Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.010
Filtrar
1.
J Inflamm Res ; 17: 4129-4149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952564

RESUMO

Purpose: Capillary leak syndrome (CLS) is an intermediary phase between severe acute pancreatitis (SAP) and multiple organ failure. As a result, CLS is of clinical importance for enhancing the prognosis of SAP. Plakophilin2 (PKP2), an essential constituent of desmosomes, plays a critical role in promoting connections between epithelial cells. However, the function and mechanism of PKP2 in CLS in SAP are not clear at present. Methods: We detected the expression of PKP2 in mice pancreatic tissue by transcriptome sequencing and bioinformatics analysis. PKP2 was overexpressed and knocked down to assess its influence on cell permeability, the cytoskeleton, tight junction molecules, cell adhesion junction molecules, and associated pathways. Results: PKP2 expression was increased in the pancreatic tissues of SAP mice and human umbilical vein endothelial cells (HUVECs) after lipopolysaccharide (LPS) stimulation. PKP2 overexpression not only reduced endothelial cell permeability but also improved cytoskeleton relaxation in response to acute inflammatory stimulation. PKP2 overexpression increased levels of ZO-1, occludin, claudin1, ß-catenin, and connexin43. The overexpression of PKP2 in LPS-induced HUVECs counteracted the inhibitory effect of SB203580 (a p38/MAPK signaling pathway inhibitor) on the p38/MAPK signaling pathway, thereby restoring the levels of ZO-1, ß-catenin, and claudin1. Additionally, PKP2 suppression eliminated the enhanced levels of ZO-1, ß-catenin, occludin, and claudin1 induced by dehydrocorydaline. We predicted that the upstream transcription factor PPARγregulates PKP2 expression, and our findings demonstrate that the PPARγactivator rosiglitazone significantly upregulates PKP2, whereas its antagonist GW9662 down-regulates PKP2. Administration of rosiglitazone significantly reduced the increase in HUVECs permeability stimulated by LPS. Conversely, PKP2 overexpression counteracted the GW9662-induced reduction in ZO-1, phosphorylated p38/p38, and claudin1. Conclusion: The activation of the p38/MAPK signaling pathway by PKP2 mitigates CLS in SAP. PPARγactivator rosiglitazone can up-regulate PKP2. Overall, directing efforts toward PKP2 could prove to be a feasible treatment approach for effectively managing CLS in SAP.

2.
Methods ; 229: 115-124, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950719

RESUMO

Single-cell RNA-sequencing (scRNA-seq) enables the investigation of intricate mechanisms governing cell heterogeneity and diversity. Clustering analysis remains a pivotal tool in scRNA-seq for discerning cell types. However, persistent challenges arise from noise, high dimensionality, and dropout in single-cell data. Despite the proliferation of scRNA-seq clustering methods, these often focus on extracting representations from individual cell expression data, neglecting potential intercellular relationships. To overcome this limitation, we introduce scGAAC, a novel clustering method based on an attention-based graph convolutional autoencoder. By leveraging structural information between cells through a graph attention autoencoder, scGAAC uncovers latent relationships while extracting representation information from single-cell gene expression patterns. An attention fusion module amalgamates the learned features of the graph attention autoencoder and the autoencoder through attention weights. Ultimately, a self-supervised learning policy guides model optimization. scGAAC, a hypothesis-free framework, performs better on four real scRNA-seq datasets than most state-of-the-art methods. The scGAAC implementation is publicly available on Github at: https://github.com/labiip/scGAAC.

