in vitro and supports tumor growth in vivo by relieving p14ARF-mediated suppression of SLC7A11 transcription. Overall, these findings reveal that the protein stability and pro-ferroptotic function of p14ARF are controlled by a CRL2 E3 ubiquitin ligase complex, and suggest that suppression of the p14ARF-NRF2-SLC7A11 regulatory pathway by KLHDC3 overexpression likely contributes to cancer progression.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34740031

RESUMO

BACKGROUND AND OBJECTIVES: The relationship between omega-3 index and type 2 diabetes (T2D) is not well established. It is unclear if the change of omega-3 index will affect T2D. Aiming of the present systematic review was to elucidate the correlation between omega-3 index and T2D. METHODS AND STUDY DESIGN: A comprehensive search on PubMed, EMBASE and Web of Science (from 1948 to May 2021) was conducted. The overall effect size (standard mean difference) was combined using a random-effect model. RESULTS: Eight eligible case-control studies were identified, and there were 1,357 patients with T2D and 1,616 non-diabetic controls. The result showed that the omega-3 index was significantly lower in diabetic cases than that in controls (SMD= -1.31; 95% confidence interval (CI): -1.40, -1.22), but with significant heterogeneity (I2 = 99.0%). In subgroup analysis based on race, a negative correlation was found in Asians (SMD = -1.71; 95% CI: -1.82, -1.60), and heterogeneity was substantially decreased (I2=0). CONCLUSIONS: omega-3 index is negatively correlated with T2D, which indicated that increased dietary intake of omega-3 fatty acids might have beneficial on T2D prevention.

9.
Clin Res Cardiol ; 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761309

RESUMO

BACKGROUND: Left bundle branch pacing (LBBP) is a novel near-physiological pacing method that still lacks quantitative criteria to guide the selection of lead-implanted sites to enhance the success likelihood of lead deployments. This study aimed to quantitatively analyze the relationships of LBBP success likelihood to the distribution of lead-implanted sites and the lead-localization-pacing electrocardiographic (ECG) features. METHODS: All the lead-implanted sites in patients with finally successful LBBP were enrolled for analysis, including successful and failed sites. A novel coordinate system was invented to describe the sites' distribution as longitudinal distance (longit-dist) and lateral distance (lat-dist). Corrected distance parameters were generated to eliminate the cardiac dimension variations. The lead-localization-pacing ECG parameters were also collected, such as paced QRS duration (locat-QRSd), left ventricular activation time (locat-LVAT), LVAT/QRSd ratio (locat-LVAT/QRSd), and QRS directions. RESULTS: A total of 94 patients with 105 successful sites and 93 failed sites were enrolled. Longit-dist and corrected longit-dist of successful sites were significantly longer, while locat-QRSd and locat-LVAT were shorter and locat-LVAT/QRSd was lower than failed sites. There was a positive dose-response relationship between LBBP success likelihood and corrected longit-dist with a cut-off of 26.95 mm, whereas there were negative dose-response relationships of LBBP success likelihood to locat-QRSd, locat-LVAT, and locat-LVAT/QRSd with the cut-offs of 142 ms, 92 ms, and 64.7%, respectively. Downward QRS direction in II/III ECG leads was also associated with successful LBBP. CONCLUSION: Longit-dist, locat-QRSd, locat-LVAT, and locat-LVAT/QRSd were quantitative parameters to guide the selection of lead-implanted sites during LBBP implantation. Quantitative distance and electrocardiographic parameters for lead-implanted site selection to enhance the success likelihood of left bundle branch pacing. LBBP, left bundle branch pacing; Longit-dist, longitudinal distance; CL-apex-dist, distance from contraction line to apex; LBBB, left bundle branch block; IVCD, intraventricular conduction delay; Locat-QRSd, lead-localization-pacing QRS duration; Locat-LVAT, lead-localization-pacing left ventricular activation time; Locat-LVAT/QRSd, lead-localization-pacing LVAT/QRSd ratio.

