Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.909
Filtrar
1.
Shock ; 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34628454

RESUMO

BACKGROUND: Hemorrhagic shock is the important factor for causing death of trauma and war injuries. However, pathophysiological characteristics and underlying mechanism in hemorrhagic shock with hot environment remain unclear. METHODS: Hemorrhagic shock in hot environment rat model was used to explore the changes of mitochondrial and vital organ functions, the variation of the internal environment, stress factors, and inflammatory factors; meanwhile, the suitable treatment was further studied. RESULTS: Above 36°C hot environment induced the increase of core temperature of rats, and the core temperature was not increased in 34°C hot environment, but the 34°C hot environment aggravated significantly hemorrhagic shock induced mortality. Further study showed that the mitochondrial functions of heart, liver, and kidney were more damaged in hemorrhagic shock rats with 34°C hot environment as compared with room environment. Moreover, the results showed that in hemorrhagic shock rats with hot environment, the blood concentration of Na+, K+, and plasma osmotic pressure, the expression of inflammatory factors tumor necrosis factor-α and interleukin-6 in the serum, as well as the stress factors Adrenocorticotropic Hormone and Glucocorticoid were all notably enhanced; and acidosis was more serous; oxygen supply and oxygen consumption were remarkably decreased. In addition, the present study demonstrated that mild hypothermia (10°C) fluid resuscitation could significantly improve the survival rate in hemorrhagic shock rats with hot environment as compared with normal temperature fluid resuscitation. CONCLUSIONS: Hot environment accelerated the death of hemorrhagic shock rats, which was related to the disorder of internal environment, the increase of inflammatory and stress factors. Furthermore, moderate hypothermic (10°C) fluid resuscitation was suitable for the treatment of hemorrhagic shock in hot environment.

2.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641351

RESUMO

Copper-catalyzed and organocopper-involved reactions are of great significance in organic synthesis. To have a deep understanding of the reaction mechanisms, the structural characterizations of organocopper intermediates become indispensable. Meanwhile, the structure-function relationship of organocopper compounds could advance the rational design and development of new Cu-based reactions and organocopper reagents. Compared to the mono-carbonic ligand, the C,N- and C,C-bidentate ligands better stabilize unstable organocopper compounds. Bidentate ligands can chelate to the same copper atom via η2-mode, forming a mono-cupra-cyclic compounds with at least one acute C-Cu-C angle. When the bidentate ligands bind to two copper atoms via η1-mode at each coordinating site, the bimetallic macrocyclic compounds will form nearly linear C-Cu-C angles. The anionic coordinating sites of the bidentate ligand can also bridge two metals via µ2-mode, forming organocopper aggregates with Cu-Cu interactions and organocuprates with contact ion pair structures. The reaction chemistry of some selected organocopper compounds is highlighted, showing their unique structure-reactivity relationships.

3.
Infect Dis Ther ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596881

RESUMO

INTRODUCTION: The findings of randomized controlled trials (RCTs), observational studies, and meta-analyses vary regarding the effectiveness and safety of combination therapy for patients with Staphylococcus aureus bacteraemia (SAB). We aimed to identify the effectiveness and safety of combination therapy in patients with SAB compared with those of monotherapy. METHODS: We performed a systematic review and meta-analysis to compare combination therapy versus monotherapy in patients with SAB. Two authors independently searched PubMed, Embase, and the Cochrane Library of clinical trials until 17 February 2021. Any RCT comparing mortality or adverse events (AEs) of combination therapy versus monotherapy for patients with SAB was eligible. Summary risk ratios (RRs) and 95% confidence intervals (CIs) were evaluated using a random-effects model. The primary outcome was all-cause mortality at any time point. This meta-analysis is registered with the PROSPERO database (CRD42020188176) and reported according to PRISMA guidelines. RESULTS: In total, 1906 articles were identified and screened, and 14 studies (2367 patients) were included in the meta-analysis. There was no significant difference in the risk of all-cause mortality between the two groups (RR = 1.00; 95% CI 0.83-1.20; P = 0.99; I2 = 0%). Similar results were obtained by subgroup analysis of mortality recording time, endocarditis, pathogen resistance, article publication time, number of patients, and adjuvant antibiotics. Notably, combination treatment might significantly increase the risk of drug-related AEs (RR = 1.68; 95% CI 1.06-2.66; P = 0.03; I2 = 67%) and nephrotoxicity (RR = 2.30; 95% CI 1.68-3.16; P < 0.00001; I2 = 0%), although the occurrences of AEs leading to treatment discontinuation and serious AEs were not significantly different between the two groups. CONCLUSIONS: The meta-analysis suggested that combination therapy could not reduce mortality but might increase the risk of drug-related AEs and nephrotoxicity and should be applied very cautiously. Future studies on combined drug therapy for SAB need careful and rigorous design for specific antibiotic combinations.