3.
Brachytherapy ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960768

RESUMO

BACKGROUND AND PURPOSE: 3D-printed templates are used in intracavitary/interstitial brachytherapy (3DP-IC/IS) for locally advanced cervical cancer (LACC). We applied failure mode and effects analysis (FMEA) twice in one year to improve 3DP-IC/IS safety. MATERIALS AND METHODS: A risk assessment group was established. We created a process map for 3DP-IC/IS procedures, identifying potential failure modes (FMs) and evaluating occurrence (O), detectability (D), severity (S), and risk priority number (RPN = O*D*S). High RPN values identified high-risk FMs, and quality control (QC) methods were determined by root cause analysis. A second FMEA was performed a year later. RESULTS: The 3DP-IC/IS process included 10 main steps, 48 subprocesses, and 54 FMs. Initial RPN values ranged from 4.50 to 171.00 (median 50.50; average 52.18). Ten high-risk FMs were identified: (1) unreasonable needle track design (171.00/85.50), (2) noncoplanar needle label identification failure (126.00/64.00), (3) template model reconstruction failure (121.50/62.50), (4) improper gauze filling (112.00/60.25), (5) poor needle position (112.00/52.50). QC interventions lowered all high-risk RPN values during the second assessment. CONCLUSIONS: A feasible 3DP-IC/IS process was proposed. Staff training, automatic needle path planning, insertion guidance diagrams, template checking, system commissioning, and template design improvements effectively enhanced process safety.

4.
J Cell Physiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962880

RESUMO

Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3ß (GSK-3ß) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3ß provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3ß inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3ß roles in IRI. First, we provide an overview of GSK-3ß's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3ß in accelerating IRI, and highlight the latest progress of GSK-3ß in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3ß inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3ß as a potential target for future IRI therapy.

5.
Oncol Rep ; 52(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38963058

RESUMO

The mitochondria­associated endoplasmic reticulum (ER) membrane (MAM), serving as a vital link between the mitochondria and ER, holds a pivotal role in maintaining the physiological function of these two organelles. Its specific functions encompass the participation in the biosynthesis and functional regulation of the mitochondria, calcium ion transport, lipid metabolism, oxidative stress and autophagy among numerous other facets. Scientific exploration has revealed that MAMs hold potential as effective therapeutic targets influencing the mitochondria and ER within the context of cancer therapy. The present review focused on elucidating the related pathways of mitochondrial autophagy and ER stress and their practical application in ovarian cancer, aiming to identify commonalities existing between MAMs and these pathways, thereby extending to related applications of MAMs in ovarian cancer treatment. This endeavor aimed at exploring new potential for MAMs in clinically managing ovarian cancer.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Mitocôndrias , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Feminino , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo
6.
J Asian Nat Prod Res ; : 1-8, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963349

RESUMO

The preliminary study revealed that the ethyl acetate eluate of Youngia japonica (YJ-E) could inhibit the expression of key proteins of p-p65, p-IκBα, p-IKKα/ß, and p-AKT in LPS stimulated BV2 cell. Further phytochemical study led to the isolation of eight compounds from YJ-E, including one new sesquiterpene lactone. Their structures were elucidated by several spectroscopic data, and comparing the NMR data of known compound. In addition, all of the isolates were evaluated for the anti-inflammatory effect. As a result, compounds 3 and 4 distinctly attenuated the expressions of p-IκBα, p-p65, and p-AKT in LPS stimulated BV2 cell, respectively.

7.
BMC Genomics ; 25(1): 655, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956468

RESUMO

The Sox gene family, a collection of transcription factors widely distributed throughout the animal kingdom, plays a crucial role in numerous developmental processes. Echinoderms occupy a pivotal position in many research fields, such as neuroscience, sex determination and differentiation, and embryonic development. However, to date, no comprehensive study has been conducted to characterize and analyze Sox genes in echinoderms. In the present study, the evolution and expression of Sox family genes across 11 echinoderms were analyzed using bioinformatics methods. The results revealed a total of 70 Sox genes, with counts ranging from 5 to 8 across different echinoderms. Phylogenetic analysis revealed that the identified Sox genes could be categorized into seven distinct classes: the SoxB1 class, SoxB2 class, SoxC class, SoxD class, SoxE class, SoxF class and SoxH class. Notably, the SoxB1, SoxB2, and SoxF genes were ubiquitously present in all the echinoderms studied, which suggests that these genes may be conserved in echinoderms. The spatiotemporal expression patterns observed for Sox genes in the three echinoderms indicated that various Sox members perform distinct functional roles. Notably, SoxB1 is likely involved in echinoderm ovary development, while SoxH may play a crucial role in testis development in starfish and sea cucumber. In general, the present investigation provides a molecular foundation for exploring the Sox gene in echinoderms, providing a valuable resource for future phylogenetic and genomic studies.