10.
Mikrochim Acta ; 188(12): 409, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739603

RESUMO

Horseradish peroxidase (HRP) was highly loaded into large holes of nanometer-scale metal-organic frameworks (i.e., PCN-333(Al)) for signal amplification in enzyme-linked immunosorbent assay (ELISA). The enzyme-labeled antibody complex prepared using nanometer-scale PCN-333(Al) maintained a high catalytic efficiency. Its Vm and Kcat values with 3,3',5,5'-Tetramethylbenzidine (TMB)-H2O2 as substrates were 4.84 × 10-5 mM/s and 4.84 × 104 min-1, respectively. We demonstrated an HRP@PCN-333 signal amplification strategy for colorimetric assay of human prostate-specific antigen (PSA). The linear range of PSA detection by using this method was 15-165 pg/mL, and the limit of detection was 6 pg/mL (S/N = 3), indicating the potential application of this method in detecting disease markers under clinical conditions. The presented strategy exhibited the characteristics of significantly increased amount of labeled enzymes, improved stability and utilization of enzymes, simple preparation process of enzyme-labeled antibodies, and low cost.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34801459

RESUMO

OBJECTIVES: This study sought to develop a deep learning (DL) framework to automatically analyze echocardiographic videos for the presence of valvular heart diseases (VHDs). BACKGROUND: Although advances in DL have been applied to the interpretation of echocardiograms, such techniques have not been reported for interpretation of color Doppler videos for diagnosing VHDs. METHODS: We developed a 3-stage DL framework for automatic screening of echocardiographic videos for mitral stenosis (MS), mitral regurgitation (MR), aortic stenosis (AS), and aortic regurgitation (AR) that classifies echocardiographic views, detects the presence of VHDs, and, when present, quantifies key metrics related to VHD severities. The algorithm was trained (n = 1,335), validated (n = 311), and tested (n = 434) using retrospectively selected studies from 5 hospitals. A prospectively collected set of 1,374 consecutive echocardiograms served as a real-world test data set. RESULTS: Disease classification accuracy was high, with areas under the curve of 0.99 (95% CI: 0.97-0.99) for MS; 0.88 [95% CI: 0.86-0.90] for MR; 0.97 [95% CI: 0.95-0.99] for AS; and 0.90 [95% CI: 0.88-0.92]) for AR in the prospective test data set. The limits of agreement (LOA) between the DL algorithm and physician estimates of metrics of valve lesion severities compared to the LOAs between 2 experienced physicians spanned from -0.60 to 0.77 cm2 vs -0.48 to 0.44 cm2 for MV area; from -0.27 to 0.25 vs -0.23 to 0.08 for MR jet area/left atrial area; from -0.86 to 0.52 m/s vs -0.48 to 0.54 m/s for peak aortic valve blood flow velocity (Vmax); from -10.6 to 9.5 mm Hg vs -10.2 to 4.9 mm Hg for average peak aortic valve gradient; and from -0.39 to 0.32 vs -0.31 to 0.32 for AR jet width/left ventricular outflow tract diameter. CONCLUSIONS: The proposed deep learning algorithm has the potential to automate and increase efficiency of the clinical workflow for screening echocardiographic images for the presence of VHDs and for quantifying metrics of disease severity.

12.
J Am Chem Soc ; 143(45): 19224-19231, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34731569

RESUMO

Cleavage of the strong N≡N bond has long been a great challenge for energy-efficient dinitrogen (N2) fixation; thus a reasonable design of reactive species to activate N2 under mild conditions is highly desirable and meaningful. Herein a novel N2 activation strategy of combining 5d early (E) and 3d late (L) transition metals (TMs) is proposed, which is verified by the facile and complete N≡N cleavage via the polarized Fe-Ta bond in gas-phase cluster FeTaC2-. The efficient N≡N cleavage benefits from an electronic-level design of highly strengthened donor-acceptor interactions, in which the 5d-ETM (Ta) mainly pushes electrons from occupied 5d-orbitals to N2 π*-orbitals while the 3d-LTM (Fe) simultaneously pulls electrons from N2 σ/π-orbitals to its unoccupied 3d-orbitals. Through employing 5d-ETM and 3d-LTM to play their respective roles, this work provides a new and versatile idea for activating the inert N≡N bond and inspires relevant design of TM-based catalysts.