4.
Am J Med Genet A ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617658

RESUMO

Disco-interacting protein 2 C (DIP2C) encodes a disco-interacting protein and is highly expressed in the nervous system. Most variants of DIP2C are microdeletions on chromosome 10p15.3. This study reports a 17-month-old infant with focal infantile epilepsy who has a single-nucleotide variation in DIP2C that results in alternative splicing. The de novo variation (NM_014974.3: c.1057+2T>G) in DIP2C was uncovered through whole-exome sequencing. Minigene assays were performed and verified the alternative splicing caused by the variation. Finally, an 80-bp nucleotide deletion in the 3' end of Exon 8 was detected. Our study identified a de novo splicing variant that affects the coding length of DIP2C. This finding provides a new candidate gene for focal infantile epilepsy. Importantly, our finding is the first to associate a single nucleotide variant in DIP2C with focal infantile epilepsy.

5.
Front Physiol ; 12: 690190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646146

RESUMO

Hypoxia is the major cause of acute altitude hypoxia injury in acute mountain sickness (AMS). YQ23 is a kind of novel bovine-derived, cross-linked hemoglobin-based oxygen carrier (HBOC). It has an excellent capacity for carrying and releasing oxygen. Whether YQ23 has a protective effect on the acute altitude hypoxia injury in AMS is unclear. In investigating this mechanism, the hypobaric chamber rabbit model and plain-to-plateau goat model were used. Furthermore, this study measured the effects of YQ23 on the ability of general behavior, general vital signs, Electrocardiograph (ECG), hemodynamics, vital organ injury markers, and blood gases in hypobaric chamber rabbits and plain-to-plateau goats. Our results showed that the ability of general behavior (general behavioral scores, GBS) (GBS: 18 ± 0.0 vs. 14 ± 0.5, p < 0.01) and the general vital signs weakened [Heart rate (HR, beats/min): 253.5 ± 8.7 vs. 301.1 ± 19.8, p < 0.01; Respiratory rate (RR, breaths/min): 86.1 ± 5.2 vs. 101.2 ± 7.2, p < 0.01] after exposure to plateau environment. YQ23 treatment significantly improved the ability of general behavior (GBS: 15.8 ± 0.5 vs. 14.0 ± 0.5, p < 0.01) and general vital signs [HR (beats/min): 237.8 ± 24.6 vs. 301.1 ± 19.8, p < 0.01; RR (breaths/min): 86.9 ± 6.6 vs. 101.2 ± 7.2, p < 0.01]. The level of blood PaO2 (mmHg) (115.3 ± 4.7 vs. 64.2 ± 5.6, p < 0.01) and SaO2(%) (97.7 ± 0.7 vs. 65.8 ± 3.1, p < 0.01) sharply decreased after exposure to plateau, YQ23 treatment significantly improved the blood PaO2 (mmHg) (97.6 ± 3.7 vs. 64.2 ± 5.6, p < 0.01) and SaO2(%) (82.7 ± 5.2 vs. 65.8 ± 3.1, p < 0.01). The cardiac ischemia and injury marker was increased [troponin (TnT, µg/L):0.08 ± 0.01 vs. 0.12 ± 0.02, p < 0.01], as well as the renal [blood urea nitrogen (BUN, mmol/L): 6.0 ± 0.7 vs. 7.3 ± 0.5, p < 0.01] and liver injury marker [alanine aminotransferase (ALT, U/L): 45.8 ± 3.6 vs. 54.6 ± 4.2, p < 0.01] was increased after exposure to a plateau environment. YQ23 treatment markedly alleviated cardiac ischemia [TnT (µg/L):0.10 ± 0.01 vs 0.12 ± 0.02, p < 0.01] and mitigated the vital organ injury. Besides, YQ23 exhibited no adverse effects on hemodynamics, myocardial ischemia, and renal injury. In conclusion, YQ23 effectively alleviates acute altitude hypoxia injury of AMS without aside effects.

6.
J Cancer ; 12(21): 6429-6438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659533

RESUMO

Glioma is the most common primary tumour in the central nervous system in adults, and at present, there is no effective treatment to cure this malignancy. Long noncoding RNAs (lncRNAs) are closely related to tumour progression and have attracted increasing attention in tumour research. However, the role of lncRNA FGF14-AS2 in glioma tumorigenesis has not been determined. In the present study, we found that FGF14-AS2 expression was significantly elevated in glioma tissues and was associated with poor survival in glioma patients. Silencing FGF14-AS2 inhibited the proliferation, migration and invasion ability of glioma cells. In vivo assay showed that silencing FGF14-AS2 led to inhibition of tumour growth. In addition, FGF14-AS2 was observed to promote glioma progression via the miR-320a/E2F1 axis. Moreover, E2F1 could bind to the promoter region of FGF14-AS2, thereby enhancing FGF14-AS2 expression. In conclusion, FGF14-AS2 could accelerate tumorigenesis of glioma by forming a feedback loop with the miR-320a/E2F1 axis which suggested that FGF14-AS2 could serve as a therapeutic target for glioma.

7.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681655

RESUMO

Intensive methotrexate (MTX) treatment for childhood malignancies decreases osteogenesis but increases adipogenesis from the bone marrow stromal cells (BMSCs), resulting in bone loss and bone marrow adiposity. However, the underlying mechanisms are unclear. While microRNAs (miRNAs) have emerged as bone homeostasis regulators and miR-542-3p was recently shown to regulate osteogenesis in a bone loss context, the role of miR-542-3p in regulating osteogenesis and adipogenesis balance is not clear. Herein, in a rat MTX treatment-induced bone loss model, miR-542-3p was found significantly downregulated during the period of bone loss and marrow adiposity. Following target prediction, network construction, and functional annotation/ enrichment analyses, luciferase assays confirmed sFRP-1 and Smurf2 as the direct targets of miR-542-3p. miRNA-542-3p overexpression suppressed sFRP-1 and Smurf2 expression post-transcriptionally. Using in vitro models, miR-542-3p treatment stimulated osteogenesis but attenuated adipogenesis following MTX treatment. Subsequent signalling analyses revealed that miR-542-3p influences Wnt/ß-catenin and TGF-ß signalling pathways in osteoblastic cells. Our findings suggest that MTX treatment-induced bone loss and marrow adiposity could be molecularly linked to miR-542-3p pathways. Our results also indicate that miR-542-3p might be a therapeutic target for preserving bone and attenuating marrow fat formation during/after MTX chemotherapy.

8.
Crit Rev Oncol Hematol ; 167: 103493, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653597

RESUMO

Pancreatic neuroendocrine tumors (PanNETs) are heterogeneous; thus, individual prognostic prediction is important. Clinicopathological features, like TNM stage, grade, and differentiation, are independent clinical predictors. However, single predictors are insufficient, as patients sharing similar clinicopathological features usually show distinct prognoses. Accordingly, novel nomograms and risk stratifications have been developed for more accurate PanNET prognostic prediction. Moreover, the exploration of molecular mechanisms has identified novel prognostic predictors for PanNET. Multi-analyte assays of molecular biomarkers provide a deeper understanding of PanNET features; however, the priority, and the optimal combination of classic and novel predictors for PanNET prognosis prediction remain unclear. In this review, we summarized the patterns and predictors of PanNET prognosis and discussed their clinical utility; we emphasized that PanNET at different stages have different superior predictor, and that multi-analyte assays are more sensitive than mono-analyte biomarkers. Therefore, combined biomarkers improve the accuracy of surveillance and optimize decision-making in clinical practice.

9.
Pathol Res Pract ; 227: 153610, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34601398

RESUMO

The coronavirus disease 2019(COVID-19) is recognized as systemic inflammatory response syndrome. It was demonstrated that a rapid increase of cytokines in the serum of COVID-19 patients is associated with the severity of disease. However, the mechanisms of the cytokine release are not clear. By using immunofluorescence staining we found that the number of CD11b positive immune cells including macrophages in the spleens of died COVID-19 patients, was significantly higher than that of the control patients. The incidence of apoptosis as measured by two apoptotic markers, TUNEL and cleaved caspase-3, in COVID-19 patients' spleen cells is higher than that in control patients. By double immunostaining CD11b or CD68 and SARS-CoV-2 spike protein, it was found that up to 67% of these immune cells were positive for spike protein, suggesting that viral infection might be associated with apoptosis in these cells. Besides, we also stained the autophagy-related molecules (p-Akt、p62 and BCL-2) in spleen tissues, the results showed that the number of positive cells was significantly higher in COVID-19 group. And compared with non-COVID-19 patients, autophagy may be inhibited in COVID-19 patients. Our research suggest that SARS-CoV-2 may result in a higher rate of apoptosis and a lower rate of autophagy of immune cells in the spleen of COVID-19 patients. These discoveries may increase our understanding of the pathogenesis of COVID-19.

10.
Cell Res ; 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663909

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.

11.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2967-2974, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34664471

RESUMO

In order to clarify the controlling effect of reductive soil disinfestation (RSD) during low-temperature stubble idle period on watermelon Fusarium wilt, we conducted a pot experiment, containing control (CK), flooded control (FCK), and RSD treatments incorporated with 2% (w/w) alfalfa meal (AL), 0.25% acetic acid (AC), and AL+AC. Real time PCR and Illumian Miseq sequencing were used to determine the abundances of fungi and Fusarium oxysporum as well as fungal community composition. The disease incidence and yield of watermelon were measured. Results showed that the abundance of Fusarium oxysporum and the ratio of Fusarium oxysporum to fungi significantly decreased in the FCK and three RSD treatments, and the disinfestation effects of these treatments ranged from 86.1% to 94.6%. The yield and disease incidence of watermelon significantly increased and decreased in all of the RSD treatments, respectively. There was no significant diffe-rence between FCK and CK treatments. The control efficiencies of Fusarium wilt in AL, AC, and AL+AC were 63.2%, 73.7%, and 94.7%, respectively. The compositions of fungal community in the AL and AC treatments were significantly changed, whereas FCK did not affect fungal community. The relative abundances of dominant fungal genera, such as Zopfiella, Pseudeurotium, Geotrichum, Ascobolus, Westerdykella, and Guehomyces, increased in the RSD treatments. Most of those genera were significantly and negatively correlated with the abundance of Fusarium oxysporum, the ratio of Fusarium oxysporum to fungi, and the disease incidence. In conclusion, RSD treated in the low-temperature stubble free period could effectively control watermelon Fusarium wilt by reshaping fungal community composition.

12.
Aging (Albany NY) ; 13(undefined)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633988

RESUMO

Due to persistent inconsistencies in the expression data of alcoholic liver disease (ALD), it is necessary to turn to "pre-laboratory" comprehensive analysis in order to accelerate effective precision medicine and transformation research. We screened pseudogene-derived lncRNA associated with ALD by comparative analysis of 2 independent data sets from GEO. Three lncRNAs (CRNDE, RBMS3-AS3, and LINC01088) were demonstrated to be potentially useful diagnostic markers in ALD. Among them, the expression of CRNDE is up-regulated. Therefore, we focus on CRNDE. Kyoto Encyclopedia of Genes and Genomes pathways analysis revealed higher CRNDE can activate MAPK signaling pathway, apoptosis, wnt signaling pathway, and hematopoietic cell lineage. Next, we established ALD animal model and verified the success of the modeling. The result showed ALD tissues in mice had significantly higher CRNDE levels than normal tissues. Moreover, the increase of IL-6 in the serum of mice in the low-dose group is related to the activation of inflammatory factors after alcohol-induced liver injury. In addition, alcohol can induce apoptosis, and knockdown of CRNDE can reduce apoptosis. Our integrated expression profiling identified CRNDE independently associated with ALD. CRNDE can facilitate inflammation and apoptosis in ALD.

13.
Acta Histochem ; 123(7): 151789, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34560403

RESUMO

OBJECTIVES: The mechanisms underlying the role of mast cells in wound healing have not been thoroughly studied, and even fewer data are available on studies related to mast cells in the skin of patients with type 2 diabetes mellitus (T2DM). Therefore, this study aims to explore the transcriptional characteristics of mast cells at the single-cell level in patients with T2DM and provide experimental data for studying mast cell behaviors under abnormal glucose metabolism. METHODS: Two patients with T2DM and one trauma patient without diabetes were enrolled. Samples were derived from skin tissue resected at the time of surgery and were isolated by single cell capture technology on BD platform to prepare single cell cDNA library. Seurat was used to process raw reads and analyze data downstream of single-cell RNA sequencing, including removal of low-quality cells, identification of cell clusters at the single-cell level, and screening for differential genes with fold change > 1.5 and p < 0.05 by two-sided t-test. We performed single-cell RNA sequencing on skin tissues of T2DM patients and non-diabetics and identified the cell cluster of skin, single-cell subsets, and transcriptional characteristics of mast cells at a single-cell level. Meanwhile, gene set enrichment(GSEA) analysis was performed on the differentially expressed genes. RESULTS: A total of 8888 cells were obtained from skin tissue. Clustering analysis revealed eight-cell clusters, identified as smooth muscle cells, dendritic cells, mast cells, and T cells, respectively. Cluster 6 was identified as mast cells with the marker genes TPSAB1, CPA3, TPSB2, MS4A2,KIT, etc., which accounting for 2.7% of the total cell number.Compared with the control group, the genes highly expressed in MCs from T2DM patients, include ADH1C, PAXIP1, HAS1, ARG1, etc., and the low expression genes include PHACTR2, GGA1, RASSF2, etc. GSEA analysis suggested that the signal pathways of MCS in T2DM patients included VEGF signaling pathway, Fc gamma R-mediated phagocytosis, the B cell receptor signaling pathway, natural killer cell-mediated cytotoxicity. CONCLUSIONS: The characteristic genes of MCs in the skin tissues of T2DM patients were described at the single-cell level. These genes and enriched signaling pathways provide a theoretical basis and data support for further researches on dermatopathy in patients with diabetes mellitus.

14.
Psychol Med ; : 1-10, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583785

RESUMO

BACKGROUND: As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown. METHODS: To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis. RESULTS: Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus. CONCLUSIONS: Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.

15.
Sci Total Environ ; 806(Pt 1): 150263, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34571218

RESUMO

Microplastics (MPs) are ubiquitous in various environment compartments, including food. Here, we collected research reports of MPs in food published during 2010-2020, and summarized the analytical methods developed and utilized by researchers (e.g., digestion, separation and identification, as well as related QA/QC measures implemented), the occurrence, and the characteristics of MPs in six kinds of food. The potential effects on biota from exposure to MPs were also reviewed. The results showed that most researchers digested food samples using chemical solutions such as HNO3, H2O2, KOH, or NaOH. FT-IR and Raman spectroscopy were the main technique for identifying MPs, and microscopes were used to count MP particles. The abundances MPs were in the ranges of 0-5860, 2.00-1100, 0-698, 4.00-18.7, 0-5.68 × 104 and 900-3000 particles/kg in beverages, condiments, honey, meat, seafood and vegetables, respectively. The "maximum" annual human intake of MPs from these foods is approximately 1.42 × 105-1.54 × 105 particles/capita, equivalent to the consumption of 50 plastic bags (size: 0.04 mm × 250 mm × 400 mm, density: 0.98 g/cm3) each year. Blue-colored and fiber-shaped MP particles were the most commonly observed in food, predominated by PA, PE, PES, PET and PP types. Toxicity studies indicated that MPs, additives of MPs and adsorbents or microorganisms on the surfaces of MPs were all somewhat toxic to cells or biota. Exposure to MPs may induce oxidative stress, inflammation, neurotoxicity, and reproductive toxicity, and change the structure of intestinal microflora in cells or biota. Therefore, we call for more investigation into the residual, excretion and bioavailability of MPs or related absorbents/additives in biota and humans.

16.
Entropy (Basel) ; 23(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34573814

RESUMO

Generally speaking, it is difficult to compute the values of the Gaussian quantum discord and Gaussian geometric discord for Gaussian states, which limits their application. In the present paper, for any (n+m)-mode continuous-variable system, a computable Gaussian quantum correlation M is proposed. For any state ρAB of the system, M(ρAB) depends only on the covariant matrix of ρAB without any measurements performed on a subsystem or any optimization procedures, and thus is easily computed. Furthermore, M has the following attractive properties: (1) M is independent of the mean of states, is symmetric about the subsystems and has no ancilla problem; (2) M is locally Gaussian unitary invariant; (3) for a Gaussian state ρAB, M(ρAB)=0 if and only if ρAB is a product state; and (4) 0≤M((ΦA⊗ΦB)ρAB)≤M(ρAB) holds for any Gaussian state ρAB and any Gaussian channels ΦA and ΦB performed on the subsystem A and B, respectively. Therefore, M is a nice Gaussian correlation which describes the same Gaussian correlation as Gaussian quantum discord and Gaussian geometric discord when restricted on Gaussian states. As an application of M, a noninvasive quantum method for detecting intracellular temperature is proposed.

17.
Microbiol Spectr ; 9(1): e0029321, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479412

RESUMO

Bacteria have evolved a series of mechanisms to maintain their survival and reproduction in changeable and stressful environments. In-depth understanding of these mechanisms can allow for better developing and utilizing of bacteria with various biological functions. In this study, we found that water-soluble humic materials (WSHM), a well-known environment-friendly plant growth biostimulant, significantly promoted the free-living growth and survival of Sinorhizobium fredii CCBAU45436 in a bell-shaped, dose-dependent manner, along with more-efficient carbon source consumption and relief of medium acidification. By using RNA-Seq analysis, a total of 1,136 genes significantly up-/downregulated by external addition of WSHM were identified under test conditions. These differentially expressed genes (DEGs) were enriched in functional categories related to carbon/nitrogen metabolism, cellular stress response, and genetic information processing. Further protein-protein interaction (PPI) network analysis and reverse genetic engineering indicated that WSHM might reprogram the transcriptome through inhibiting the expression of key hub gene rsh, which encodes a bifunctional enzyme catalyzing synthesis and hydrolysis of the "magic spot" (p)ppGpp. In addition, the root colonization and viability in soil of S. fredii CCBAU45436 were increased by WSHM. These findings provide us with new insights into how WSHM benefit bacterial adaptations and demonstrate great application value to be a unique inoculant additive. IMPORTANCE Sinorhizobium fredii CCBAU45436 is a highly effective, fast-growing rhizobium that can establish symbiosis with multiple soybean cultivars. However, it is difficult to maintain the high-density effective viable cells in the rhizobial inoculant for the stressful conditions during production, storage, transport, and application. Here, we showed that WSHM greatly increased the viable cells of S. fredii CCBAU45436 in culture, modulating metabolism and triggering stress defense. The root colonization and viability in soil of S. fredii CCBAU45436 were also increased by WSHM. Our results shed new insights into the effects of WSHM on bacteria and the importance of metabolism and stress defense during the bacteria's whole life. In addition, the functional mechanism of WSHM may provide candidate genes for improving environmental adaptability and application potential of bacteria through genetic engineering.

18.
Mol Ther Nucleic Acids ; 25: 536-553, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589276

RESUMO

Mutant p53 (mutp53) commonly loses its DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced long intergenic noncoding RNA-p21 (lincRNA-p21) expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity. However, estrogen receptor alpha (ERα) suppressed mutp53-mediated lincRNA-p21 expression by hijacking mutp53 to upregulate damaged DNA binding protein 2 (DDB2) transcription for subsequent DNA repair and chemoresistance. Levels of lincRNA-p21 positively correlated with the clinical responses of breast cancer patients to neoadjuvant chemotherapy and had an inverse correlation with the ER status and DDB2 level. In contrast, the carboplatin-induced DDB2 expression was higher in ER-positive breast tumor tissues. These results demonstrated that ER status determines the oncogenic function of mutp53 in chemoresistance by switching its target gene preference from lincRNA-p21 to DDB2 and suggest that induction of lincRNA-p21 and targeting DDB2 would be effective strategies to increase the chemosensitivity of mutp53 breast cancer patients.

19.
Front Cardiovasc Med ; 8: 698285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485401

RESUMO

Background and Aims: Fatty liver disease (FLD) has emerged as a major public issue in China. We aim to investigate prevalence, clinical features, and in-hospital outcome of FLD in acute aortic dissection (AAD) patients. Methods: Data of 379 AAD patients from 2017 to 2019 at Renmin hospital of Wuhan University was retrospectively collected and divided according to age and FLD absence. Propensity score matching was used for minimal confounding. We compared their physical environmental parameter of onset, clinical features, and in-hospital outcome. Results: The mean age was 52.0 ± 11.5 years in type A and 55.1 ± 11.4 in type B. 25.0% of type A and 19.2% of type B AAD patients had FLD. Logistic regression indicated a negative association between FLD and age, both in type A [unadjusted odds ratio (OR) 0.958 (per 1 year), 95% confidence interval (CI) 0.930-0.988, p = 0.0064] and type B [unadjusted OR 0.943 (per 1 year), 95% CI 0.910-0.978, p = 0.0013]. After matching, type A with FLD had onset with a lower air quality index (AQI) of 68.5 [interquartile range (IQR) 46.0-90.0] and a lower Pm 2.5 concentration of 36.0 µg/m3 (IQR 23.0-56.0) compared with non-FLD group. In Kaplan-Meier estimation, FLD was associated with higher risk of in-hospital mortality in type B AAD (p = 0.0297). Conclusion: The prevalence of FLD in AAD decrease with age, both in type A and type B AAD. Type A AAD patients with FLD had onset with better air quality parameters compared with non-FLD group. FLD was associated with higher risk of in-hospital mortality in type B AAD.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34531920

RESUMO

Objective: To explore the therapeutic targets, network modules, and coexpressed genes of Radix Rhei Et Rhizome intervention in cerebral infarction (CI), and to predict significant biological processes and pathways through network pharmacology. To explore the differential proteins of Radix Rhei Et Rhizome intervention in CI, conduct bioinformatics verification, and initially explain the possible therapeutic mechanism of Radix Rhei Et Rhizome intervention in CI through proteomics. Methods: The TCM database was used to predict the potential compounds of Radix Rhei Et Rhizome, and the PharmMapper was used to predict its potential targets. GeneCards and OMIM were used to search for CI-related genes. Cytoscape was used to construct a protein-protein interaction (PPI) network and to screen out core genes and detection network modules. Then, DAVID and Metascape were used for enrichment analysis. After that, in-depth analysis of the proteomics data was carried out to further explore the mechanism of Radix Rhei Et Rhizome intervention in CI. Results: (1) A total of 14 Radix Rhei Et Rhizome potential components and 425 potential targets were obtained. The core components include sennoside A, palmidin A, emodin, toralactone, and so on. The potential targets were combined with 297 CI genes to construct a PPI network. The targets shared by Radix Rhei Et Rhizome and CI include ALB, AKT1, MMP9, IGF1, CASP3, etc. The biological processes that Radix Rhei Et Rhizome may treat CI include platelet degranulation, cell migration, fibrinolysis, platelet activation, hypoxia, angiogenesis, endothelial cell apoptosis, coagulation, and neuronal apoptosis. The signaling pathways include Ras, PI3K-Akt, TNF, FoxO, HIF-1, and Rap1 signaling pathways. (2) Proteomics shows that the top 20 proteins in the differential protein PPI network were Syp, Syn1, Mbp, Gap43, Aif1, Camk2a, Syt1, Calm1, Calb1, Nsf, Nefl, Hspa5, Nefh, Ncam1, Dcx, Unc13a, Mapk1, Syt2, Dnm1, and Cltc. Differential protein enrichment results show that these proteins may be related to synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, synaptic vesicle endocytosis, axon guidance, calcium signaling pathway, and so on. Conclusion: This study combined network pharmacology and proteomics to explore the main material basis of Radix Rhei Et Rhizome for the treatment of CI such as sennoside A, palmidin A, emodin, and toralactone. The mechanism may be related to the regulation of biological processes (such as synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, and synaptic vesicle endocytosis) and signaling pathways (such as Ras, PI3K-Akt, TNF, FoxO, HIF-1, Rap1, and axon guidance).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...