Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.834
Filtrar
2.
J Colloid Interface Sci ; 607(Pt 2): 1551-1561, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34587530

RESUMO

Electrochemical nitrogen reduction reaction (NRR) in ambient condition is an efficient and sustainable method to synthesize NH3. In this work, first-principles study was used to discuss the NRR process on B atom doped SbN monolayer. The adsorption of N2 on B-Sb17N18 and B-S18N17 was calculated including the adsorption energy, adsorption distance, and the charge density difference (CDD). Five different reaction pathways of NRR were taken into consideration and the stability of B-SbN was investigated. The results show that, because the energy of unoccupied orbital in sp3 hybridization of B atom is much lower than that in 2pz orbitals, the adsorption of N2 on B-Sb18N17 shows much larger adsorption energy (-1.01 eV with end-on pattern) compared to that of the adsorption on B-Sb17N18. For five different pathways, the 1, 2, and 4 pathways have a smaller limiting potential of about 0.52 V and the limiting step is: *N2 + H+ + e- â†’ *NNH. The 3 and 5 pathways have a larger limiting potential of 0.57 V with hydrogenation step: *NHNH2 + H+ + e- â†’ *NH2NH2. The B-Sb18N17 is structurally and thermally stable even at 500 K. Our theoretical prediction indicates that B atom substitutionally doped SbN monolayer can be a kind of high-performance metal-free NRR catalyst for NH3 synthetization, and the work provides attempts for designing and exploring 2D metal-free NRR catalysts.

3.
Chemosphere ; 286(Pt 2): 131802, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426134

RESUMO

BACKGROUND: Spontaneous abortion (SAB) brings serious physical and psychological sequelae to women and their families. Though a growing body of individual studies have suggested the possible linkage between chronic particulate matter (PM) exposure and risks of SAB, the provided results were rather contradictory. We therefore performed an evidence-based meta-analysis. METHODS: We systematically searched the PubMed, EMBASE and Web of Science databases for available studies published before February 1, 2021 which reported associations between PM exposure and SAB. Corresponding models were applied to combine relative risks (RRs) and their confidence intervals (CIs) from eligible studies according to heterogeneity test. The GRADEpro app was used to evaluate the certainty of evidence. Sensitivity analyses and a publication bias assessment were also utilized to determine the stability of results. RESULTS: Of the initial 2358 citations, 6 papers examining the chronic effects of PM exposure were deemed eligible and a total population of approximately 723,000 was observed. Pooled RR for SAB risks associated with a 10 µg/m3 increase in fine particulate matter (PM2.5) and particulate matter ≤ 10 µm in aerodynamic diameter (PM10) were 1.20 (95%CI: 1.01-1.40) and 1.09 (95%CI: 1.02-1.15), respectively. The GRADE results of PM2.5 and PM10 were both categorized as "moderate" certainty evidence. CONCLUSION: Our findings revealed a significant increase of SAB hazards related with maternal PM exposure, and this study may therefore provide new evidence for personal protection to improve reproductive health.


Assuntos
Aborto Espontâneo , Poluentes Atmosféricos , Poluição do Ar , Aborto Espontâneo/induzido quimicamente , Aborto Espontâneo/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Material Particulado/análise , Gravidez
4.
J Hazard Mater ; 422: 126882, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403939

RESUMO

As a novel eco-friendly gas insulation medium, perfluoroisobutyronitrile (C4F7N) has been utilized in various gas insulated equipment. Considering the biological toxicity of C4F7N, it is of great engineering significance to develop highly sensitive sensors for leakage detection scenarios. Herein, we fabricated the first SnO2 nanoparticles based highly sensitive C4F7N gas sensor that realized a superior response of 65.01% within 21 s for 50 ppm C4F7N exposure and a detection limit of 0.25 ppm. Meanwhile, successive response-recovery tests were performed to confirm its durability and stability. We also explored the sensing mechanism of SnO2 nanoparticles towards C4F7N and explained the superior sensing performance compared with other gases based on the density functional theory. It was found that the O vacancy demonstrates strong interaction with the -CN group in C4F7N that promotes the detection response, which was also confirmed by sensing experiments for SnO2 with different O vacancy density. We believe this paper provides convincing support for lowering the potential operation risk brought by C4F7N in electrical engineering and the application scenarios of SnO2 based gas sensors.

5.
J Hazard Mater ; 422: 126912, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416695

RESUMO

How to efficiently treat radioactive uranium-containing nuclear wastewater is one of the significant challenges to ensure the safety of nuclear technology and to avoid environmental pollution. Here we firstly prepare the metal-free 2D/2D C3N5/GO nanosheets, and customize a type-II heterojunction based on the band bending theory to achieve enhanced uranium extraction capacity via synergistic adsorption photoreduction engineering. The structure of C3N5 is explained by electron energy loss spectroscopy and synchrotron-based near-edge X-ray absorption fine structure. And C3N5 with larger π-conjugated structure expands the light response range to 747 nm, which is about 1.67 times that of C3N4. Further, we also use density functional theory to prove the existence of alternating energy levels so that photogenerated electrons could be continuously injected into the surface of GO to ensure the effective separation of electron-hole pairs and increase the material activity. The results show that the removal ratio of uranium by 2D/2D C3N5/GO heterojunction is achieved as high as 96.1% even at a low uranium concentration of 10 ppm, and reached 93.4% after exposure to gamma-ray. This work will lay a foundation for customizing the energy band structure of nonmetal-based 2D/2D nanohybrids and enriching uranium-containing wastewater through adsorption photoreduction engineering in the future.

6.
Neural Regen Res ; 17(2): 362-369, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269211

RESUMO

The rapid formation of a glial/fibrotic scar is one of the main factors hampering axon growth after spinal cord injury. The bidirectional EphB2/ephrin-B2 signaling of the fibroblast-astrocyte contact-dependent interaction is a trigger for glial/fibrotic scar formation. In the present study, a new in vitro model was produced by coculture of fibroblasts and astrocytes wounded by scratching to mimic glial/fibrotic scar-like structures using an improved slide system. After treatment with RNAi to downregulate EphB2, changes in glial/fibrotic scar formation and the growth of VSC4.1 motoneuron axons were examined. Following RNAi treatment, fibroblasts and astrocytes dispersed without forming a glial/fibrotic scar-like structure. Furthermore, the expression levels of neurocan, NG2 and collagen I in the coculture were reduced, and the growth of VSC4.1 motoneuron axons was enhanced. These findings suggest that suppression of EphB2 expression by RNAi attenuates the formation of a glial/fibrotic scar and promotes axon growth. This study was approved by the Laboratory Animal Ethics Committee of Jiangsu Province, China (approval No. 2019-0506-002) on May 6, 2019.

7.
Bioact Mater ; 8: 109-123, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541390

RESUMO

Macrophages and osteoclasts are both derived from monocyte/macrophage lineage, which plays as the osteoclastic part of bone metabolism. Although they are regulated by bone implant surface nanoarchitecture and involved in osseointegration, the beneath mechanism has not been simultaneously analyzed in a given surface model and their communication with osteoblasts is also blurring. Here, the effect of implant surface topography on monocyte/macrophage lineage osteoclastogenesis and the subsequent effect on osteogenesis are systematically investigated. The nanoporous surface is fabricated on titanium implant by etching and anodizing to get the nanotubes structure. The early bone formation around implant is significantly accelerated by the nanoporous surface in vivo. Meanwhile, the macrophage recruitment and osteoclast formation are increased and decreased respectively. Mechanistically, the integrin mediated FAK phosphorylation and its downstream MAPK pathway (p-p38) are significantly downregulated by the nanoporous surface, which account for the inhibition of osteoclastogenesis. In addition, the nanoporous surface can alleviate the inhibition of osteoclasts on osteogenesis by changing the secretion of clastokines, and accelerate bone regeneration by macrophage cytokine profiles. In conclusion, these data indicate that physical topography of implant surface is a critical factor modulating monocyte/macrophage lineage commitment, which provides theoretical guidance and mechanism basis for promoting osseointegration by coupling the osteogenesis and osteoclastogenesis.

8.
J Inorg Biochem ; 226: 111626, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34655961

RESUMO

The selective visualization of H2S in mitochondria is still a challenge, but it correlates closely with mitochondrial damage and some related diseases. In this work, a cyclometalated iridium complex Ir-DNB, [Ir(ppy)2(N^N)](PF6) (ppy = 2-phenylpyridine, N^N = (4'-methyl-[2,2'-bipyridin]-4-yl)methyl 2-((2,4-dinitrophenyl) thio)benzoate) has been explored for the detection of mitochondrial H2S. Adding H2S to a solution of complex Ir-DNB results in a clearly luminescence enhancement, and displays high selectivity and sensitivity. Moreover, this complex displays negligible toxicity and good mitochondrial localization to HeLa cells, and has also been successfully used for endogenous and exogenous H2S imaging in vitro and in vivo.

9.
Sci Total Environ ; 806(Pt 3): 151210, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715211

RESUMO

Increasing attention has been focused on the diminishing health of coastal ecosystems. Understanding the effects of eutrophication on tidal flat ecosystems is beneficial for the restoration and management of coastal ecosystems. However, previous studies did not consider the effects of nitrogen on the structure and function of bacterial and archaeal communities in longitudinal and vertical profiles. Here, the diversity, composition, assembly mechanism, and potential metabolic function of the bacterial and archaeal communities were studied in two longitudinal tidal sections at different eutrophic levels. Nitrogen and salinity were the critical factors that influenced the bacterial and archaeal community composition using canonical correspondence and multivariate regression tree analyses. For the bacterial community, the higher nitrogen loading in tidal mudflats resulted in the convergence of diversity and structure in the longitudinal profile of bacteria, but divergence was detected in the vertical profile. For archaea, the diversity tended to be convergent in longitudinal and vertical profiles in the higher nitrogen area, but the change of structure was similar to that of bacteria. Besides the homogeneous processes influenced by salinity, the assembly process of the bacterial community was mainly influenced by heterogeneous selection (34.8%) and that of archaea by dispersal limitation (19.5%). However, the bacterial and archaeal communities in the higher nitrogen section presented more of an influence of heterogeneous selection (respectively, 39 and 5.6%) than that of the lower nitrogen section (respectively, 10 and 0.2%). Structural equation modeling indicated that nitrogen may have inhibited the effects of the bacterial community on nitrogen turnover in nitrogen-rich anoxic sediment environments, but may have strengthened the effect of the archaeal community on carbon metabolism compared to bacteria. This work deepens our understanding of the responses of bacterial and archaeal community structure and potential function to nitrogen pollution in tidal mudflats.

10.
Chemosphere ; 287(Pt 2): 132154, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826897

RESUMO

Designing catalysts that can effectively activate oxygen and hydrogen peroxide is a huge challenge in electro-Fenton (EF) process. Considering the superior ability of electrons transport and activation of H2O2, ceria encapsulated with N, P-codoped carbon material was a promising catalyst for EF reaction. Herein, CeO2-NPCTX (where T and X represented the calcination temperature and the initial mass of CeO2, respectively) materials were synthesized via pyrolysis process and used as catalysts to degrade ciprofloxacin (CIP) in EF process. The results indicated that CeO2-NPC1000100 catalyst had good degradation performance under the optimal conditions. Compared with CeO2 and CeO2-NC1000100 catalysts, CeO2-NPC1000100 catalyst had more content of graphite N and more oxygen vacancies, which were beneficial to activation of oxygen and hydrogen peroxide. Scavenging experiments and electron paramagnetic resonance analysis confirmed ·O2- and ·OH were the main reactive oxygen species in the CIP degradation process. And three logical degradation routes of CIP were given. In addition, CeO2-NPC1000100 catalyst still had good stability after three times of continuous operation, and presented good universality for the treatment of a variety of antibiotic wastewaters. Finally, a convincing mechanism in the EF system with CeO2-NPC1000100 for CIP degradation was proposed.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Carbono , Catálise , Elétrons , Oxirredução , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 804: 150282, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798760

RESUMO

Phytoextraction is an in situ remediation technique that uses (hyper)accumulator plant species to extract metal(loid)s from contaminated soils. Field studies can help in selecting appropriate plants for phytoextraction and in better understanding their phytoextraction performance. Hence, a field study was conducted using six (hyper)accumulator species (Solanum nigrum L., Bidens pilosa L., Xanthium strumarium L., Helianthus annuus L., Lonicera japonica T. and Pennisetum sinese R.) over two years in Jiaoxi town, Liuyang city, Hunan Province, China, to determine the effect of the (hyper)accumulator rhizospheres on field soils contaminated with multiple metal(loid)s and to analyze the variations in rhizosphere soil microbial community diversity and composition. After two years of field experiments, compared to the other four (hyper)accumulators, Bidens pilosa L. and Xanthium strumarium L. exhibited not only better metal(loid) phytoextraction abilities but also higher shoot biomasses. The contents of diethylenetriaminepentaacetic acid (DTPA)-extractable Pb, Cd and Zn decreased in the rhizosphere soils of all six (hyper)accumulators after repeated phytoextraction. Moreover, our findings illustrated that hyperaccumulator planting helps improve and rebuild the soil bacterial community composition and structure in contaminated soils by shifting the soil physiochemical properties. After repeated planting, the soil bacterial communities were reconstructed and dominated by Proteobacteria, Actinobacteriota, Chloroflexi and Acidobacteriota at the phylum level. The soil fungal communities were dominated by Ascomycota, Basidiomycota and Mortierellomycota at the phylum level. The reconstruction of soil microbial communities may help (hyper)accumulators adapt to metal(loid)-contaminated environments and improve their phytoextraction abilities.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Rizosfera , Solo , Poluentes do Solo/análise
12.
Chemosphere ; 287(Pt 2): 132196, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34517239

RESUMO

The intimate coupling of photocatalysis and biodegradation (ICPB) possesses an enhanced ability of recalcitrant contaminant removal and energy generation, owing to the compact communication between biotic components and photocatalysts during the system operation. The photocatalysts in the ICPB system could dispose of noxious contaminants to relieve the external pressure on microorganisms which could realize the mineralization of the photocatalytic degradation products. However, due to the complex components in the composite system, the mechanism of the ICPB system has not been completely understood. Moreover, the variable environmental conditions would play a significant role in the ICPB system performance. The further development of the ICPB scheme requires clarification on how to reach an accurate understanding of the system condition during the practical application. This review starts by offering detailed information on the system construction and recent progress in the system components' amelioration. We then describe the potential influences of relevant environmental factors on the system performance, and the analytical strategies applicable for comprehending the critical processes during the system operation are further summarized. Finally, we put forward the research gaps in the current system and envision the system's prospective application. This review provides a valuable reference for future researches that are devoted to assessing the environmental disturbance and exploring the reaction mechanisms during the practical application of the ICPB system.


Assuntos
Titânio , Biodegradação Ambiental
13.
Zool Res ; 43(1): 64-74, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34845879

RESUMO

Retinal angiogenesis is a critical process for normal retinal function. However, uncontrolled angiogenesis can lead to pathological neovascularization (NV), which is closely related to most irreversible blindness-causing retinal diseases. Understanding the molecular basis behind pathological NV is important for the treatment of related diseases. Twist-related protein 1 (TWIST1) is a well-known transcription factor and principal inducer of epithelial-mesenchymal transition (EMT) in many human cancers. Our previous study showed that Twist1 expression is elevated in pathological retinal NV. To date, however, the role of TWIST1 in retinal pathological angiogenesis remains to be elucidated. To study the role of TWIST1 in pathological retinal NV and identify specific molecular targets for antagonizing pathological NV, we generated an inducible vascular endothelial cell (EC)-specific Twist1 transgenic mouse model ( Tg-Twist1 iEC+ ). Whole-mount retinas from Tg-Twist1 iEC+ mice showed retarded vascular progression and increased vascular density in the front end of the growing retinal vasculature, as well as aneurysm-like pathological retinal NV. Furthermore, overexpression of Twist1 in the ECs promoted cell proliferation but disturbed cell polarity, thus leading to uncontrolled retinal angiogenesis. TWIST1 promoted pathological NV by activating the Wnt/ß-catenin signaling pathway and inducing the expression of NV formation-related genes, thereby acting as a 'valve' in the regulation of pathological angiogenesis. This study identified the critical role of TWIST1 in retinal pathological NV, thus providing a potential therapeutic target for pathological NV.

14.
Sci Total Environ ; 805: 150362, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818817

RESUMO

Arbuscular mycorrhizal fungi (AMF), playing critical roles in carbon cycling, are vulnerable to climate change. However, the responses of AM fungal abundance to climate change are unclear. A global-scale meta-analysis was conducted to investigate the response patterns of AM fungal abundance to warming, elevated CO2 concentration (eCO2), and N addition. Both warming and eCO2 significantly stimulated AM fungal abundance by 18.6% (95%CI: 5.9%-32.8%) and 21.4% (15.1%-28.1%) on a global scale, respectively. However, the response ratios (RR) of AM fungal abundance decreased with the degree of warming while increased with the degree of eCO2. Furthermore, in warming experiments, as long as the warming exceeded 4 °C, its effects on AM fungal abundance changed from positive to negative regardless of the experimental durations, methods, periods, and ecosystem types. The effects of N addition on AM fungal abundance are -5.4% (-10.6%-0.2%), and related to the nitrogen fertilizer input rate and ecosystem type. The RR of AM fungal abundance is negative in grasslands and farmlands when the degree of N addition exceeds 33.85 and 67.64 kg N ha-1 yr-1, respectively; however, N addition decreases AM fungal abundance in forests only when the degree of N addition exceeds 871.31 kg N ha-1 yr-1. The above results provide an insight into predicting ecological functions of AM fungal abundance under global changes.


Assuntos
Mudança Climática , Micorrizas , Ecossistema , Nitrogênio , Solo , Microbiologia do Solo
15.
Curr Opin Oncol ; 34(1): 95-106, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669646

RESUMO

PURPOSE OF REVIEW: The resistance of immune checkpoint inhibitors (ICIs) has become an obstacle to further improve the survival of patients with advanced cancer. This review provides an overview of recent advances in primary resistance mechanisms of ICIs. RECENT FINDINGS: With the improvement of study approach, new characteristics and trends have emerged in the classification of tumor immune subtypes. The effects of germline genetic on tumor microenvironment and the efficacy of immunotherapy have been further studied. Exosomal programmed death-ligand 1 (PD-L1) is an increasing focus of research in primary resistance mechanisms of ICIs. In addition to antibiotics and steroids, the influence of other concomitant medications on the efficacy of ICIs has recently gained more attention. SUMMARY: Exploring the resistance mechanisms of ICIs is one of the great challenges in the field of tumor immunotherapy. Continued work to understand the resistance mechanism of ICIs is ongoing.

16.
Curr Opin Cardiol ; 37(1): 74-79, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857717

RESUMO

PURPOSE OF REVIEW: Combined atrial fibrillation (AF) ablation and left atrial (LA) appendage (LAA) closure (LAAC) has been practiced for management of both the symptoms and the high stroke risk of AF. The purpose of this review is to review recent evidence regarding the combined procedure. RECENT FINDINGS: Newly acquired long-term data of combined AF ablation and LAAC supplied satisfactory evidence on the safety and efficacy of the combined procedure. Studies also showed LA structural remodeling following combined procedure was mainly affected by sinus rhythm status post catheter ablation, not by LAAC. A cost-effectiveness study revealed that combined procedure was a cost-effective therapeutic option in symptomatic AF patients with high stroke and bleeding risk. Due to recent evidence of high incidences of LAA thrombus formation after LAA electrical isolation (LAAEI) and benefit of LAAC after LAAEI, an extended combined procedure of standard AF ablation plus LAAEI and LAAC was considered as a potential therapeutic option for persistent AF patients with high stroke risk. SUMMARY: In conclusion, combined AF ablation and LAAC serve as a promising option for patients with symptomatic AF and high risk of stroke and/or bleeding.

17.
Langmuir ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851123

RESUMO

Amorphous aluminum oxide (alumina) thin films are of interest as inert chemical barriers for various applications. However, the existing literature on the aqueous stability of atomic layer deposited (ALD) amorphous alumina thin films remains incomplete and, in some cases, inconsistent. Because these films have a metastable amorphous structure─which is likely partially hydrated in the as-deposited state─hydration and degradation behavior likely deviate from what is expected for the equilibrium, crystalline Al2O3 phase. Deposition conditions and the aqueous solution composition (ion content) appear to influence the reactivity and stability of amorphous ALD alumina films, but a full understanding of why these alumina films hydrate, solvate, and/or dissolve in near-neutral pH = 7 conditions, for which crystalline Al2O3 is expected to be stable, remains unsolved. In this work, we conduct an extensive X-ray photoelectron spectroscopy investigation of the surface chemistry as a function of water immersion time to reveal the formation of oxyhydroxide (AlOOH), hydroxide (Al(OH)3), and possible carbonate species. We further show that brief postdeposition exposures of these ALD alumina films to an air plasma anneal can significantly enhance the film's stability in near-neutral pH aqueous conditions. The simplicity and effectiveness of this plasma treatment may provide a new alternative to thermal annealing and capping treatments typically used to promote aqueous stability of low-temperature ALD metal oxide barrier layers.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34851809

RESUMO

Asthma is a common complex disease with apparent genetic predispositions, and previous genome-wide association studies suggest that rs1295686 within the IL13 (interleukin 13) gene is significantly associated with asthma. Analysis of the data provided by the 1000 Genomes Project indicated that there are additional four SNPs in nearly complete linkage disequilibrium with rs1295686 in Caucasians. However, the causal SNPs and the associated mechanism remain unclear. To investigate this issue, functional genomics approaches were utilized to analyze the functions of these SNPs. Dual-luciferase assays indicated that the functional SNP is not rs1295686 but a haplotype consisting of other three SNPs, rs1295685, rs848 and rs847. Through chromosome conformation capture, it was found that the enhancer containing the three functional SNPs interacts with the promoter of TH2LCRR (T helper type 2 locus control region associated RNA), a recently identified long non-coding RNA. RNA-seq data analysis indicated that TH2LCRR expression is significantly increased in asthma patients and is dependent on the genotype at this locus, indicating that TH2LCRR is a novel susceptibility gene for asthma and that these SNPs confer asthma risk by regulating TH2LCRR expression. By chromatin immunoprecipitation, the related transcription factors that bind in the region surrounding these three SNPs were identified, and their interactions were investigated by functional genomics approaches. Our effort identified a novel mechanism through which genetic variations at this locus could influence asthma susceptibility.

19.
Org Biomol Chem ; 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854446

RESUMO

A metal-free coupling of quinoxalin-2(1H)-ones with tert-butyl nitrite has been developed. Distinctly from the previous functionalization of quinoxalin-2(1H)-ones, this nitration reaction took place selectively at the C7 or C5 position of the phenyl ring, affording a series of 7-nitro and 5-nitro quinoxalin-2(1H)-ones in moderate to good yields. Preliminary mechanistic studies revealed that the reaction may involve a radical process.

20.
BMC Cardiovasc Disord ; 21(1): 570, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34847893

RESUMO

BACKGROUND: Irisin is a novel myokine associated with obesity, which is a traditional cardiovascular risk factor (CVRF). The present study aimed to investigate the association between serum irisin and a single CVRF as well as the clustering of CVRFs among Chinese overweight/obese population. METHODS: A total of 98 overweight and 93 obese subjects without clinical treatments were enrolled in this study. Subjects were then divided into two groups, based on the serum irisin level: a low irisin group (1.10-13.44 ng/ml) and a high irisin group (13.49-29.9 ng/ml). The clustering of CVRFs, smoking, diabetes mellitus, dyslipidemia and hypertension, was classified as 0, 1, 2 and ≥ 3 CVRFs. The demographic and baseline clinical characteristics of all participants were collected and serum irisin was measured. RESULTS: The high serum irisin group had significantly higher high-density lipoprotein cholesterol but lower fasting plasma glucose than the low serum irisin group. Additionally, the high serum irisin group had a significantly lower prevalence of smoking, diabetes mellitus and dyslipidemia than the low serum irisin group. Increased serum irisin was significantly associated with a reduced risk of smoking and dyslipidemia in both the unadjusted and adjusted models. Furthermore, high serum irisin significantly reduced the risk of the prevalence of 1, 2 and ≥ 3 CVRFs. CONCLUSIONS: among the Chinese overweight/obese populations, high serum irisin is negatively associated with smoking, dyslipidemia and the clustering of CVRFs. Thus, high serum irisin is potentially associated with a low risk of cardiovascular diseases in the Chinese overweight/obese population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...