13.
Enzyme Microb Technol ; 152: 109935, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749020

RESUMO

Enzymes are particularly attractive as biocatalysts for the green synthesis of chemicals and pharmaceuticals. However, the traditional enzyme purification and separation process is complex and inefficient, which limits the wide application of enzyme catalysis. In this paper, an efficient strategy for enzyme purification and immobilization in one step is proposed. A novel poly (ionic liquid)-styrene microsphere is prepared by molecular design and synthesis for adsorbing and purifying high activity lipase from fermentation broth directly. By optimizing the surface morphologies and charge of the microspheres, the enzyme loading is significantly improved. In order to further stabilize the catalytic environment of lipase, the resulting lipase/poly (ionic liquid)-styrene microspheres are immobilized in physical crosslinking hydrogel to obtain a complex lipase catalytic system, which can be prepared into various shapes according to the requirements of catalytic environment. In the actual catalytic reaction process, this complex lipase catalytic system exhibits excellent catalytic activity (6314.69 ± 21.27 U mg-1) and good harsh environment tolerance compared with the lipase fermentation broth (1672.87 ± 36.68 U mg-1). Under the condition of cyclic catalysis, the complex lipase catalytic system shows the outstanding reusability (After 8 cycles the enzymatic activity is still higher than that of the lipase fermentation broth) and is easily separated from the products.


Assuntos
Líquidos Iônicos , Lipase , Enzimas Imobilizadas/metabolismo , Esterificação , Hidrogéis , Lipase/metabolismo , Microesferas , Estireno
14.
Medicina (Kaunas) ; 57(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833456

RESUMO

BACKGROUND: Orbital metastasis from ampullary carcinoma is rare, with no previously reported cases. CASE PRESENTATION: We report the case of a 60-year-old man who complained of a right-sided headache, blurred vision, progressive proptosis, ptosis, and right eye pain for 3 months. His past medical history included an ampullary adenocarcinoma stage IIIA treated via the Whipple procedure and adjuvant chemoradiotherapy 1 year ago. However, he was lost to follow-up. Computed tomography of the orbit showed a soft tissue lesion in the right orbital fossa measuring 3.3 × 2 × 2 cm. An orbital mass biopsy demonstrated an intestinal-type adenocarcinoma that tested positive for cytokeratins 7 and 20 and CDX2 on immunohistochemical staining. The pathologic diagnosis was metastatic adenocarcinoma from the ampulla of Vater. Despite oncological treatment, the patient's illness progressed. He received palliative treatment and died 1 month later. CONCLUSIONS: We presented a rare case of orbital metastasis from ampullary adenocarcinoma. This should be considered in the differential diagnosis of patients with a history of ampullary adenocarcinoma who present with symptoms referring to the relevant locations.


Assuntos
Adenocarcinoma , Ampola Hepatopancreática , Neoplasias do Ducto Colédoco , Neoplasias Pancreáticas , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/terapia , Ampola Hepatopancreática/diagnóstico por imagem , Neoplasias do Ducto Colédoco/diagnóstico por imagem , Neoplasias do Ducto Colédoco/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Pancreaticoduodenectomia
15.
Biology (Basel) ; 10(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34827082

RESUMO

Species diversity (SD) and genetic diversity (GD) are the two basic levels of biodiversity. In general, according to the consensus view, the parallel effects of environmental heterogeneity, area, and connectivity on two levels, can drive a positive correlation between GD and SD. Conversely, a negative correlation or no correlation would be expected if these effects are not parallel. Our understanding of the relationships between SD and GD among different ecosystems, sampling methods, species, and under climate change remains incomplete. In the present study, we conducted a hierarchical meta-analysis based on 295 observations from 39 studies and found a positive correlation between genetic diversity and species diversity (95% confidence interval, 7.6-22.64%). However, significant relationships were not found in some ecosystems when we conducted species-genetic diversity correlation analysis based on a single ecosystem. Moreover, the magnitudes of the correlations generally decreased with the number of sampling units and the annual average the temperature of sampling units. Our results highlight the positive correlation between GD and SD, thereby indicating that protecting SD involves protecting GD in conservation practice. Furthermore, our results also suggest that global increases in temperature during the 21st century will have significant impacts on global biodiversity.

16.
Bioengineered ; 12(2): 9356-9366, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34823419

RESUMO

Diabetes mellitus is an important public health problem worldwide. Insulin deficiency caused by pancreatic ß cell dysfunction is an important pathogenic factor of diabetes mellitus. This study evaluated whether empagliflozin (EMPA) protects the pancreas from diabetes mellitus-induced injury by downregulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1/Gasdermin D (GSDMD) pyroptosis-related inflammasome pathway in vitro and in vivo. In vivo, animals were separated into blank control (control, C57/bl6j wild-type mice), diabetes model (db/db mice, BKS-Leprem2Cd479/Gpt mice), and db/db mice+EMPA (db/db+EMPA) groups. In vitro, pancreatic ß cells were separated into low glucose (control), high glucose (HG), and HG+EMPA groups. The db/db+EMPA group were administered empagliflozin at 10 mg/(kg·day) by gavage for six months. Histological changes in the pancreatic tissues were observed by hematoxylin-eosin staining, and levels of the pyroptosis-related inflammatory factors NLPR3, caspase-1, and GSDMD were measured by immunohistochemistry and immunofluorescence staining methods. The Cell Counting Kit-8 assay was used to detect the effect of different concentrations of glucose and empagliflozin on the proliferation of mouse insulinoma islet ß (ß TC-6) cells. NLRP3/caspase-1/GSDMD expression was assessed by western blotting and immunofluorescent labeling in the ß TC-6 cells. The results showed that empagliflozin reduced the pathological changes and inflammatory cell infiltration in the pancreatic tissues of db/db mice. Furthermore, empagliflozin not only reduced the expression levels of NLRP3/caspase-1/GSDMD in vitro, but also reduced their expression levels in vivo. In summary, our data suggested that empagliflozin protects the pancreatic tissues from diabetes mellitus-induced injury by downregulating the NLRP3/caspase-1/GSDMD pyroptosis-related inflammasome pathway.

17.
ACS Omega ; 6(45): 30698-30707, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805697

RESUMO

The mechanism of photodegradation of organic pollutants in seawater by TiO2-based catalysts irradiated by visible light was first explored by adding holes and free radical traps. The results showed that the photogenerated holes formed by the catalyst played a key role in the degradation of organic pollutants, regardless of whether the photodegradation occurred in seawater or pure water. Considering that the Yb-TiO2-rGO catalyst has a strong adsorption for organics, the salt ion almost did not interfere with the adsorption of pollutants by Yb-TiO2-rGO. Therefore, the degradation performance of Yb-TiO2-rGO did not remarkably change in the two water systems. For P25-ZN with a weak adsorption capacity for organics, several salt ions in the seawater hindered the contact of pollutants with the catalyst surface. Thus, the degradation rate of P25-ZN for phenol was significantly reduced. After the solvothermal reduction treatment for catalysts using ethylene glycol (EG) as the solvent, the increase in the Ti3+ content in the catalyst improved the visible-light response and activity of the catalyst. In addition, a small amount of EG grafted on the catalyst surface promoted the photocatalytic reaction process on the catalyst surface, thereby effectively resisting the interference of salt ions.

18.
Brain Behav ; : e2431, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34808033

RESUMO

INTRODUCTION: Several studies have investigated the efficacy of human urinary kallidinogenase (HUK) combined with edaravone (Eda) in acute ischemic stroke (AIS) patients. Our aim was to provide the best available evidence for clinical practice and further research programs for stroke treatment. METHODS: We searched the online database for paper published between January 2015 and April 2021. We calculated weighted mean difference (WMD) or odds risk (OR) and their corresponding 95% confidence interval (95% CI) of reported outcomes between HUK plus Eda and Eda groups for each study. The random-effect models or fixed-effect models were used to pool the analysis. RESULTS: Thirteen studies with 1242 patients were included. In the pooled analysis, the scores of NIHSS in the HUK plus Eda group were significantly lower than that in patients receiving Eda (WMD = -3.92, 95% CI (-4.82, -3.02), p < .0001). The ADL scores in the HUK plus Eda group were significantly greater than that in patients receiving Eda (WMD = 14.13, 95% CI (10.67, 17.60), p < .0001). Furthermore, HUK plus Eda was associated with a higher rate of total efficacy (OR = 3.97, 95% CI (2.81, 5.59), p < .0001). CONCLUSIONS: HUK combined with Eda provides potential clinical benefits as a treatment for AIS. Further high-quality, large-scale randomized trials are needed to confirm these results.

19.
Opt Express ; 29(23): 37695-37702, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808836

RESUMO

GHz pulsed thulium-doped fiber laser with stabilized repetition rate can enable a wide range of applications. By employing regenerative mode-locking and cavity stabilization technique, we have for the first time demonstrated a 10 GHz polarization-maintaining thulium-doped fiber laser, which has a long-term repetition-rate stabilization and picosecond timing-jitter. In our experiment, a RF circuitry is designed to extract the 10 GHz longitudinal clock signal so that stable regenerative mode-locking is achieved. A piezo actuator-based phase-lock-loop is used to lock the regeneratively mode-locked pulses to a local reference synthesizer. The regeneratively mode-locked pulses with picosecond pulse width exhibit a high super-mode suppression ratio of 60 dB. In addition, the repetition rate of the laser shows good long-term stability with a variation of 8 Hz in 8 hours, corresponding to a cavity free spectral range fluctuation of less than 16 mHz. Meanwhile, the Allan deviation of the stabilized 10 GHz regeneratively mode-locked pulses is measured to be as low as 2 × 10-12 over 1000 s average time, which is only limited by the stability of the reference synthesizer. Such an ultra-stable 10 GHz pulsed thulium fiber laser may find potential application in 2 µm optical communication, material processing and spectroscopy.

20.
Pest Manag Sci ; 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34786809

RESUMO

BACKGROUND: Broflanilide has been registered in China for control of Lepidoptera and Coleoptera pests, and it is widely used to control the target pests on lethal and sublethal levels. Therefore, lethal and sublethal effects of broflanilide to the common cutworm (CCW) Spodoptera litura Fabricius, a representative lepidopteran pest in agricultural crops, were examined to explore its ecological influence to pests in this study. RESULTS: To F0 , broflanilide had little influence on hatchability of eggs, but significantly reduced the survival rate of neonate. The lethal activity of broflanilide to 3rd instar larvae and adults was 0.13 mg/kg (LD50 ) and 3.59 mg/L (LC50 ) respectively at 48 h. After treated by sublethal dose (LD10 and LD30 ) of broflanilide, the duration from 3rd to 6th instar larvae and the mean fecundity of reproductive females were significantly increased, but the pupation rate, weight of pupae, and life cycle rate were significantly decreased. In F1 , the duration of F1 larvae and the doubling time was prolonged, whereas the rates of pupation and the life cycle were decreased by 14.92% and 18.00%, respectively. The intrinsic rate of increase, finite rate of increase and net reproductive rate of sublethal group were lower than the control group. The relative fitness of F1 treated by LD10 and LD30 was 0.81 and 0.66, respectively. CONSLUSION: Broflanilide not only has highly lethal activity, but also suppresses the population growth and the progeny of CCW, which is a critical factor for guideline of its usage in the field. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...