Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.492
Filtrar
1.
J Ethnopharmacol ; 282: 114581, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464697

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The diterpenoids extracted from Euphorbia kansui S.L. Liou ex S.B.Ho, Euphorbia fischeriana Steud. have good antitumor effects. Jolkinolide B has anti-breast cancer effect, but it is unclear whether it has different therapeutic effects between luminal A subtype and luminal B subtype breast cancer. AIM OF THE STUDY: This study investigated the Jolkinolide B has different therapeutic, important targets and pathways effects between luminal A subtype and luminal B subtype breast cancer. MATERIALS AND METHODS: We used bioinformatics to predict the biological process and molecular mechanism of Jolkinolide B in treating two types of breast cancer. Then, in vitro, cultured MCF-7 cells and BT-474 cells were divided into control group, PI3K inhibitor + control group, Jolkinolide B group and PI3K inhibitor + Jolkinolide B group. The CCK-8 assay, Flow cytometric analysis and Transwell cell migration assay was used to detect the cell proliferation, apoptosis, and migration in each group, respectively. ELISA was used to measure the content of Akt and phosphorylated Akt (p-Akt) in cell lysis buffer. RESULTS: Compared to luminal A breast cancer, Jolkinolide B had more targets, proliferation, migration processes and KEGG pathways when treating luminal B subtype breast cancer. Jolkinolide B significantly prolonged the survival time of luminal B subtype breast cancer patients. Compared to the control group, the cell proliferation absorbance value (A value) and migration number of the two kinds of breast cancer cells in the Jolkinolide B group were decreased (P < 0.01, n = 6), and the number of apoptotic cells was increased (P < 0.01, n = 6). Compared to the Jolkinolide B group, the A value and migration number of the two types of breast cancer cells were significantly decreased in the PI3K inhibitor + Jolkinolide B group (P < 0.01, n = 6), and the number of apoptotic cells was significantly increased (P < 0.01, n = 6). In addition, compared to MCF-7 cells, the A value and migration number of BT-474 cells stimulated with Jolkinolide B were significantly decreased (P < 0.01, n = 6), and the number of apoptotic cells was significantly increased (P < 0.01, n = 6). Akt and p-Akt protein levels in the two breast cancer cell lines in the Jolkinolide B group were all decreased (P < 0.01, n = 6), especially in BT-474 cells stimulated by Jolkinolide B. CONCLUSION: Jolkinolide B regulates the luminal A and luminal B subtypes of breast cancer through PI3K-Akt, EGFR and other pathways. Jolkinolide B has more significant therapeutic effect on luminal B subtype breast cancer. In vitro, experiments verified that Jolkinolide B significantly inhibited the proliferation and migration activity of BT-474 breast cancer cells by downregulating the PI3K-Akt pathway.

2.
Plant Biotechnol J ; 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34626524

RESUMO

Genetically-modified crops expressing Bacillus thuringiensis (Bt) proteins have been widely cultivated, permitting an effective non-chemical control of major agricultural pests. While their establishment can enable an area-wide suppression of polyphagous herbivores, no information is available on the impact of Bt crop abandonment in entire landscape matrices. Here we detail a resurgence of the cosmopolitan bollworm Helicoverpa armigera following a contraction of Bt cotton area in dynamic agro-landscapes over 2007-2019 in North China Plain. An 80% reduction in Bt cotton was mirrored in a 1.9-fold increase of ambient H. armigera population levels, culminating in 1.5~2.1-fold higher yield loss and a 2.0~4.4-fold increase in pesticide use frequency in non-Bt crops (i.e., maize, peanut, soybean). Our work unveils the fate of herbivorous insect populations following a progressive dis-use of insecticidal crop cultivars, and hints at how tactically-deployed Bt crops could be paired with agro-ecological measures to mitigate the environmental footprint of crop production.

3.
Plant Dis ; 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633238

RESUMO

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties ('Rabbiteye', 'Double Peak' and 'Pink Lemonade'), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 µl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch's postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.

4.
Nucleic Acids Res ; 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34614154

RESUMO

Bacterial chromosome replication is mainly catalyzed by DNA polymerase III, whose beta subunits enable rapid processive DNA replication. Enabled by the clamp-loading complex, the two beta subunits form a ring-like clamp around DNA and keep the polymerase sliding along. Given the essential role of ß-clamp, its inhibitors have been explored for antibacterial purposes. Similarly, ß-clamp is an ideal target for bacteriophages to shut off host DNA synthesis during host takeover. The Gp168 protein of phage Twort is such an example, which binds to the ß-clamp of Staphylococcus aureus and prevents it from loading onto DNA causing replication arrest. Here, we report a cryo-EM structure of the clamp-Gp168 complex at 3.2-Å resolution. In the structure of the complex, the Gp168 dimer occupies the DNA sliding channel of ß-clamp and blocks its loading onto DNA, which represents a new inhibitory mechanism against ß-clamp function. Interestingly, the key residues responsible for this interaction on the ß-clamp are well conserved among bacteria. We therefore demonstrate that Gp168 is potentially a cross-species ß-clamp inhibitor, as it forms complex with the Bacillus subtilis ß-clamp. Our findings reveal an alternative mechanism for bacteriophages to inhibit ß-clamp and provide a new strategy to combat bacterial drug resistance.

5.
Clin Exp Dent Res ; 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34626163

RESUMO

OBJECTIVES: The objective of this study was to introduce the evidence obtained through extensive research that periodontitis increases risk of many systemic diseases. METHOD: Analysis of some oral bacteria (P. gingivalis, T. denticola, T. forsythia, A. actinomycetemcomitans, and F. nucleatum) and its related treatments and mediators by the specific methods (western blot, ELISA, etc). RESULTS: This article reviews in detail the evidence obtained through extensive research that periodontitis increases risk of many systemic diseases, including cardiovascular disease, rheumatoid arthritis, and Alzheimer's disease. These diseases are known to be associated with some certain specific gram-negative bacteria as periodontal pathogens, which induce inflammation and related diseases through TLR receptors, kinases, transcriptional factors and other cytokines. We also reviewed the latest research for inhibitors against inflammation and related diseases that have potential to be further applied clinically. In addition, based on a large amount of research evidence, we draw two tables about the mechanism of disease caused by periodontal bacteria, so that readers can easily search and analyze these research results. DISCUSSION: This review details how the periodontal bacteria and their virulence factors can trigger host immune defense and induce many systemic diseases via inflammation and invasion. This Review also addressed the latest research around inhibitors against inflammation.

6.
Ann Vasc Surg ; 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34644628

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has become a global pandemic which may compromise the management of vascular emergencies. An uncompromised treatment for ruptured abdominal aortic aneurysm (rAAA) during such a health crisis represents a challenge. This study aimed to demonstrate the treatment outcomes of rAAA and the perioperative prevention of cross-infection under the COVID-19 pandemic. METHODS: In cases of rAAA during the pandemic, a perioperative workflow was applied to expedite coronavirus testing and avoid pre-operative delay, combined with a strategy for preventing cross-infection. Data of rAAA treated in 11 vascular centers between January-March 2020 collected retrospectively were compared to the corresponding period in 2018 and 2019. RESULTS: Eight, 12, and 14 rAAA patients were treated in 11 centers in January-March 2018, 2019, and 2020, respectively. An increased portion were treated at local hospitals with a comparable outcome compared with large centers in Guangzhou. With EVAR-first strategy, 85.7% patients with rAAA in 2020 underwent endovascular repair, similar to that in 2018 and 2019. The surgical outcomes during the pandemic were not inferior to that in 2018 and 2019. The average length of ICU stay was 1.8±3.4 days in 2020, tending to be shorter than that in 2018 and 2019, whereas the length of hospital stay was similar among three years. The in-hospital mortality of 2018, 2019, and 2020 was 37.5%, 25.0%, and 14.3%, respectively. Three patients undergoing emergent surgeries were suspected of COVID-19, though turned out to be negative after surgery. CONCLUSION: Our experience for emergency management of rAAA and infection prevention for healthcare providers is effective in optimizing emergent surgical outcomes during the COVID-19 pandemic.

7.
Int J Biol Macromol ; 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648801

RESUMO

The present study aimed at assuring whether homogeneous cultivated Dendrobium huoshanense stem polysaccharide (cDHPS) could inhibit gastric cancer in vivo, and whether its anti-gastric cancer activity could be affected by its molecular weight and O-acetyl group. Three different fractions (cDHPS-I, cDHPS-II and cDHPS-III) with decreased molecular weights and one fraction (cDHPS-IV) without O-acetyl group were prepared from cDHPS. Their structures were identified systematically. The backbone of cDHPS-I-III was the same as that of cDHPS, while their relative molecular weights displayed a decreasing order as follows: cDHPS > cDHPS-I > cDHPS-II > cDHPS-III. The backbone of cDHPS-IV was similar to those of cDHPS and cDHPS-I-III, but with the absence of O-acetyl groups. Animal experiments exhibited that cDHPS and cDHPS-I-IV could significantly inhibit tumor growth, induce tumor cell apoptosis, suppress tumor angiogenesis and enhance T cell immune response of murine forestomach carcinoma (MFC) tumor-bearing mice. Moreover, all the above effects of cDHPS and cDHPS-I-IV on MFC tumor-bearing mice exhibited a decreasing order as follows: cDHPS > cDHPS-I > cDHPS-II > cDHPS-III > cDHPS-IV. The results suggest that cDHPS could inhibit gastric cancer in vivo, and its anti-gastric cancer activity was closely linked with its molecular weight and O-acetyl group.

8.
Cardiovasc Toxicol ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519946

RESUMO

Human immunodeficiency virus (HIV) infection is a risk factor of cardiovascular diseases (CVDs). HIV-infected patients exhibit cardiac dysfunction coupled with cardiac fibrosis. However, the reason why HIV could induce cardiac fibrosis remains largely unexplored. HIV-1 trans-activator of transcription (Tat) protein is a regulatory protein, which plays a critical role in the pathogenesis of various HIV-related complications. In the present study, recombinant Tat was administered to mouse myocardium or neonatal mouse cardiac fibroblasts in different doses. Hematoxylin-eosin and Masson's trichrome staining were performed to observe the histological changes of mice myocardial tissues. EdU staining and MTS assay were used to evaluate the proliferation and viability of neonatal mouse cardiac fibroblasts, respectively. Real-time PCR and western blot analysis were used to detect CTGF, TGF-ß1, and collagen I mRNA and protein expression levels, respectively. The results showed that Tat promoted the occurrence of myocardial fibrosis in mice. Also, we found that Tat increased the proliferative ability and the viability of neonatal mouse cardiac fibroblasts. The protein and mRNA expression levels of TGF-ß1 and CTGF were significantly upregulated both in Tat-treated mouse myocardium and neonatal mouse cardiac fibroblasts. However, co-administration of TGF-ß inhibitor abrogated the enhanced expression of collagen I induced by Tat in neonatal mouse cardiac fibroblasts. In conclusion, Tat contributes to HIV-related cardiac fibrosis through enhanced TGF-ß1-CTGF signaling cascade.

9.
Hum Brain Mapp ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34520078

RESUMO

Exploring typical and atypical brain developmental trajectories is very important for understanding the normal pace of brain development and the mechanisms by which mental disorders deviate from normal development. A precise and sex-specific brain age prediction model is desirable for investigating the systematic deviation and individual heterogeneity of disorders associated with atypical brain development, such as autism spectrum disorders. In this study, we used partial least squares regression and the stacking algorithm to establish a sex-specific brain age prediction model based on T1-weighted structural magnetic resonance imaging and resting-state functional magnetic resonance imaging. The model showed good generalization and high robustness on four independent datasets with different ethnic information and age ranges. A predictor weights analysis showed the differences and similarities in changes in structure and function during brain development. At the group level, the brain age gap estimation for autistic patients was significantly smaller than that for healthy controls in both the ABIDE dataset and the healthy brain network dataset, which suggested that autistic patients as a whole exhibited the characteristics of delayed development. However, within the ABIDE dataset, the premature development group had significantly higher Autism Diagnostic Observation Schedule (ADOS) scores than those of the delayed development group, implying that individuals with premature development had greater severity. Using these findings, we built an accurate typical brain development trajectory and developed a method of atypical trajectory analysis that considers sex differences and individual heterogeneity. This strategy may provide valuable clues for understanding the relationship between brain development and mental disorders.

10.
J Med Internet Res ; 23(9): e30451, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499043

RESUMO

BACKGROUND: The vaccination uptake rates of the human papillomavirus (HPV) vaccine remain low despite the fact that the effectiveness of HPV vaccines has been established for more than a decade. Vaccine hesitancy is in part due to false information about HPV vaccines on social media. Combating false HPV vaccine information is a reasonable step to addressing vaccine hesitancy. OBJECTIVE: Given the substantial harm of false HPV vaccine information, there is an urgent need to identify false social media messages before it goes viral. The goal of the study is to develop a systematic and generalizable approach to identifying false HPV vaccine information on social media. METHODS: This study used machine learning and natural language processing to develop a series of classification models and causality mining methods to identify and examine true and false HPV vaccine-related information on Twitter. RESULTS: We found that the convolutional neural network model outperformed all other models in identifying tweets containing false HPV vaccine-related information (F score=91.95). We also developed completely unsupervised causality mining models to identify HPV vaccine candidate effects for capturing risk perceptions of HPV vaccines. Furthermore, we found that false information contained mostly loss-framed messages focusing on the potential risk of vaccines covering a variety of topics using more diverse vocabulary, while true information contained both gain- and loss-framed messages focusing on the effectiveness of vaccines covering fewer topics using relatively limited vocabulary. CONCLUSIONS: Our research demonstrated the feasibility and effectiveness of using predictive models to identify false HPV vaccine information and its risk perceptions on social media.

11.
Br J Pharmacol ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553378

RESUMO

BACKGROUND AND PURPOSE: Duchenne muscular dystrophy (DMD) is a degenerative muscle disease with no effective drug treatment. This study investigated the positive effects of fenofibrate on dystrophic muscles. EXPERIMENTAL APPROACH: Myostatin expression in serum and muscle tissue of DMD patients and mdx mice were tested. Primary myoblasts isolated from mdx mice were challenged with an inflammatory stimulus and treated with fenofibrate. In animal experiments, 6-week-old male mdx mice were treated with fenofibrate (100 mg/kg) administered orally once per day for 6 weeks. Tests of muscle function plus histology and biochemical analyses of serum were conducted to evaluate the effects of fenofibrate. The expressions of myostatin, MuRF1, and atrogin-1 in skeletal muscle were evaluated by Western blotting and real-time PCR. Total and oxidative myosin heavy chain (MHC) were assessed via immunofluorescence. KEY RESULTS: Increased expression of myostatin protein was found in dystrophic muscle of DMD patients and mdx mice. Fenofibrate enhanced myofibre differentiation by downregulating the expression of myostatin protein but not mRNA in primary myoblasts of mdx mice. Fenofibrate significantly improved muscle function while ameliorating muscle damage in mdx mice. These benefits are accompanied by an anti-inflammatory effect. Fenofibrate treatment returned myofibre function by inhibiting the expressions of myostatin, MuRF1, and atrogin-1 protein in the gastrocnemius muscle and diaphragm, while leaving the mRNA level of myostatin unaffected. CONCLUSIONS AND IMPLICATIONS: Fenofibrate substantially slows muscle dystrophy by promoting the degradation of myostatin protein, which may indicate a new therapeutic focus for DMD patients.

12.
J Colloid Interface Sci ; 606(Pt 2): 1524-1533, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34500155

RESUMO

Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. Herein, we designed the novel sandwich-like metal-organic-framework composite nanocatalyst UiO-66-NH2@Pt@mSiO2 using UiO-66-NH2@Pt as the core, and mesoporous SiO2 as the shell. The obtained UiO-66-NH2@Pt@mSiO2 catalyst shows a well-defined structure and interface, and the protection of the mSiO2 shell can efficiently prevent Pt NPs from aggregating and leaching in the reaction process. In the one-pot cascade reaction of nitroarenes and aromatic aldehydes to secondary amines, UiO-66-NH2@Pt@mSiO2 shows excellent catalytic performance due to acid catalytic sites provided by UiO-66-NH2 and Pt hydrogenation catalytic sites. Furthermore, the porous structure of the UiO-66-NH2@Pt@mSiO2 catalyst also enhances reactant diffusion and improves the reaction efficiency. This work provides a new avenue to meticulously design well-defined nanocatalysts with superior catalytic performance and stability for challenging reactions.

13.
Aging (Albany NY) ; 13(17): 21671-21699, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518441

RESUMO

Breast cancer (BC) is the most common malignancy with high morbidity and mortality in females worldwide. Emerging evidence indicates that transferrin receptor 1 (TfR1) plays vital roles in regulating cellular iron import. However, the distinct role of TfR1 in BC remains elusive. TfR1 expression was investigated using the TCGA, GEO, TIMER, UALCAN and Oncomine databases. The prognostic potential of TfR1 was evaluated by Kaplan-Meier (KM) plotter and univariate and multivariate Cox regression analyses. Moreover, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were used to explore the molecular mechanism of TfR1. The potential link between TfR1 expression and infiltrating abundances of immune cells was examined through the TIMER and CIBERSORT algorithm. The expression of TfR1 was dramatically upregulated in BC tissues. Increased TfR1 expression and decreased methylation levels of TfR1 were strongly correlated with multiple clinicopathological parameters. Elevated TfR1 expression was associated with a poor survival rate in BC patients. The nomogram model further confirmed that TfR1 could act as an independent prognostic biomarker in BC. The results of GO, KEGG and GSEA revealed that TfR1 was closely correlated with multiple signaling pathways and immune responses. Additionally, TfR1 was positively associated with the infiltration abundances of six major immune cells, including CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and dendritic cells in BC. Interestingly, TfR1 influenced prognosis partially through immune infiltration. These comprehensive bioinformatics analyses suggest that TfR1 is a new independent prognostic biomarker and a potential target for immunotherapy in BC.

14.
J Nucl Cardiol ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476776

RESUMO

BACKGROUND: Previous studies proved the efficacy of cardiac shock wave therapy (CSWT) for coronary artery disease (CAD) patients who are not candidate for reperfusion therapy. Randomized control trials are limited. We try to explore the efficacy and safety of CSWT for patients with severe CAD. METHODS: Thirty patients with severe CAD who had obvious ischemia on myocardial perfusion imaging (MPI) were enrolled and randomly assigned to the CSWT group or the control group. They had received optimal medication treatment for at least three months. Nine sessions of shock wave therapy were conducted over 3 months. CSWT group received the real treatment, while the control group received the pseudo-treatment. Clinical symptom, imaging outcomes and safety parameters were compared between two groups. RESULTS: After treatment, regional stress score (P = .023), improvement rate (IR) of ischemic area (IA) stress (P < .001) and IR of IA difference (P < .001) were significantly favor CSWT group. The interaction of summed rest score (P < .001), summed stress score (P = .004), summed difference score (P = .036) were significantly improved in the CSWT group compared to the control group. Seattle angina questionnaire, quality of life (QOL) and the distance of six-minute walking test (6MWT) were improved in both groups without significant difference between them. Hemodynamic parameters were stable during procedure. Myocardial injury markers showed no changes in two groups. CONCLUSIONS: Our study demonstrated CSWT could effectively and safely improve myocardial perfusion in patients with severe CAD. Clinical symptom, QOL and 6MWT were all improved after treatment, but no significant difference between two groups.

15.
Pest Manag Sci ; 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34476893

RESUMO

BACKGROUND: The on-farm deployment of genetically modified crops may negatively affect nontarget arthropods, potentially disrupting food web structure and ecosystem functions. Aphid-parasitoid interactions are well-suited to study these potential impacts in agro-ecosystems. Over the span of 8 years, we systematically compared infestation levels of the aphid Aphis gossypii, its associated parasitoid community and overall parasitism rate between transgenic Cry1Ac + CpTI cotton and nontransgenic cotton. Furthermore, we measured the impact of transgenic Cry1Ac + CpTI cotton on structural traits and interspecies interactions within quantitative aphid-parasitoid food webs. RESULTS: Transgenic Cry1Ac + CpTI cotton did not affect the abundance of aphids and parasitoids, or in-field parasitism rates. Despite weak interannual variability, transgenic Cry1Ac + CpTI cotton also did not alter food web architecture or biological control services. CONCLUSIONS: Our work not only elucidates the impact of transgenic Cry1Ac + CpTI cotton on different nontarget arthropods (i.e. aphids, parasitoids, hyperparasitoids) and their associated ecosystem services or disservices, but also diversifies the ecological risk assessment toolbox for transgenic insecticidal crops.

16.
Adv Sci (Weinh) ; : e2102854, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541830

RESUMO

Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular-colloidal self-organization. However, owing to formation of particle-induced singular defects and complex elasticity-mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization-dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5 rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer-scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.

17.
Comput Math Methods Med ; 2021: 3957738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527075

RESUMO

Introduction: To investigate the function of miR-190a-3p on the proliferation and migration of glioma. Methods: Twenty glioma samples and 6 normal brain tissue samples were collected. Normal human glial cell line HEB and glioma cell lines were used for the experiments. We then used TargetScan to predict the target genes of miR-190a-3p. Dual-luciferase reporter assay was also used to validate. Results: Combined with dual-luciferase reporter experiment, we finally verified that YOD1 was the aim, and it was low-expressed in glioma. Besides, a series of mechanism experiments then proved that miR-190a-3p negatively regulates YOD1 expression. Conclusions: Our research was the first to demonstrate the promoting function of miR-190a-3p in the proliferation and migration of glioma and provided new views for the treatment of glioma. miR-190a-3p was expected to be a new target for molecular therapy of glioma.

18.
Extremophiles ; 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533626

RESUMO

Two extremely halophilic archaea, isolates SYSU A00711T and SYSU A00630, were isolated from a sediment soil sample collected from the Aiding lake, China. Cells of these isolates were cocci, non-motile and stained Gram-negative. They grew optimally at 37 °C, with 20-22% NaCl (w/v) and at pH 7.5-8.0. Cells lysed in distilled water. Major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, mannosyl glucosyl diether, sulfated mannosyl glucosyl diether, and two unidentified glycolipids. Pairwise sequence comparison revealed that isolates SYSU A00711T and SYSU A00630 were closely related to Halegenticoccus soli SYSU A9-0T (94.1 and 94.0% 16S rRNA gene sequence similarities; 94.0 and 94.2% rpoB' gene similarities, respectively). The overall genomic relatedness indices values between the two isolates and Halegenticocus soli SYSU A9-0 T were: AAI, both 79.6%; ANI, 84.6 and 84.5%; dDDH, 32.5 and 26.3%, respectively. Phylogenetic trees based on the 16S rRNA gene, rpoB' gene, and genome sequences demonstrated a robust clade of these two isolates with Halegenticoccus soli SYSU A9-0T. The DNA G + C contents of these two isolates are both 64.7% (genome method). Based on the differences in phenotypic, chemotaxonomic, and phylogenetic properties, isolates SYSU A00711T and SYSU A00630 are characterized to represent a novel species in the genus Halegenticoccus, for which the name Halegenticoccus tardaugens sp. nov. is proposed. The type strain of the species Halegenticoccus tardaugens is SYSU A00711T (= KCTC 4245T = CGMCC 1.15768T).

19.
Front Immunol ; 12: 677025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504487

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global crisis; however, our current understanding of the host immune response to SARS-CoV-2 infection remains limited. Herein, we performed RNA sequencing using peripheral blood from acute and convalescent patients and interrogated the dynamic changes of adaptive immune response to SARS-CoV-2 infection over time. Our results revealed numerous alterations in these cohorts in terms of gene expression profiles and the features of immune repertoire. Moreover, a machine learning method was developed and resulted in the identification of five independent biomarkers and a collection of biomarkers that could accurately differentiate and predict the development of COVID-19. Interestingly, the increased expression of one of these biomarkers, UCHL1, a molecule related to nervous system damage, was associated with the clustering of severe symptoms. Importantly, analyses on immune repertoire metrics revealed the distinct kinetics of T-cell and B-cell responses to SARS-CoV-2 infection, with B-cell response plateaued in the acute phase and declined thereafter, whereas T-cell response can be maintained for up to 6 months post-infection onset and T-cell clonality was positively correlated with the serum level of anti-SARS-CoV-2 IgG. Together, the significantly altered genes or biomarkers, as well as the abnormally high levels of B-cell response in acute infection, may contribute to the pathogenesis of COVID-19 through mediating inflammation and immune responses, whereas prolonged T-cell response in the convalescents might help these patients in preventing reinfection. Thus, our findings could provide insight into the underlying molecular mechanism of host immune response to COVID-19 and facilitate the development of novel therapeutic strategies and effective vaccines.


Assuntos
COVID-19/genética , COVID-19/imunologia , Leucócitos Mononucleares/química , Transcriptoma , Adulto , Idoso , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/virologia , China , Estudos de Coortes , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , Análise de Sequência de RNA , Linfócitos T/imunologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/imunologia
20.
Genes Genomics ; 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480734

RESUMO

BACKGROUND: TP73-AS1 is a novel antisense long noncoding RNA and plays an important role in cell proliferation and cancer development. However, the link between TP73-AS1 and colorectal cancer (CRC) has not yet been reported. OBJECTIVE: To explore the association of genetic variants in TP73-AS1 and its expression with CRC susceptibility and prognosis. METHODS: A case-control study (including 507 CRC cases and 503 controls) and bioinformatics analysis were conducted. RESULTS: rs9800 polymorphism was significantly related to higher risk in CRC [adjusted odds ratio (AOR) = 1.33, 95% confidence interval (CI) = 1.02-1.75, P = 0.034 in heterozygote codominant model]. There was no difference between TP73-AS1 polymorphisms and different tumor node metastasis (TNM) stages in the adjusted model. Moreover, TP73-AS1 expression level was positively related to different TNM stages. After adjusted for age, gender and TNM, higher TP73-AS1 expression levels were related to shorter recurrence-free survival time [hazard ratio (HR) = 1.66, 95% CI = 1.02-2.71, P = 0.043]. CONCLUSION: TP73-AS1 polymorphisms and expression may be associated with susceptibility and prognosis of CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...