Assuntos
Equinodermos , Família Multigênica , Filogenia , Fatores de Transcrição SOX , Animais , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Equinodermos/genética , Perfilação da Expressão Gênica , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Biologia Computacional/métodos
8.
Biomed Pharmacother ; 177: 117087, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964178

RESUMO

Thirteen previously undescribed lindenane sesquiterpenoid dimers (LSDs), named chlorahololides G-S (1-13), were isolated from the whole plants of Chloranthus holostegius var. shimianensis, along with ten known analogues (14-23). The structures and absolute configurations of compounds 1-13 were elucidated through comprehensive spectroscopic analysis, NMR and electronic circular dichroism (ECD) calculations, and X-ray single-crystal diffraction. Chlorahololide G (1) represents the first instance of LSDs formed via a C-15-C-9' carbon-carbon single bond, whose plausible biosynthetic pathway was also proposed. Chlorahololides I and J (3 and 4) were deduced to be rare 8,9-seco and 9-deoxy LSDs with C-11-C-7' carbon-carbon bond, respectively. The inhibitory activity against NLRP3 inflammasome activation was evaluated for all isolates, with six compounds (5, 7, 8, 17, 22, and 23) exhibiting significant effects, and IC50 values ranging from 2.99 to 8.73 µM. Additionally, a preliminary structure-activity relationship analysis regarding their inhibition of NLRP3 inflammasome activation was summarized. Compound 17 exhibited dose-dependent inhibition of nigericin-induced pyroptosis in J774A.1 cells. Molecular docking studies suggested a strong interaction between compound 17 and NLRP3.

9.
J Craniofac Surg ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968026

RESUMO

OBJECTIVE: Cephalic Index (CI), the ratio of head width to length, is one of the indexes reflecting cranial morphological characteristics. Current norms were established by European and American countries. The purpose of the study was to study anthropometry of cranial parameters using computed tomography scans to establish the CI of the sampled Chinese Children. METHODS: The cross-sectional study was carried out on patients of age younger than 14 years old at Shanghai Children's Medical Center. The measurement of maximum cranial breadth and maximum cranial length were taken on a computed tomography scan machine and recorded for analysis. Cephalic Index was calculated for each age and sex group and compared with previously established norms. RESULTS: Five hundred eighteen patients met the inclusion criteria, including 301 males and 217 females. The means for boys and girls were 87.1 (SD: 4.3) and 85.8 (SD: 4.3), respectively. There was a significant difference between boys and girls (P < 0.01). Cephalic Index in different ages and on applying the 1-way analysis of variance association was statistically insignificant (P = 0.19). CONCLUSIONS: Chinese head shape was brachycephalic. A statistically significant correlation was seen between the CI and sex, while not age.

10.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969435

RESUMO

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Chumbo , Mercúrio , Estruturas Metalorgânicas , Poluentes Químicos da Água , Mercúrio/análise , Chumbo/análise , Chumbo/química , Estruturas Metalorgânicas/química , Aptâmeros de Nucleotídeos/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Grafite/química , Ouro/química , Limite de Detecção , Eletrodos , DNA Catalítico/química
11.
Interdiscip Sci ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972032

RESUMO

The emergence of antibiotic-resistant microbes raises a pressing demand for novel alternative treatments. One promising alternative is the antimicrobial peptides (AMPs), a class of innate immunity mediators within the therapeutic peptide realm. AMPs offer salient advantages such as high specificity, cost-effective synthesis, and reduced toxicity. Although some computational methodologies have been proposed to identify potential AMPs with the rapid development of artificial intelligence techniques, there is still ample room to improve their performance. This study proposes a predictive framework which ensembles deep learning and statistical learning methods to screen peptides with antimicrobial activity. We integrate multiple LightGBM classifiers and convolution neural networks which leverages various predicted sequential, structural and physicochemical properties from their residue sequences extracted by diverse machine learning paradigms. Comparative experiments exhibit that our method outperforms other state-of-the-art approaches on an independent test dataset, in terms of representative capability measures. Besides, we analyse the discrimination quality under different varieties of attribute information and it reveals that combination of multiple features could improve prediction. In addition, a case study is carried out to illustrate the exemplary favorable identification effect. We establish a web application at http://amp.denglab.org to provide convenient usage of our proposal and make the predictive framework, source code, and datasets publicly accessible at https://github.com/researchprotein/amp .

12.
Food Chem ; 458: 140263, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981396

RESUMO

To investigate the effects of heat treatment on the microstructure and digestive behaviors of pork, meat samples were subjected to a 100 °C water bath for 26 min. The inner, medium, and outer layers were assigned and analyzed according to the temperature gradient. Compared to the raw samples, significant changes were observed in the microscopic structure of pork. As the temperature increased, the myofibrillar structure of pork underwent increasingly severe damage and the moisture content decreased significantly (P < 0.05). Moreover, differential peptides were identified in digested products of the inner, middle, and outer layers of cooked pork, which are mainly derived from the structural proteins of pork. The outcomes of molecular docking indicated that a greater number of hydrogen bonds were formed between myosin and the digestive enzyme in the inner layer, rather than other parts, contributing to the transformation of digestive behaviors.

13.
J Colloid Interface Sci ; 675: 893-903, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39002239

RESUMO

Making full use of the captured energy by phosphorescence light-harvesting systems (PLHSs) and the tunable photoluminescence in energy transfer process to realize the multiple applications is still the challenge of PLHSs research. In this study, we have successfully constructed a highly effective PLHS with tunable multicolor luminescence and efficient conversion of photosensitizer types, which can further be used in photocatalytic organic conversion, information anti-counterfeiting and storage. The supramolecular polymer of BDBP-CB[8], which is generated by cucurbit[8]uril (CB[8]) and 4-(4-bromophenyl)-pyridine derivative (BDBP), realizes a phosphorescence emission and a change in luminescence color. Notably, white light emission was achieved and the logic gate systems were constructed utilizing the application of adjustable luminescence color. More interestingly, PLHS can be constructed by employing BDBP-CB[8] as energy donors, Sulforhodamine 101 (SR101) and Cyanine5 (Cy5) as energy acceptors, which results in a remarkably tunable multicolor photoluminescence to achieve the information storage. Furthermore, we have also found that BDBP-CB[8] can serve as type II photosensitizer for the effective production of singlet oxygen (1O2) during the photooxidation process of styrene in aqueous environments, attaining a remarkable output rate reaching as high as 89 %. Particularly, compared with 1O2 produced by type II photosensitizer BDBP-CB[8], the construction of PLHS can effectively convert type II photosensitizer to type I photosensitizer and efficiently generate superoxide anion radical (O2•-), which can be used for photocatalytic cross-dehydrogenative coupling (CDC) reaction in the aqueous solution with a yield of 90 %. Thus, we have created a PLHS that not only achieves tunable multicolor emission for information anti-counterfeiting and storage, but also realizes the conversion of reactive oxygen species (ROS) for different types photocatalytic oxidation reactions.

14.
Food Chem ; 459: 140376, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39002334

RESUMO

The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A470 and A495) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1µg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124788, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986256

RESUMO

MicroRNAs (miRNAs) play a key role in physiological processes, and their dysregulation is closely related to various human diseases. Simultaneous detection of multiple miRNAs is pivotal to cancer diagnosis at an early stage. However, most multicomponent analyses generally involve multiple excitation wavelengths, which are complicated and often challenging to simultaneously acquire multiple detection signals. In this study, a convenient and sensitive sensor was developed to simultaneously detection of multiple miRNAs under a single excitation wavelength through the fluorescence resonance energy transfer between the carbon dots (CDs)/quantum dots (QDs) and graphene oxide (GO). A hybridization chain reaction (HCR) was triggered by miRNA-141 and miRNA-21, resulting in the high sensitivity with a limit of detection (LOD) of 50 pM (3σ/k) for miRNA-141 and 60 pM (3σ/k) for miRNA-21. This simultaneous assay also showed excellent specificity discrimination against the mismatch. Furthermore, our proposed method successfully detected miRNA-21 and miRNA-141 in human serum samples at a same time, indicating its diagnostic potential in a clinical setting.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38986605

RESUMO

Triboelectric nanogenerator (TENG) has been demonstrated as a sustainable energy utilization method for waste mechanical energy and self-powered system. However, the charge dissipation of frictional layer materials in a humid environment severely limits their stable energy supply. In this work, a new method is reported for preparing polymer film as a hydrophobic negative friction material by solution blending poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and polyvinyl chloride (PVC), doping with titanium dioxide (TiO2) nanoparticles, and further surface patterning modification. The P-TENG composed of the PVDF-HFP/PVC/TiO2 composite film with optimized hydrophobic performance (WCA = 124°) achieved an output voltage of 235 V and a short-circuit current of 35 µA, which is approximately three times that of the bare PVDF-HFP-based TENG. Under charge excitation, the transferred charge of the P-TENG can reach 35 nC. When the external load resistance is 5.5 MΩ, the output peak power density can reach 1.4 W m-2. Meanwhile, the hydrophobic surface layer with a rough surface structure enables the device to overcome the influence of water molecules on charge transfer in a humid environment, quickly recover, and maintain a high output. The P-TENG can effectively monitor finger flexibility and strength and realize real-time evaluation of the exercise state and hand fatigue of the elderly and rehabilitation trainers. It has broad application prospects in self-powered intelligent motion sensing, soft robotics, human-machine interaction, and other fields.

17.
Biosci Trends ; 18(3): 212-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987161

RESUMO

One important challenge for global development is aging. China is one of the world's countries with the highest elderly population and the most rapid aging; in 2022, the percentage of the population over 65 was 14.9%; by 2050, it is expected to rise to 26.1%. China's health security, elderly care, and healthcare services are facing serious challenges as a result of this aging trend. With 80% of provinces including medical and elderly care in national basic public health care programs, China has adopted a proactive national plan to combat population aging. Moreover, geriatric departments have been established at 69.3% of public general hospitals at secondary and higher tiers, 48% of provinces have devises preventive interventions for disability and dementia in the elderly, 48 percent of provinces are serving as test regions for medical care related to rehabilitation, and 49 cities are involved in long-term care insurance (LTCI) trials that encompass 170 million people. There are 4,259 medical and health care facilities that provide hospice care services, 152 hospice care pilot regions, and 87,000 pairs of contracts between medical and health care facilities and elderly care providers. These developments provide a strong basis, but there are still major obstacles to overcome. The Chinese Government is urged to adopt early preventive measures, offer more ongoing, practical, and cost-effective diagnostic and treatment services, allocate resources equitably, and use intelligent technologies to enhance elderly care. The ultimate goals are to lessen the financial burden, enhance the health of the elderly, and offer a vital global resource.


Assuntos
Envelhecimento Saudável , China/epidemiologia , Humanos , Idoso , Serviços de Saúde para Idosos , Envelhecimento , Atenção à Saúde
18.
Biomed Environ Sci ; 37(6): 594-606, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38988110

RESUMO

Objective: The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats ( C6orf120 -/- ) and THP-1 cells. Method: Six-eight-week-old C6orf120 -/- and wild-type (WT) SD rats were injected with Con A (16 mg/kg), and euthanized after 24 h. The sera, livers, and spleens were collected. THP-1 cells and the recombinant protein (rC6ORF120) were used to explore the mechanism in vitro. The frequency of M1 and M2 macrophages was analyzed using flow cytometry. Western blotting and PCR were used to detect macrophage polarization-associated factors. Results: C6orf120 knockout attenuated Con A-induced autoimmune hepatitis. Flow cytometry indicated that the proportion of CD68 +CD86 +M1 macrophages from the liver and spleen in the C6orf120 -/- rats decreased. C6orf120 knockout induced downregulation of CD86 protein and the mRNA levels of related inflammatory factors TNF-α, IL-1ß, and IL-6 in the liver. C6orf120 knockout did not affect the polarization of THP-1 cells. However, rC6ORF120 promoted the THP-1 cells toward CD68 +CD80 +M1 macrophages and inhibited the CD68 +CD206 +M2 phenotype. Conclusion: C6orf120 knockout alleviates Con A-induced autoimmune hepatitis by inhibiting macrophage polarization toward M1 macrophages and reducing the expression of related inflammatory factors in C6orf120 -/- rats.


Assuntos
Concanavalina A , Hepatite Autoimune , Macrófagos , Ratos Sprague-Dawley , Animais , Macrófagos/efeitos dos fármacos , Hepatite Autoimune/imunologia , Hepatite Autoimune/genética , Ratos , Concanavalina A/toxicidade , Humanos , Masculino , Técnicas de Inativação de Genes , Células THP-1
19.
Chin J Integr Med ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990478

RESUMO

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It has a high prevalence and poor prognosis. The application of antiarrhythmic drugs and even surgery cannot completely treat the disease, and there are many sequelae. AF can be classified into the category of "palpitation" in Chinese medicine according to its symptoms. Acupuncture has a significant effect on AF. The authors find that an important mechanism of acupuncture in AF treatment is to regulate the cardiac vagus nerve. Therefore, this article intends to review the distribution and function of vagus nerve in the heart, the application and the regulatroy effect for the treatment of AF.

20.
Virol Sin ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997087

RESUMO

Norovirus (NoV) infection is a major cause of gastroenteritis worldwide. The virus poses great challenges in developing vaccines with broad immune protection due to its genetic and antigenic diversity. To date, there are no approved NoV vaccines for clinical use. Here, we aimed to develop a broad-acting quadrivalent NoV vaccine based on a chimpanzee adenovirus vector, AdC68, carrying the major capsid protein (VP1) of noroviral GI and GII genotypes. Compared to intramuscular (i.m.), intranasal (i.n.), or other prime-boost immunization regimens (i.m. + i.m., i.m. + i.n., i.n. + i.m.), AdC68-GI.1-GII.3 (E1)-GII.4-GII.17 (E3), administered via i.n. + i.n. induced higher titers of serum IgG antibodies and higher IgA antibodies in bronchoalveolar lavage fluid (BALF) and saliva against the four homologous VP1s in mice. It also significantly stimulated the production of blocking antibodies against the four genotypes. In response to re-stimulation with virus-like particles (VLP)-GI.1, VLP-GII.3, VLP-GII.4, and VLP-GII.17, the quadrivalent vaccine administered according to the i.n. + i.n. regimen effectively triggered specific cell-mediated immune responses, primarily characterized by IFN-γ secretion. Furthermore, the preparation of this novel quadrivalent NoV vaccine requires only a single recombinant adenovirus vector to provide broad preventive immunity against the major GI/GII epidemic strains, making it a promising vaccine candidate for further development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA