Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.235
Filtrar
1.
J Neuroinflammation ; 18(1): 9, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407614

RESUMO

BACKGROUND: Both genetic factors and environmental hazards, including environmental noise stress, have been associated with gut microbiome that exacerbates Alzheimer's disease (AD) pathology. However, the role and mechanism of environmental risk factors in early-onset AD (EOAD) pathogenesis remain unclear. METHODS: The molecular pathways underlying EOAD pathophysiology following environmental noise exposure were evaluated using C57BL/6 wild-type (WT) and APP/PS1 Tg mouse models. The composition differences in intestinal microbiota were analyzed by 16S rRNA sequencing and Tax4Fun to predict the metagenome content from sequencing results. An assessment of the flora dysbiosis-triggered dyshomeostasis of oxi-inflamm-barrier and the effects of the CNS end of the gut-brain axis was conducted to explore the underlying pathological mechanisms. RESULTS: Both WT and APP/PS1 mice showed a statistically significant relationship between environmental noise and the taxonomic composition of the corresponding gut microbiome. Bacterial-encoded functional categories in noise-exposed WT and APP/PS1 mice included phospholipid and galactose metabolism, oxidative stress, and cell senescence. These alterations corresponded with imbalanced intestinal oxidation and anti-oxidation systems and low-grade systemic inflammation following noise exposure. Mechanistically, axis-series experiments demonstrated that following noise exposure, intestinal and hippocampal tight junction protein levels reduced, whereas serum levels of inflammatory mediator were elevated. Regarding APP/PS1 overexpression, noise-induced abnormalities in the gut-brain axis may contribute to aggravation of neuropathology in the presymptomatic stage of EOAD mice model. CONCLUSION: Our results demonstrate that noise exposure has deleterious effects on the homeostasis of oxi-inflamm-barrier in the microbiome-gut-brain axis. Therefore, at least in a genetic context, chronic noise may aggravate the progression of EOAD.

2.
Appl Microbiol Biotechnol ; 105(2): 839-852, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404832

RESUMO

Bacterial communities play an important role in the biogeochemical cycle in reservoir ecosystems. However, the dynamic changes in both planktonic and sediment bacterial communities in a highly regulated dam reservoir remain unclear. This study investigated the temporal distribution patterns of bacterial communities in a transition section of the Three Gorges Reservoir (TGR) using Illumina MiSeq sequencing. Results suggested that in comparison to the planktonic bacteria, sediment bacteria contributed more to the reservoir microbial communities, accounting for 97% of the 7434 OTUs. The Shannon diversity index in the water (3.22~5.68) was generally lower than that in the sediment (6.72~7.56). In the high water level period (January and March), Proteobacteria, Actinobacteria, Cyanobacteria, and Firmicutes were the most abundant phyla, whereas in the low water level period (May, July, and September), the dominant phyla were Proteobacteria, Actinobacteria, and Bacteroidetes. Sediment samples were dominated by Proteobacteria, Chloroflexi, and Acidobacteria. Principal coordinate analysis of the bacterioplankton communities showed greater sensitivity to monthly changes than that of the sediment bacterial communities. Network analysis suggested that in comparison to planktonic bacterial communities, sediment bacterial communities were more complex and stable. The linear relationship between the CH4/CO2 ratio, water level, and relative abundance of methanotrophs highlighted the potential methane-oxidizing process in the mid-part of the TGR. Moreover, the potential impact of dam regulation on the bacterial communities was revealed by the significant relationship between abundant phyla and the inflow of the TGR. KEY POINTS: • Bacterioplankton communities showed great sensitivity to monthly changes. • Potential methane-oxidizing process was revealed in this representative area. • Water inflow regulated by dam has significant effects on dominant bacterioplankton.

3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(1): 47-51, 2021 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-33423257

RESUMO

OBJECTIVE: To detect the mutation site in a pedigree affected with autosomal dominant polycystic kidney disease (ADPKD) and verify its impact on the protein function. METHODS: Peripheral blood samples were collected from the proband and his pedigree members for the extraction of genomic DNA. Mutational analysis was performed on the proband through whole-exome sequencing. Suspected variant was verified by Sanger sequencing. A series of molecular methods including PCR amplification, restriction enzyme digestion, ligation and transformation were also used to construct wild-type and mutant eukaryotic expression vectors of the PKD2 gene, which were transfected into HEK293T and HeLa cells for the observation of protein expression and cell localization. RESULTS: The proband was found to harbor a c.2051dupA (p. Tyr684Ter) frame shift mutation of the PKD2 gene, which caused repeat of the 2051st nucleotide of its cDNA sequence and a truncated protein. Immunofluorescence experiment showed that the localization of the mutant protein within the cell was altered compared with the wild-type, which may be due to deletion of the C-terminus of the PKD2 gene. CONCLUSION: The c.2051dupA (p. Tyr684Ter) mutation of the PKD2 gene probably underlay the pathogenesis of ADPKD in this pedigree.

4.
J Ethnopharmacol ; : 113782, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33421603

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 'Salt-processed Psoraleae Fructus & salt-processed Foeniculi Fructus' (sPF&sFF) is a common Chinese medicinal combination for treating diarrhoea. However, it is not clear how sPF and sFF work together, and why salt-processing is necessary. AIM OF THE STUDY: To investigate the compatibility mechanism of sPF&sFF and the influence of salt-processing on it. MATERIALS AND METHODS: Firstly, the metabolomics approach was appliedto screen the differential components between four (s)PF&(s)FF extracts, i.e., sPF&sFF, sPF&FF, PF&sFF, and PF&FF extracts. Then, an in vivo metabolomics study was carried out to filter critical metabolites reflecting the curative effects of (s)PF&(s)FF, and construct a metabolic network. Finally, a correlation analysis between chemical components in extracts and critical metabolites in vivo was performed to find out the synergistic and/or antagonistic effects between herbs as well as the influence of salt-processing. RESULTS: Salt-processing had a direct influence on the contents of chemical components in sPF and sFF extracts, and there existed positive/negative correlations between the content change of chemical components and the effects of critical metabolites. Therefore, salt-processing indirectly affected on these correlations and was (i) conducive to the positive effects of sPF and sFF on bile acids, making sFF play a synergistic role, thereby, sPF&sFF could perform better than sPF and other three combinations and effectively relieve the symptoms of fatty diarrhoea, osmotic diuresis, malnutrition, and weight loss; (ii) conducive to the positive effects of sPF on triacylglycerol, 12(S)-hydroxyeicosatetraenoic acid, cholesterol, and arachidonic acid, and adverse to that of sFF, making sFF play an antagonistic role, thereby, sPF&sFF could prevent a series of side effects caused by over-regulation and suitably relieve the symptoms of osmotic diuresis, polyuria, malnutrition, and weight loss; and (iii) adverse to the positive effects of sPF and sFF on thromboxane A2, sphinganine and sphingosine, making sFF play a synergistic role, thereby, sPF&sFF could prevent a series of side effects and moderately relieve the symptoms of metabolic diarrhoea and polyuria. CONCLUSIONS: Salt-processing indirectly affected on the correlations between chemical components in extracts and critical metabolites in vivo, and exhibited both conducive and adverse effects on the efficacy, making sPF and sFF cooperate with each other to moderately repair the metabolic disorders. Thereby, sPF&sFF could suitably relieve the diarrhoea and polyuria symptoms in the model and exert the most appropriate efficacy. Moreover, this novel strategy provided a feasible approach for further studying the compatibility mechanism of herbs.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33406032

RESUMO

A Gram-stain-negative, aerobic, mesophilic, non-motile bacterium, designated M0104T, was isolated from a gorgonian coral collected from Xieyang island, Guangxi Province, PR China. Colonies of the strain were non-motile cocci and pink. The strain grew at 15-34 °C (optimum, 28 °C), pH 4.5-8.0 (optimum, pH 7.0) and with 0-4% (w/v) NaCl (optimum, 0-2 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain M0104T was closely related to Roseomonas deserti JCM 31275T (96.2 %), Roseomonas vastitatis KCTC 62043T (96.0 %), Roseomonas aerofrigidensis JCM 31878T (95.9 %) and Roseomonas oryzae KCTC 42542T (95.7 %). The strain had an assembly size of 5.0 Mb and a G+C content of 71.0mol%. Genes involved in copper, cadmium, lead, arsenic and zinc resistance were identified in the genome of strain M0104T. The digital DNA-DNA hybridization and average nucleotide identity values between the genome sequence of strain M0104T and those of closely related type strains were 19.4-24.9 % and 74.3-81.8 %, respectively. Strain M0104T contained C18:1 ω7c, C18:3 ω3c, anteiso C11:0 and C16:0 as the major fatty acids (>7 %) and ubiquinone Q-10 as the sole isoprenoid quinone. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine were its major polar lipids. Based on its phenotypic, phylogenetic and chemotaxonomic properties, strain M0104T is proposed to represent a novel species within the genus Roseomonas, for which the name Roseomonas coralli sp. nov. is proposed. The type strain is M0104T (=KCTC 62359T=MCCC 1K03632T).

6.
Anal Chem ; 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400485

RESUMO

Mitochondria-targeted fluorescent probes are highly important to obtain mitochondrial function information. However, the accuracy of the current mitochondria-targeted fluorescent probes is unsatisfactory owing to the following two reasons. In the first case, some probes that always have a mitochondria-targeting group, thus, would react with the analytes outside of mitochondria and enter mitochondria with the generated fluorophore signal, which leads to a false-positive result. In the other case, after response to the analytes in mitochondria, some probes could diffuse from mitochondria to other organelles, thus triggering a false-negative result. To avoid the two problems, herein, we develop a precipitated fluorophore-based probe, which precipitates in situ after reacting with analytes, for the accurate detection of mitochondrial analytes. The probe was modified with HQPQ, a novel solid-state fluorophore that is insoluble in water. As a proof of concept, we designed and synthesized a probe (HQPQ-B) for H2O2 detection. Based on the different mitochondria-targeting capacities of quinoline salts and quinolone, HQPQ loses the mitochondria-targeting ability after reacting with analytes outside of mitochondria, thus avoiding a false-positive result. On the contrary, when the probe first localized in mitochondria and then reacted with analytes, HQPQ would precipitate and remain in mitochondria without diffusing to other sites, thus avoiding a false-negative result. Therefore, HQPQ enables the accurate detection of mitochondrial analytes. We believe that the novel strategy based on HQPQ will be a general strategy for accurate detection of mitochondrial analytes without interference from other sites, which enables an accurate study on mitochondrial function.

7.
Mol Cell Biochem ; 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389496

RESUMO

Melanoma ranks second in aggressive tumors, and the occurrence of metastasis in melanoma results in a persistent drop in the survival rate of patients. Therefore, it is very necessary to find a novel therapeutic method for treating melanoma. It has been reported that lncRNA XIST could promote the tumorigenesis of melanoma. However, the mechanism by which lncRNA XIST regulates the progression of melanoma remains unclear. The proliferation of A375 cells was measured by clonal formation. Cell viability was detected by MTT assay. Flow cytometry was performed to detect cell apoptosis and cycle. The level of GINS2, miR-23a-3p, and lncRNA XIST was investigated by qRT-PCR. Protein level was detected by Western blot, and the correctness of prediction results was confirmed by Dual luciferase. In present study, GINS2 and lncRNA XIST were overexpressed in melanoma, while miR-23a-3p was downregulated. Silencing of GINS2 or overexpression of miR-23a-3p reversed cell growth and promoted apoptosis in A375 cells. Mechanically, miR-23a-3p directly targeted GINS2, and XIST regulated GINS2 level though mediated miR-23a-3p. Moreover, XIST exerted its function on cell proliferation, cell viability, and promoted the cell apoptosis of A375 cells though miR-23a-3p/GINS2 axis. LncRNA XIST significantly promoted the tumorigenesis of melanoma via sponging miR-23a-3p and indirectly targeting GINS2, which can be a potential new target for treating melanoma.

8.
Med Res Rev ; 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393116

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global crisis. As of November 9, COVID-19 has already spread to more than 190 countries with 50,000,000 infections and 1,250,000 deaths. Effective therapeutics and drugs are in high demand. The structure of SARS-CoV-2 is highly conserved with those of SARS-CoV and Middle East respiratory syndrome-CoV. Enzymes, including RdRp, Mpro /3CLpro , and PLpro , which play important roles in viral transcription and replication, have been regarded as key targets for therapies against coronaviruses, including SARS-CoV-2. The identification of readily available drugs for repositioning in COVID-19 therapy is a relatively rapid approach for clinical treatment, and a series of approved or candidate drugs have been proven to be efficient against COVID-19 in preclinical or clinical studies. This review summarizes recent progress in the development of drugs against SARS-CoV-2 and the targets involved.

9.
Sci Total Environ ; 757: 144064, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33316510

RESUMO

6:2 chlorinated polyfluorinated ether sulfonate (with the trade name F-53B, a substitute for PFOS) is one type of Per- and polyfluoroalkyl substances (PFASs), which is widely used as a chromium mist inhibitor in China. It has been found in environment commonly. In this study, the sorption behavior of F-53B on four kinds of nano-materials: alumina nanopowder (ANP), alumina nanowires (ANW), hydrophilic bentonite nanoclay (HBNC) and surface modified nanoclay (SMNC) were investigated. The kinetics results indicated that the sorption of F-53B on four nano-materials reached equilibrium within 2 h and the sorption process were fitted better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The thermodynamic study showed that the sorption of F-53B on nano-materials were exothermic and spontaneous. As the increase of temperature, the maximum sorption capacity of ANP, ANW, HBNC, SMNC increased, and reached 868.75, 91.35, 5.15, 2465.09 µg/g at 25 °C, respectively. The surface modified nanoclay (SMNC) was better than the others for removing F-53B from aquatic environment. To investigate the effects of pH and ion strength, the particle size and zeta potential of sorbents at different pH and ion strength were measured by Dynamic Light Scattering (DLS), and concluded that the sorption mechanism of F-53B on two kinds of nanoalumina mainly included electrostatic attraction and agglomeration effects, while hydrophobic interaction played an important role on the sorption of F-53B on nanoclay. This study revealed the sorption behavior and mechanism of F-53B on four kinds of nano-materials, and the results provided theoretical support for removing F-53B from electroplating wastewater with nano-materials.

10.
Postgrad Med ; 133(1): 48-56, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32758047

RESUMO

OBJECTIVES: A questionnaire which provides desirable reliability and validity has been previously developed to assess the disease awareness of diagnosed chronic kidney disease (CKD) patients. However, conventional paper questionnaires often have disadvantages, including recall bias. To substantially improve this, we therefore aimed to explore the feasibility of developing a smartphone-based electronic version (e-version) based upon its original paper version and subsequently tested its validity, reliability, and applicability. METHODS: A pilot study was conducted at Guangdong Provincial Hospital of Chinese Medicine in Guangzhou, China, during August 2019. The e-version had identical content to the paper version and was adapted in terms of layout and assisted functions via the Wechat-incorporated Wen-Juan-Xing platform. Eligible patients with diagnosed CKD were invited to participate and were assigned the e-version. Randomly selected respondents received a test-retest of the same e-version 2 weeks after their first completion. In some instances, psychometric properties, including validity and reliability of the e-version, were examined. In others, its clinical application was also tested, which included comparisons among the clinical profiles of patients who had/had not responded to the questionnaire as well as patients with above or below average questionnaire scores. RESULTS: Of the 225 patients screened, 217 were enrolled to participate, with a response rate of 52.5%. Desirable reliability (Cronbachα = 0.962, ICC for total scores = 0.948), while good convergent validity (Cronbachα = 0.962) and low discriminant validity (one extracted component), of the e-version were detected. Performing inter-group comparisons highlighted statistical differences in terms of higher education level (z = -2.436, P = 0.015) and earlier CKD stages (z = -1.978, P = 0.048), with these patients often preferring to respond. No significant differences were detected in the clinical profiles between respondents who obtained an above or below average questionnaire score. CONCLUSION: The e-version is reliable but was not shown to be a valid approach. Audiences with higher education levels and less advanced disease condition may prefer to respond to the e-version. Adaptation of this e-questionnaire, from its original paper version, may not be a direct transition and meticulous modifications may be required during the transition process. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR1900024633).

11.
Liver Int ; 41(1): 128-132, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33012093

RESUMO

BACKGROUND AND AIMS: Congenital hepatic fibrosis (CHF) is a rare disease associated with polycystic kidney gene mutation and is characterized by liver fibrosis and portal hypertension. The pathology of CHF has common characteristics with hepatitis B cirrhosis. Currently, little is known about the clinical course of CHF during pregnancy or its effect on maternal and fetal outcomes. METHODS: Whole exome sequencing (WES), and laboratory and histopathological findings of the patient were documented. RESULTS: We report the case of a 30-year-old Chinese woman who had been diagnosed with hepatitis B cirrhosis 17 years before and whose diagnosis was revised to CHF based on confirmation by liver biopsy and WES. She conceived naturally and delivered a healthy live infant. CONCLUSIONS: The diagnostic methods for CHF are liver biopsy and WES. In pregnant patients with CHF, prenatal monitoring is mainly performed to monitor liver function, platelet and clotting function, portal hypertension and degree of esophageal and gastric varices. Precise guidelines for screening and management of patients with CHF need to be better defined.

12.
J Obstet Gynaecol Res ; 47(1): 103-113, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32885568

RESUMO

AIM: To evaluate the effect of probiotic supplementation on the vaginal microbiome and provide the effective evidences for clinical management of pregnant women. METHODS: A total of 28 healthy pregnant women at 32 weeks of gestation were enrolled. The women were divided randomly to the probiotic group where they were prescribed with 2 g combined probiotics daily (13 cases) during the third trimester of pregnancy or to the control group (15 cases) on a voluntary basis. Their vaginal samples were taken for analyzing microbiome with the 16S rDNA amplicon sequencing of V4 region. RESULTS: There was no significant difference on the clinical characteristics between the probiotic and control groups. The complexity of vaginal microbial network increased from 32 weeks of gestation to antepartum. Lactobacillus was the dominant microbiota. The probiotic supplementation had no obvious influence on the structure of the vaginal microbiome, whereas the relationships of some pivotal vaginal microbiota at the genus level changed in the probiotic group. CONCLUSION: The vaginal microbiome varied during the third trimester of pregnancy. The features of the vaginal microbiota after probiotic supplementation had shifted and the interaction network had the tendency to be loose. The probiotic supplementation may be useful in regulating the interaction network of vaginal microbiome.

13.
Mol Med Rep ; 23(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33325535

RESUMO

Burkitt lymphoma (BL) has a high mortality rate and its treatment is currently limited to chemotherapy combined with immunotherapy. The long non­coding RNA antisense non­coding RNA in the INK4 locus (ANRIL) has been identified as an oncogene that can regulate cell proliferation and apoptosis in multiple types of cancer. However, the function of ANRIL in BL remains unknown. The present study aimed to determine the effect of ANRIL on cell proliferation and apoptosis in BL. Reverse transcription­quantitative PCR was used to analyze the expression levels of ANRIL in BL cells. The effect of ANRIL knockdown on BL cells was determined using Cell Counting Kit­8, flow cytometric, western blotting, immunofluorescence staining and Hoechst staining assays. The results revealed that ANRIL silencing inhibited the proliferation and promoted the apoptosis of BL cells. In addition, the expression levels of cyclin D1, E2F transcription factor 1 and Bcl­2 were downregulated, while the expression levels of cyclin­dependent kinase inhibitor 1A, Bcl­2­associated X protein, cleaved­caspase­9/pro­caspase­9 and cleaved­caspase­3/pro­caspase­3 were upregulated. Furthermore, the knockdown of ANRIL activated the TGF­ß1 signaling pathway, as evidenced by the upregulated expression levels of TGF­ß1, phosphorylated (p)­SMAD2/3/SMAD2/3, p­SMAD1/SMAD1 and sphingosine­1­phosphate receptor 2. Moreover, the protective effect of ANRIL silencing in BL could be inhibited by the TGF­ß receptor type I/II dual inhibitor, LY2109761. In conclusion, the findings of the present study suggested that the knockdown of ANRIL may inhibit cell proliferation and promote cell apoptosis in BL by regulating the TGF­ß1 signaling pathway, which may provide a novel target for the treatment of BL.

14.
Sci Total Environ ; 754: 142076, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920391

RESUMO

Individual cell heterogeneity within a population can be critical to its peculiar function and fate. Conventional algal cell-based assays mainly analyze the average responses from a population of algal cells. Therefore, the mechanisms through which changes in population characteristics are driven by the behavior of single algal cells are still not well understood. Algal cells may modulate their physiology and metabolism by changing their morphology in response to environmental stress. In this study, an algal single-cell culture and analysis system was developed to investigate the potential role of morphological changes by algal cells during adaptation to nutrient stress based on a microwell array chip. The surface-to-volume ratio of Microcystis aeruginosa (M. aeruginosa) and the volume of Scenedesmus obliquus (S. obliquus) significantly increased with increasing culture time under nutrient stress. The eccentricity of M. aeruginosa and S. obliquus gradually increased and decreased, respectively, with increasing culture time, indicating that the morphology of M. aeruginosa and S. obliquus became increasingly irregular and regular, respectively, under nutrient stress. There were significant correlations between the morphological characteristics and physiological characteristics of M. aeruginosa and S. obliquus under nutrient stress. In M. aeruginosa, an increased surface-to-volume ratio facilitated a high specific fluorescence intensity, specific Raman intensity, and maximum electron transport rate. In S. obliquus, increased cell volume enhanced nutrient absorption, which facilitated a higher specific growth rate. M. aeruginosa and S. obliquus adopted different adaptation strategies in response to nutrient stress based on morphological changes. These findings facilitate the development of management strategies for controlling harmful cyanobacterial blooms.


Assuntos
Microcystis , Scenedesmus , Aclimatação , Nutrientes
15.
J Colloid Interface Sci ; 585: 85-94, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33279708

RESUMO

Capacitive deionization (CDI) is considered one of the most promising desalination technologies for obtaining fresh water from saline water. In this work, we synthesized a hollow core-shell Co-MOF@Fe/Co-LDH (Co-Fe-LDH) material by developing a strategy to simultaneously grow Co/Fe-LDH on the surface of a Co-MOF precursor in situ. Owing to the increase in the specific surface area of the hollow structure and the Faradaic process of a layered double hydroxide (LDH), the Co-Fe-LDH material exhibits high electrical double layer (EDL) capacitance and pseudocapacitance, which significantly improves the salt adsorption of the material during CDI (34.2 mg/g in a 600 mg/L NaCl solution at 1.2 V). The adsorption for NaCl in this work is approximately 2.5 times the maximum salt adsorption capacity (SAC) of LDH materials applied in nonmembrane CDI (NMCDI). This work may provide a promising model for the application of hollow LDH materials that exhibit pseudocapacitance in CDI.

16.
Biomed Pharmacother ; 133: 111011, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227706

RESUMO

The placental labyrinth is important for the exchange of nutrients and gases between the mother and the embryo in mice. This interface contains cells of both trophoblast and allantoic mesodermal origin that together produce maternal blood sinuses and placental blood vessels. However, the molecular mechanisms that take place during process of placental labyrinth development, especially concerning fetal capillaries, are not well understood. SREBP cleavage-activating protein (SCAP), a membrane protein, is required for the synthesis of fatty acids and cholesterol. Recently, when we crossed the offspring of the cross between smooth muscle 22 alpha (SM22α)- Cre recombinase (Cre) mice and SCAPloxp/loxp mice to research the function of SCAP in vascular smooth muscle cells (VSMCs) during certain pathological processes, we found that there were no resultant SM22α-Cre-specific SCAP knockout (KO) pups (SM22α-Cre+SCAPflox/flox; hereafter referred to as SCAP KO). Through anatomic studies of these embryos and placentas, we found that SCAP KO resulted in defective placental vessels and abnormal fetal morphology. Further immunohistochemical and immunocytochemical analyses suggested that SCAP is knocked out in the pericytes of the placental labyrinth. Compared to wildtype mice, SCAP KO placentas had abnormal vasculature in the labyrinth and lower levels of angiogenesis. By using RNA-seq and western blotting, we found that the expression of some genes and proteins in SCAP KO placentas was changed, including those related to pericyte/endothelial interactions genes and angiogenesis. Our results suggest that the proper organizational structure of the placental labyrinth depends on SCAP expression in pericytes.

17.
Ecotoxicol Environ Saf ; 207: 111544, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254403

RESUMO

Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg-1, respectively). Moreover, Se's impact on the grain and biomass yield of eight wheat cultivars was also investigated. The subcellular distribution and speciation of Se were also explored to elucidate Se metabolism and micro-distribution pattern in wheat. Results showed that biomass and grain yield were decreased with the application of both selenite and selenate in almost all the cultivars, regardless of the Se rate. Application high Se rate resulted in a significant (p < 0.05) decrease in grain yield and biomass compared with low rate of Se. Compared with the low rate of selenite application, the grain and the biomass yield of ZM-9023 significantly (p < 0.05) increased by about 15% for low rate of selenate application. In addition, both selenite and selenate treatment increased the uptake of Se in each part of wheat, compared with the control. Selenium was mostly accumulated in the grain and root of wheat under selenite treatment, while more Se accumulation was found in leaves and straw for selenate application. Further investigation on the subcellular distribution of Se showed that the proportion of Se in soluble fraction was significantly (p < 0.05) higher in wheat leaves than that in organelle fraction and cell walls (46%-66%). Meanwhile, Se6+ was the main species found in soluble fraction, whereas SeMet and MeSeCys were the species predominantly stored in organelle fraction. In conclusion, wheat cultivar ZM-9023 is the most Se-rich potential cultivar, and the isolation of Se in the soluble fraction plays an important role in Se tolerance and accumulation.


Assuntos
Selênio/metabolismo , Poluentes do Solo/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Transporte Biológico , Biomassa , Grão Comestível/metabolismo , Folhas de Planta/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Compostos de Selênio/metabolismo
18.
Chemosphere ; 263: 128147, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297134

RESUMO

Subsurface storm flow of phosphorus (P), including particulate P, has been recently discussed as an important P transport path in contrast to typical surface runoff events. However, P speciation, and P concentration during storm events has not been extensively investigated; therefore, its contribution to the water quality is not clearly understood. In this study, the physicochemical properties of particulate P in tile water samples during a high flow event were investigated in Midwestern agricultural lands using wet chemical methods, 31P Nuclear Magnetic Resonance spectroscopy and P K-edge X-ray absorptions near edge structure spectroscopy. In slightly alkaline pH tile water, total P was ranging from ∼0.06 to 0.22 mg L-1, which is significantly greater than dissolved reactive P (DRP) (∼0.02-0.08 mg L-1). The tile water contains P enriched particulate matters (∼200-660 mg L-1). Total P in the colloidal fraction was from 1013 to 2270 mg kg-1. Phosphate and organic P species, especially monoesters, are sorbed in soil colloids like calcite, and iron oxides, and colloids are effective carriers of P in the subsurface transport process during storm events. The results of this study show that storm events can accelerate the subsurface transport of P with soil particles in addition to DRP.


Assuntos
Fósforo , Movimentos da Água , Agricultura , Fósforo/análise , Solo , Qualidade da Água
19.
Brain Res Bull ; 168: 110-119, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33316370

RESUMO

Spinal cord ischemia-reperfusion injury(SCII)affects nerve function through many mechanisms, which are complex and not fully understood. Recently, accumulating evidence has indicated that long noncoding RNAs (lncRNAs) play an increasingly important role in SCII. We investigated the role of lncRNA growth arrest-specific 5(Gas5) in a rat SCII model, and its effects on apoptosis and inflammation possibly by modulating MMP-7, cleaved caspase-3 and IL-1ß. LncRNA Gas5 and MMP-7 were knocked down by intrathecal siRNA injection. Neurological assessment and TUNEL assay were performed. The RNA and protein expression levels of lncRNA Gas5, MMP-7, cleaved caspase-3 and IL-1ß were determined by PCR and Western blotting, respectively. MMP-7 localization was visualized by double-immunofluorescence. SCII induced functional impairment in the hind limb, and the expression of lncRNA Gas5 was highest at 24 h after SCII. LncRNA Gas5 downregulation inhibited the RNA and protein expression of MMP-7, as well as the protein expression of cleaved caspase-3 and IL-1ß. LncRNA Gas5 downregulation reduced the number of TUNEL-positive and MMP-7-positive double-labeled cells. Therefore, lncRNA Gas5 downregulation alleviated hind limb functional impairment and improved neuronal apoptosis after SCII. MMP-7 downregulation also inhibited apoptosis and inflammation and alleviated damage. Pretreatment with intrathecal injection of si-lncRNA Gas5 and si-MMP-7 reduced the expression levels of cleaved caspase-3 and IL-1ß, protecting nerve function after SCII. These results show that lncRNA Gas5 plays an important role in SCII, perhaps by inhibiting MMP-7, cleaved caspase-3 and IL-1ß. LncRNA Gas5 downregulation could be a promising therapeutic approach in the SCII treatment.

20.
Ann Palliat Med ; 9(6): 4156-4165, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33302676

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is a once-in-century crisis to public health. Although the pathogen for COVID-19, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has been identified, the pandemic is still ongoing. The critically ill COVID-19 patients account for most disease-associated death; thus, there is an urgent need to identify prognostic factors that would help determine therapeutic approaches. METHODS: In this study, we retrospectively analyzed the clinical and laboratory findings in 100 critically ill COVID-19 patients in Hubei Women & Children Healthcare Hospital (Guanggu District), of whom 22 patients died in hospital, and 78 patients survived. RESULTS: We found that age, lymphocyte count, and total bilirubin concentration were an independent prognostic factor for critically ill COVID-19 patients. Of particular importance, we observed a significant elevation of myocardium injury biomarkers, including CK-MB, high-sensitivity cardiac troponini I (hs-cTnI), and Mb, in the non-survivor group. These myocardium injury biomarkers appeared to correlate with the time of survival, and two multivariate models have suggested hs-cTnI was a novel prognostic factor with a sensitivity of 75.0% and a specificity of 84.9%. CONCLUSIONS: Altogether, our study highlighted the prognostic significance of myocardium injury biomarkers in critically ill COVID-19 patients. Monitoring myocardium injury biomarkers would predict patient survival and guide therapeutic strategy.


Assuntos
/patologia , Cardiomiopatias/metabolismo , Estado Terminal , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , /metabolismo , Cardiomiopatias/complicações , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Prognóstico , Estudos Retrospectivos , /isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA